



# Spatio-Temporal Data and Foundation Model

Jingtian Ma





#### • Spatio-Temporal Data in Traffic Domain







#### • Visual-Textual Data in Traffic Domain





#### **Captured Image Data**

天安门*(Tian'anmen)*,坐落在中华人民共和国首都北京市的中心、故宫的南端,与天安门广场以及人民英雄纪念碑、毛主 席纪念堂、人民大会堂、中国国家博物馆隔长安街相望,占地面积4800平方米,以杰出的建筑艺术和特殊的政治地位为世人所瞩 目。

天安门是明清两代北京皇城的正门,始建于明朝永乐十五年*(1417年)*,最初名"承天门",寓"承天启运、受命于天"之意。 设计者为明代御用建筑匠师蒯祥。清朝顺治八年*(1651年)*更名为天安门。由城台和城楼两部分组成,有汉白玉石的须弥座,总 高34.7米。天安门城楼长66米、宽37米。城台下有券门五阙,中间的券门最大,位于北京市皇城中轴线上,过去只有皇帝才可以 由此出入。正中门洞上方悬挂着毛泽东画像,两边分别是"中华人民共和国万岁"和"世界人民大团结万岁"的大幅标语。<sup>[1]</sup>

1925年10月10日,故宫博物院成立,天安门开始对民众开放。1949年10月1日,在这里举行了中华人民共和国开国大典,由 此被设计入国徽,并成为中华人民共和国的象征。1961年,中华人民共和国国务院公布为第一批全国重点文物保护单位之一。 [2]





#### **Text Description Data**



#### • Foundation Models

A Foundation Model is "any model that is trained on broad data (generally using self-supervision at scale) that can be adapted (e.g., fine-tuned) to a wide range of downstream tasks", such as BERT [Devlin et al. 2019], GPT-3 [Brown et al. 2020], and CLIP [Radford et al. 2021].

-[On the Opportunities and Risks of Foundation Models 2021 Li Fei-Fei etc.]







#### • Large Language Models (LLMs)



[A Survey of Large Language Models, 2023]



#### • Large Language Models (LLMs)



| Feature               | BERT                                                                                                    | GPT                                                                                               | Т5                                                                                                              |
|-----------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Model Type            | Bidirectional encoder                                                                                   | Unidirectional decoder                                                                            | Encoder-decoder                                                                                                 |
|                       |                                                                                                         |                                                                                                   | structure                                                                                                       |
| Task Domain           | Mainly used for<br>downstream tasks such<br>as sentiment analysis,<br>named entity<br>recognition, etc. | Mainly used for<br>generative tasks such as<br>text generation,<br>dialogue systems, etc.         | Universal sequence-to-<br>sequence tasks,<br>supports various tasks<br>like translation,<br>summarization, etc. |
| Drotroining Tool      | Masked Language                                                                                         | Autoregressive                                                                                    | Sequence-to-Sequence                                                                                            |
| Pretraining Task      | Model (MLM)                                                                                             | Language Model                                                                                    | (seq2seq)                                                                                                       |
| Context Understanding | Bidirectional encoding,<br>understands the entire<br>context information                                | Unidirectional<br>decoding,<br>understanding of the<br>current token relies on<br>previous tokens | Encoder-decoder<br>structure, capable of<br>processing global<br>context information                            |
| Advantages            | Strong context<br>understanding,<br>applicable to a variety<br>of tasks                                 | Generates coherent,<br>context-aware text                                                         | Universal sequence-to-<br>sequence structure,<br>supports multiple tasks,<br>easy to fine-tune                  |
| Disadvantages         | High computational<br>resource requirements,<br>sensitive to sequence<br>length                         | Limited understanding<br>of context, inability to<br>capture global<br>information                | Sensitive to sequence<br>length, high<br>computational resource<br>requirements                                 |

[Attention Is All You Need, 2017]



#### • Large Vision Models (LVMs)

Vision Transformer (ViT): Addressing tasks in the field of computer vision using the standard Transformer.







### Large Vision Models (LVMs)

- ViT Linear Projection of Flattened Patches
  - □ Split Image into Patches: patch 16 x16
  - $\Box$  Vectorization: If the patches are d1xd2xd3 tensors, then the vectors are d1d2d3×1



[An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale, 2021]



#### • Large Vision Models (LVMs)

- ViT Classification Task
  - □ Add Position Encoding
  - **C**onnect to Transformer



[An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale, 2021]



### Large Vision Models (LVMs)

- ViT Classification Task
  - □ Pretrain the model on Dataset A, fine-tune on Dataset B, then evaluate on Dataset B
  - □ Pretrained on ImageNet (small), ViT is slightly worse than ResNet.
  - □ Pretrained on ImageNet-21K (medium), ViT is comparable to ResNet.
  - □ Pretrained on JFT (large), ViT is slightly better than ResNet.

|                          |             | 200 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 |                  |                      |             |
|--------------------------|-------------|-----------------------------------------------------------------------------------------------------------------|------------------|----------------------|-------------|
|                          | # of Images | <pre># of Classes</pre>                                                                                         | ResNet is better | ViT is bette         | r           |
| ImageNet<br>(Small)      | 1.3 Million | 1 Thousand                                                                                                      |                  |                      | # of Images |
| ImageNet-21K<br>(Medium) | 14 Million  | 21 Thousand                                                                                                     |                  |                      | pretraining |
| JFT<br>(Big)             | 300 Million | 18 Thousand                                                                                                     | 100M             | l l<br>Images 300M I | mages       |

[An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale, 2021]



#### • Vision Language Models (VLMs)

- Single stream (VisualBERT, VL-BERT, Oscar) Early fusion
- Dual stream (ViLBERT, LXMERT, CLIP) Late fusion





#### • Vision Language Models (VLMs)



Contrastive Language-Image Pre-Training (CLIP)

- Rich pretraining data (400M image-text pairs)
- Mapping images and text to a shared embedding space
- Capability for zero-shot image classification and image-text retrieval

[Learning Transferable Visual Models From Natural Language Supervision, 2021]



#### • Vision Language Models (VLMs)

|                      | ImageNet  |            |
|----------------------|-----------|------------|
| Dataset              | ResNet101 | CLIP VIT-L |
| ImageNet             | 76.2%     | 76.2%      |
| ImageNet V2          | 64.3%     | 70.1%      |
| ImageNet Rendition   | 37.7%     | 88.9%      |
| ObjectNet            | 32.6%     | 72.3%      |
| ImageNet Sketch      | 25.2%     | 60.2%      |
| ImageNet Adversarial |           | 77.1%      |

[Learning Transferable Visual Models From Natural Language Supervision, 2021]

# How to Combine Spatio-Temporal Data and Foundation Models?





#### • Use Spatio-Temporal Data as Text or Image Formats



**Agent-Driver** 

[A Language Agent for Autonomous Driving, 2023]





**Use Spatio-Temporal Data as Text or Image Formats** 

[A Language Agent for Autonomous Driving, 2023]



#### Use Spatio-Temporal Data as Text or Image Formats



÷. \*\*\*\*\*Environmental information:\*\*\*\*\* Front object detections: Front object detected, object type: pedestrian, object id: 0, position: (-4.32, 13.85), size: (0.76, 0.91) Front object detected, object type: pedestrian, object id: 9, position: (2.23, 19.39), size: (0.57, 0.69) Future trajectories for specific objects: Object type: pedestrian, object id: 0, future waypoint coordinates in 3s: [(-4.44, 14.50), ...] Object type: pedestrian, object id: 9, future waypoint coordinates in 3s: [(1.74, 19.76), ...] Map information (road shoulders): Current ego-vehicle's distance to left shoulder is 0.5m and right shoulder is 4.5m \*\*\*\*\*Common sense:\*\*\*\*\* - Maintain a safe distance from the objects in front of you... \*\*\*\*\*Past driving experience for reference:\*\*\*\*\* Most similar driving experience from memory with similarity score: 0.77: Scenario information: .. The planned trajectory in this scenario for your reference: [(0.04,2.49), ..., (0.30,12.26)] Ô \*\*\*\*\*Chain-of-thoughts reasoning:\*\*\*\*\* - Notable objects: pedestrian at (0.80,18.81), moving to (-2.53,20.89) at 3.0 second - Potential effects: may collide if continue driving at this speed. \*\*\*\*\*Task planning:\*\*\*\*\* Behavior: forward; Speed: deceleration; Driving plan: move forward with a deceleration \*\*\*\*\*Motion planning:\*\*\*\*\* Trajectory: [(-0.03, 2.47), (-0.10, 4.84), (-0.19, 7.10), (-0.29, 9.25), (-0.39, 11.29), (-0.49, 13.22)] \*\*\*\*\*Self-reflection:\*\*\*\*\* \*\*\*\*\*Self-reflection:\*\*\*\*\* No collision. No change to the motion planning result No collision. No change to the motion planning result.





[A Language Agent for Autonomous Driving, 2023]



#### • Use Spatio-Temporal Data as Text or Image Formats





#### • Use Spatio-Temporal Data as Text or Image Formats



□ Limited receptive fields

[VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation, 2020]



#### • Use Spatio-Temporal Data as Text or Image Formats



[Multimodal Motion Prediction with Stacked Transformers, 2021]



### • Employ Specific Spatio-Temporal Models as Tools



Tools



#### Employ Specific Spatio-Temporal Models as Tools



[TrafficGPT: Viewing, Processing and Interacting with Traffic Foundation Models, 2023]



#### • Pre-train a Foundation Model with Spatio-Temporal Data



#### Input: OSM data

Objectives:

- 1) Text-based objective
- 2 Vision-Language
  - multimodal objective
- ③ Road-based objective.



#### • Pre-train a Foundation Model with Spatio-Temporal Data



- Abstract the problem of multi-task decision-making for autonomous driving as a sequence modeling and prediction task.
- Transform the "state-action-reward" tuples from expert data into a token format similar to NLP task to match the input format of the GPT model

Input: 
$$au' = \left(s_1, a_1, g_1, s_2, a_2, g_2, ..., s_T, a_T, g_T\right)$$

- s: Sequence of state
- a: Sequence of action
- g: Sequence of function of trajectory

[MTD-GPT: A Multi-Task Decision-Making GPT Model for Autonomous Driving at Unsignalized Intersections, 2023]

### Others



#### • Prompt Learning





[Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing, 2021]

## Others



### • Parameter-Efficient Fine-Tuning (PEFT)



[LLM-Adapters: An Adapter Family for Parameter-Efficient Fine-Tuning of Large Language Models, 2023]

# **Future Directions**



- Traffic Scene Understanding
- Traffic Description Generation
- Traffic Simulation

. . .

• Trajectory/Road Network Generation





# Thanks for Listening

Jingtian Ma