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® Spatio-Temporal Data in Traffic Domain
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Background

® Visual-Textual Data in Traffic Domain

Captured Image Data
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® Foundation Models

A Foundation Model is “any model that is trained on broad data (generally using self-
supervision at scale) that can be adapted (e.g., fine-tuned) to a wide range of downstream tasks",

such as BERT [Devlin et al. 2019], GPT-3 [Brown et al. 2020], and CLIP [Radford et al. 2021].
——[On the Opportunities and Risks of Foundation Models 2021 Li Fei-Fei etc.]
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Development of Foundation Models




Development of Foundation Models

® Large Language Models (LLMs)
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[A Survey of Large Language Models, 2023]
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® Large Language Models (LLMs)
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Model Type Bidirectional encoder | Unidirectional decoder HCZ?;2$ZOder
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Task Domain as“;entiment analy;s generative tasks such as ; ’

named entity
recognition, etc.

text generation,
dialogue systems, etc.

supports various tasks
like translation,
summarization, etc.

Pretraining Task Masked Language Autoregressive Sequence-to-Sequence
g Model (MLM) Language Model (seq2seq)
Unidirectional
Bidirectional encoding, decoding, Encoder-decoder

Context Understanding

understands the entire
context information

understanding of the
current token relies on
previous tokens

structure, capable of
processing global
context information

Strong context

Universal sequence-to-

Advantaces understanding, Generates coherent, sequence structure,
£ applicable to a variety context-aware text | supports multiple tasks,
of tasks easy to fine-tune
High computational | Limited understanding | Sensitive to sequence
. resource requirements, | of context, inability to length, high
Disadvantages .. -
sensitive to sequence capture global computational resource
length information requirements

[Attention Is All You Need, 2017]




Development of Foundation Models

® Large Vision Models (LVMs)

Vision Transformer (ViT): Addressing tasks in the field of computer vision using the standard Transformer.
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[An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale, 2021]
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® Large Vision Models (LVMs)

» ViT — Linear Projection of Flattened Patches
O Split Image into Patches: patch 16 x16

O Vectorization: If the patches are d1xd2xd3 tensors, then the vectors are d1d2d3x 1

[An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale, 2021]
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® Large Vision Models (LVMs)

» ViT — Classification Task
O Add Position Encoding

O Connect to Transformer
Dense
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[An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale, 2021]
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® Large Vision Models (LVMs)

» ViT — Classification Task

EEEEREEETRRTEESE et is better

ImageNet
(small)

ImageNet-21K
(Medium)

JFT
(Big)

O Pretrain the model on Dataset A, fine-tune on Dataset B, then evaluate on Dataset B
O Pretrained on ImageNet (small), ViT is slightly worse than ResNet.

O Pretrained on ImageNet-21K (medium), ViT is comparable to ResNet.

O Pretrained on JFT (large), ViT is slightly better than ResNet.

ViT is better

1.3 Million 1 Thousand i # of Images
E > for

14 Million 21 Thousand E pretraining

300 Million 18 Thousand 100M Images 300M Images

[An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale, 2021]



Development of Foundation Models

® Vision Language Models (VLMs)

> Single stream (VisualBERT, VL-BERT, Oscar) - Early fusion
» Dual stream (VILBERT, LXMERT, CLIP) - Late fusion
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® Vision Language Models (VLMs)

(1) Contrastive pre-training (2) Create dataset classifier from label text
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Contrastive Language-Image Pre-Training (CLIP)

» Rich pretraining data (400M image-text pairs)
» Mapping images and text to a shared embedding space
» Capability for zero-shot image classification and image-text retrieval

[Learning Transferable Visual Models From Natural Language Supervision, 2021]
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® Vision Language Models (VLMys)
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[Learning Transferable Visual Models From Natural Language Supervision, 2021]
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Data and Foundation Models?




How to Combine?

® Use Spatio-Temporal Data as Text or Image Formats

Cognitive Memory @ Text Interface 6 Reasoning Engine

Commonsense Memory Experience Memory —_— Mcemory Data: —_— % Chain-of-Thoughts Reasoning
Rule (1): Avoid collisions with other objects Past scenario (1): Environmental info 1, Driving Trajectory 1 E::::_‘i:z::"se Notable objects: Truck at (3.04, 8.03)
i i ion: Potential effects: Truck is deceleratin,
Rule (N): Maintain a safe distance to the front object | | Past scenario (N): Environmental info N, Driving Trajectory N F;‘;L‘:";:::ml information: 8

- Predictions 1
- Occupan =
¢ v Task Planning
% Lo Libl‘ﬂl’) - Ego—SFates ; Driving behavior: change lane to right
F = g = = A = = ORI ERRG) Velocity estimation: deceleration
Detection Functions Pre F Occupancy F Mapping Functions Driving plan:

get_leading object() get_pred_trajs_for_object(i)| | get_occ_at_loc_time(loc,t) | | get_drivable(loc) change lane_to_right with_deceleration
get_objects_in_range(r) get_waypoint(i, t) ;:t-)llision_check(traj] get_lanes(loc) l

t t t t Memory Reasoning /‘ Motion Planning

& Neural Modules & & 1~ | Planned driving trajectory:
Tool Use Planning ((0.04,1.26), ..., (0.39,7.39)]
[ i ' -
. sl \ N Y
' \» A
'y K . .
o4 l‘ ) c Self-Reflection
: \ Large Lan guage Models Re-planned trajectory after collision check:
Detection Module Prediction Module Occupancy Module Mapping Module [(0.04,1.26), .., (0.39,7.39)] ~ X
as an Agent [(0.04,1.26), .., (0.39,621)]

l I I I

-
(O=1]¢)=i)

Observations Environmental Update Actions

Agent-Driver

[A Language Agent for Autonomous Driving, 2023]
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® Use Spatio-Temporal Data as Text or Image Formats

O

é Agent o

Task: You should think about what types of information (Detections, Predictions, Maps,
Occupancy) you need to extract from the driving scenario [context information].

System Prompts

L@
If

[Do you need to execute object detection? Please answer YES or NO.

é@

You can execute some of the following functions:

- get _leading object_detection() # Get detection of the leading
object, the function will return the leading object id and its
posltlon and size.

Front object detections:
Object detected, object type: car, object id: 2, position: (4.36, 9.56), size: (4.72, 1.86)

Tool Library

[ Do you need to execute trajectory prediction? Please answer YES or NO.

&=

’ \
get_future_trajectories_for_specific_objects; | Executing the function | ¥
parameters: {"object_ids™: [2, .., 23]} | from tool library ... By a?

You can execute some of the following functions:
- get_leading object_future_trajectory() ...

Leverage text as
unified interface

Object type: car, object id: 2, future waypoint coordinates in 3s: [(4.36, 9.56), ... ]

@.

[ Do you need to get map information? Please answer YES or NO.

[Fu(urc trajectories for specific objects:

Du you need to get occupancy information?
Please answer YES or NO.

You can execute some of the following functions:

1

Function| L 1
{ y Call ! vy ! I

iget_from_ob]cct_deitcuons; parameters: {} ] Executing the function | 1 . '.‘% 1
| from tool library ... By aa '=l4: 1 I

_______________ ' 1

: 1

1

1

/ pi
| Executing the functions }
| from tool library .. )

: - [ get_drivable(locations) ...

ge( lanes; parameters: {}
ge( shoulders: parameters: {}

Current ego-vehicle's distance to the left lane ... the right lane ...
Current ego-vehicle's distance to the left shoulder ... the right shoulder ...

n----T-TT=T===

Query (1 Cognitive Memory
Environmental K-NN Past Scenario (1):
Info snma Environmental Info (1);
- Detection Driving Trajectory (1);
- Prediction
- Occupancy Past Scenario (N):
- Map Encode Environmental Info (N);

- Ego-states Driving Trajectory (N);

[@;m Query Scemru}[fz | Past Scenario (i) ][I: | Past Scenario () ][E: -] Past Scenario (n)]

Stage-1: Vector Search

In this step, you need to retrieve the most similar past driving

experience to the current query scenario to assist decision-making L
[ : L 5 & Retrieve

[Query Scenario: ...

Past Scenario (1): ..  Past Scenario (j): ... Past Scenario (k): I

‘

:
Stage-2: LLM-Based Fuzzy Search

{The most similar past scenario is the scenario (k) J

**Task descriptions:**

You' re an autonomous vehicle's brain. Plan a safe trajectory to avoid obstacles...
1 infor
Front object detections: .
**Common sense:**

- Maintain a safe distance from the objects in front of you...
**Past driving experience for reference:**

Scenario information: ... Referenced planning results: ...

.. Future trajectories for specific objects:... Map information: ...

e

**Chain-of-though ~
- Notable objects: pedesman at (0.80,18.81), moving to (-2.53,20.89) at 3.0 second.

- Potential effects: may collide if continue driving at this speed.

- Notable objects: ...

B i

- Potential effects: ... )
~

**Task planning:** ) )

Behavior: move forward ~ Speed: deceleration Visual Demonstration

Driving plan: move forward with a deceleration. J,

**Motion planning:**
Trajectory: [(-0.03, 2.47), ..., (-0.49,13.22)]

**Self-reflection:**
No collision. No change to the trajectory.

Cognitive Memory

A two-stage search
algorithm

Reasoning Engine

Chain-of-Thought
Task Planning

Motion Planning
Self-Reflection

[A Language Agent for Autonomous Driving, 2023]



How to Combine?

**+*Environmental information:***** 5:%

Front object detections:
Front object detected, object type: pedestrian, object id: 0, position: (-4.32, 13.85), size: (0.76, 0.91)

Front object detected, object type: pedestrian, object id: 9, position: (2.23, 19.39), size: (0.57, 0.69)
Future trajectories for specific objects:
Object type: pedestrian, object id: 0, future waypoint coordinates in 3s: [(-4.44, 14.50), ...]

Object type: pedestrian, object id: 9, future waypoint coordinates in 3s: [(1.74, 19.76), ...]
Map information (road shoulders):

Current ego-vehicle's distance to left shoulder is 0.5m and right shoulder is 4.5m

*¥xxxCommon sense:***** @
- Maintain a safe distance from the objects in front of you...

*¥wwxpast driving experience for reference:*****

Most similar driving experience from memory with similarity score: 0.77:

Scenario information: ...

The planned trajectory in this scenario for your reference:[(0.04,2.49), ...,(0.30,12.26)]

**4xChai f-thoughts r ing:** e 6
- Notable objects: pedestrian at (0.80,18.81), moving to (-2.53,20.89) at 3.0 second
- Potential effects: may collide if continue driving at this speed.

;;l#*'rask planning:!“‘*
Behavior: forward; Speed: deceleration; Driving plan: move forward with a deceleration

FEM ot PR

Trajectory: [(-0.03, 2.47), (-0.10, 4.84), (-0.19, 7.10), (-0.29, 9.25), (-0.39, 11.29), (-0.49, 13.22)]
sssmiSelf-reflection:*****
No collision. No change to the motion planning result.

® Use Spatio-Temporal Data as Text or Image Formats

—

****¥Environmental information:***** %
Front object detections:

Front object detected, object type: car, object id: 4, position: (-2.11, 14.95), size: (1.96, 4.76)

Front object detected, object type: car, object id: 6, position: (5.31, 32.79), size: (1.90, 4.48)
Future trajectories for specific objects:
Object type: pedestrian, object id: 4, future waypoint coordinates in 3s: [(-2.39, 14.80), ...]

Object type: pedestrian, object id: 6, future waypoint coordinates in 3s: [(5.32, 32.78), ...]
Map information (lanes):

Current ego-vehicle's distance to left lane is 1.5m and right lane is unknown

#4#34Common sense:***** @
- Avoid collision with other objects...

wes*¥past driving experience for reference:*****

Most similar driving experience from memory with similarity score: 0.45:

Scenario information: ...

The planned trajectory in this scenario for your reference:[(-0.14,0.98), ...,(-5.10,8.27)]

*##++Chain-of-thoughts r ing:*ees 6
- Notable objects: car at (-2.11,14.95), moving to (-2.84,14.53) at 1.5 second
- Potential effects: inside the safety zone of the ego-vehicle at 1.5 second.

*rxsTask planning:*****

Behavior: turn left; Speed: deceleration; Driving plan: turn left with a deceleration
*awesMotion planning:*****

Trajectory: [(-0.11,0.94), (-0.31,1.81), (-0.62,2.75), (-1.16,3.88), (-1.84,4.93), (-2.95,6.29)]
whrssSelf-reflection:*****

No collision. No change to the motion planning result.

[A Language Agent for Autonomous Driving, 2023]



How to Combine?

® Use Spatio-Temporal Data as Text or Image Formats

....................................................................................................
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[Multimodal Motion Prediction with Stacked Transformers, 2021]



How to Combine? %

® Use Spatio-Temporal Data as Text or Image Formats

] L
l_b‘\ :- T Crosswalk l
— ' - S Input vectors Polyline subgraphs Global interaction graph Supervision & Prediction
: (] ‘ :I ............ '
Y N , Lane Lane I—. ;—-[g
| i
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............ --» Map

S j .“ I \\ \ \ { - ' La:E ’ =)

r Trajectory &N oo 0 N L e ook e
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Representation Representation e SRS LA
VectorNet

O Requires manual specifications
O Limited receptive fields

[VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation, 2020]
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® Use Spatio-Temporal Data as Text or Image Formats

Results of 6-proposal mmTransformer

[Multimodal Motion Prediction with Stacked Transformers, 2021]
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® Employ Specific Spatio-Temporal Models as Tools

‘ . n ) Road Traffic Flow Data ) @ ﬁ l
Dushers 18 Large Language Model g
management Analyzers
Real-time Traffic Flow Video ! ' l

User Input Query

Vehicle Trajectory Data ) N o r B
2 e oo i Task Planning and Evaluation
Coy O S e 4
s ' isualization
p Road Network Operational ¢ ™
—_— ' Data
! Status Data ' N
‘ ' Extractijn : Final .
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Road Vehicle Detector v/ Answer
””””””””””” Deployment Optimization e
. Road Network Structure Data ! 4 Yes
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ﬁ QO N Call TFMs 7%
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[TrafficGPT: Viewing, Processing and Interacting with Traffic Foundation Models, 2023]
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® Employ Specific Spatio-Temporal Models as Tools

System A Jracic
: - -oundation
Prefix e r—’ Prompt Management Models
Show me the current —STEP 1 “— Description
network heatmap.
. l STEP 2
SQL
2 Large Language Model -
STEP 8 : m“:““":n‘em
— : lsrsp 3 e
The road network heat R e L T ;
map is kept at: 1 - : '
IR RPTIDg. STEP 7 ! Task Planning and Evaluation j
Visualization
oo
STEP 6 N TOOIS
Dialogue 3 No
. Final Answer | ¢
History >>> Show me the current network heatmap. Analyze and
evaluation
Thought: | need to use the “Get Current Time®
tool to get the current time before using the -
*Plot Heatmap® tool lyes N fo A
Action: Get Current Time j
Action Input: None
Ca[[ TFMS JII\ r—r—<Ge Optimization
Thought: Now | can use the “Plot Heatmap" tool
to show the current network heatmap.
Action: Plot Heatmap l STEPS
Action Input: 2019-08-16 10:45:29 I' ____________ | ]
. , .
<<< The road network heat map is kept at ® o : Rea-sonmg : R Deployment
¢ History ) Answer
fig/heatmap.png b ' eee

[TrafficGPT: Viewing, Processing and Interacting with Traffic Foundation Models, 2023]
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® Pre-train a Foundation Model with Spatio-Temporal Data

( Maximize ;o.;: gg Q Node (POI)\

D Simiaity ——y / w G Input: OSM data
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v Random Sa
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[CityFM: City Foundation Models to Solve Urban Challenges, 2023]
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® Pre-train a Foundation Model with Spatio-Temporal Data

a; Aty

! f

Action Prediction Layer

I

GPT-2 Transformer

Attentimﬁ‘

Stacked Input Sequence

Positional Encodings
MLP Embeddings

Tokenizers

»
L=

Task 1

Task 2

el

| Sample
Expert Trajectories -
T

Multi-Task Dataset Task N

[MTD-GPT: A Multi-Task Decision-Making GPT Model for Autonomous Driving at Unsignalized Intersections, 2023]

» Abstract the problem of multi-task decision-making

for autonomous driving as a sequence modeling and
prediction task.

Transform the “state-action-reward” tuples from
expert data into a token format similar to NLP task to
match the input format of the GPT model

. ,—
Input: 7 = (31,a1,91,32,a2,gg,...,sT,aT,gT)

s: Sequence of state
a: Sequence of action
g: Sequence of function of trajectory



® Prompt Learning
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[Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing, 2021 ]
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Abstract

This paper surveys and organizes research works in a new paradigm in natural language processing, which
we dub “prompt-based learning”. Unlike traditional supervised learning, which trains a model to take in an
input  and predict an output y as P(y|z), prompt-based learning is based on language models that model
the probability of text directly. To use these models to perform prediction tasks, the original input 2 is
‘modified using a template into a textual string prompt ' that has some unfilled slots, and then the language
model is used to ilisti fill the unfilled to obtain a final string &, from which the
final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows
the language model to be pre-irained on massive amounts of raw text, and by defining a new prompting
function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with
few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified
set of mathematical notations that can cover a wide variety of existing work, and organize existing work
along several dimensions, e.g. the choice of pre-trained models, prompts, and tuning strategies. To make
the field more accessible to interested beginners, we not only make a systematic review of existing works
and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website

s
# NLPedia-Pretrain  # including constantly-updated survey, and paperlist.




® Parameter-Efficient Fine-Tuning (PEFT)
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[LLM-Adapters: An Adapter Family for Parameter-Efficient Fine-Tuning of Large Language Models, 2023]



Future Directions

® Traffic Scene Understanding
® Traffic Description Generation
® Traffic Simulation

® Trajectory/Road Network
Generation




Thanks for Listening

Jingtian Ma



