



# Transferable Graph Structure Learning for Graph-based Traffic Forecasting Across Cities

Y. Jin, K. Chen, and Q. Yang, "Transferable graph structure learning for graph-based traffic forecasting across cities," in *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining(KDD '23)*. New York, NY, USA, 2023, pp. 1032–1043.

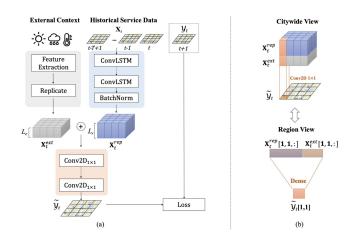
交通预测是各种智慧城市应用的基本问题。准确预测未来交通状况是众多智慧城市服务的基础,例如出行规划[21,23,34]、资源管理[5,45,48]、事故预测[13,46]等。交通数据可以通常被建模为时空图,其中传感器对应于方点,节点之间的依赖关系对应于边。

## Transfer Learning Methods For Traffic Forecasting

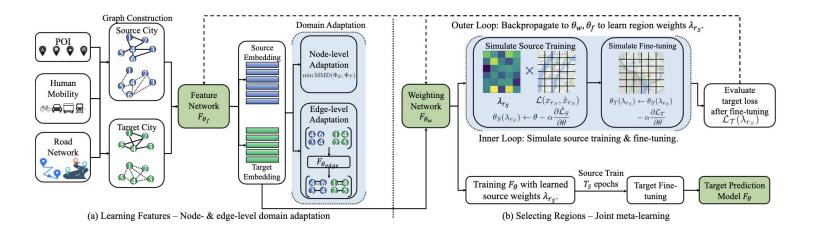


#### **Grid-based Data**

Divided into grids with fixed sizes and spatial relations.



RegionTrans



CrossTReS

Fail to describe spatial-temporal graphs with irregular and flexible node-wise connections

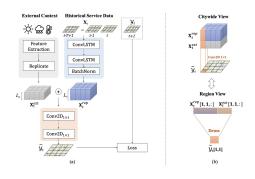
## Transfer Learning Methods For Traffic Forecasting

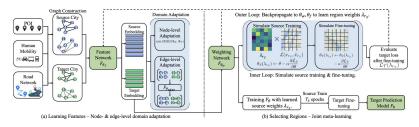


#### **Grid-based Data**



Divided into grids with fixed sizes and spatial relations.



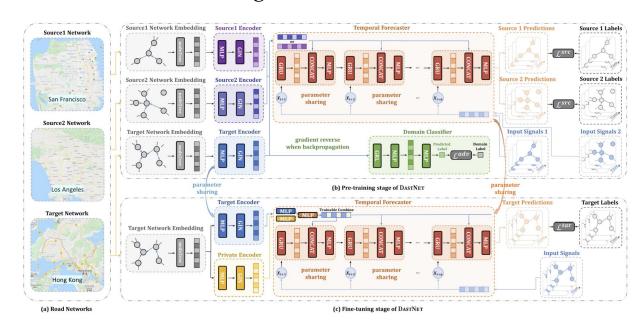


Fail to describe spatial-temporal graphs with irregular and flexible node-wise connections

#### **Graph-based Data**



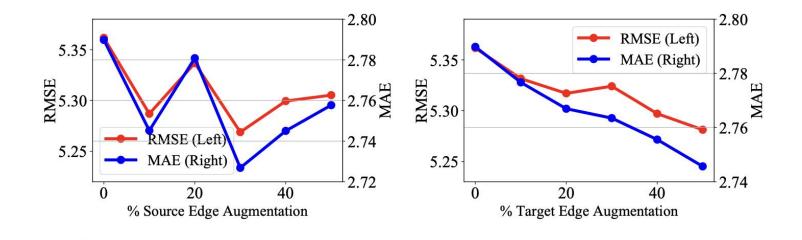
Adopt pre-defined graph structures for knowledge extraction and transfer.



Graph handcrafted with rules, and may thus be noisy, missing, or biased

## Drawback of pre-defined graph





(b) Augmenting the Target Graph

Augment the graph structures of both cities via the triadic closure rule − Connect top-♦ % node pairs with the most common neighbors

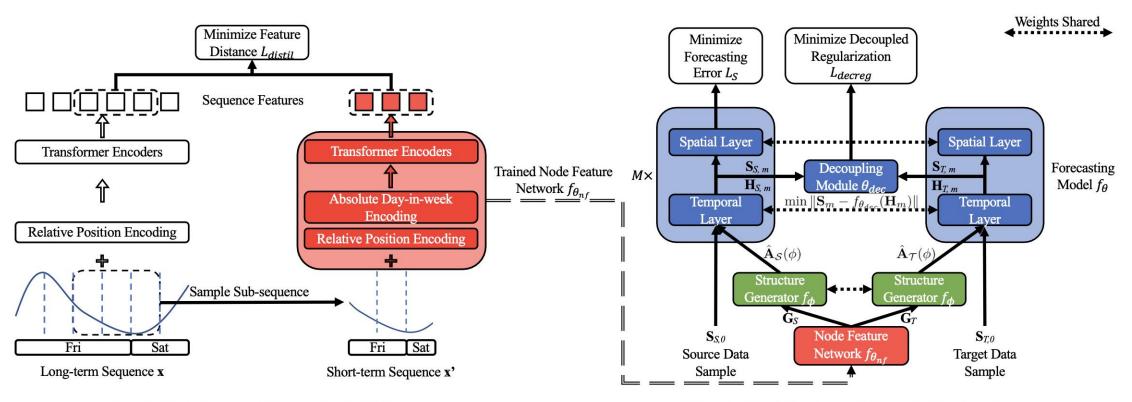
(a) Augmenting the Source Graph

Suggest that the pre-defined graph structures, either the source or the target, may not be optimal for knowledge transfer

- 1. Structure transferred from the source city can better identify helpful node-wise dependencies and learn a more effective target graph.
- 2. On the other hand, by jointly learning graph structures for both cities, we can narrow the discrepancy between source and target data distributions

#### Overview of TransGTR



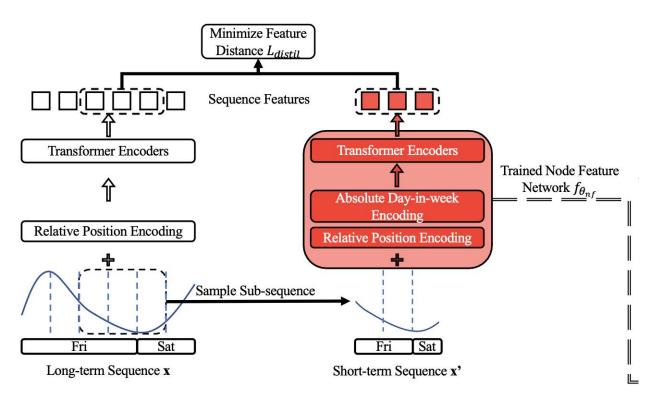


(a) Learning Node Features with Knowledge Distillation

(b) Learning Graph Structures with Decoupled Regularization

#### TransGTR - Node Feature Network





(a) Learning Node Features with Knowledge Distillation

Given an input sequence  $x \in \mathbb{R}^{L \cdot P}$ , TSFormer  $f_{\theta_{nf}}$ 

- Split x into patches of length P
- Project them into patch embeddings  $x_{emb} \in \mathbb{R}^{L \times n_{emb}}$
- Feed into a series of Transformer blocks

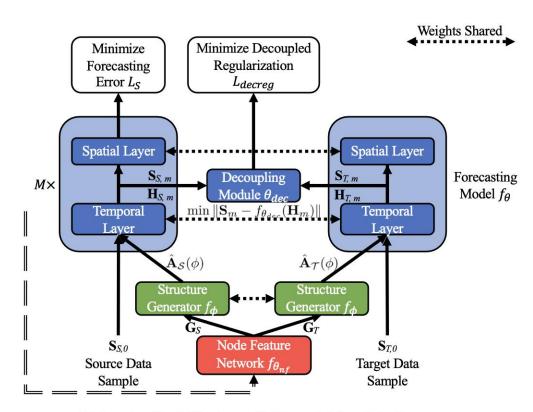
Denote the outputs of the encoder as  $x_{emb} \in \mathbb{R}^{L \times n_{emb}}$ 

\* Enhancing weekly periodicity with day-in-week encodings.

$$pe_{diw}(\mathbf{x}) = e_{diw}[\mathbf{t}_{diw}], \tag{4}$$

## TransGTR - Structure Generator & Forecasting Model





(b) Learning Graph Structures with Decoupled Regularization

#### Structure Generator fo

• Take the node features learned by  $f_{\theta_{nf}}$ 

$$G_S = f_{\theta_{nf}}(X_S)$$

$$G_{\rm T} = f_{\theta_{nf}}(X_T)$$

• Transform them into graph structures  $\widehat{A}_S(\phi)$ ,  $\widehat{A}_T(\phi)$  for both cities.

#### Forecasting Model $f_{\theta}$

- Given input data and the graph structure  $\widehat{A}$  ( $\phi$ )
- Model transforms them into predictions

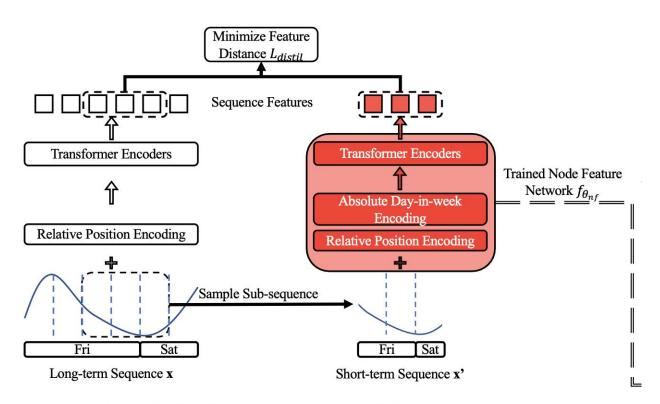
Assume that  $f_{\theta}$  consists of  $\bullet$  stacked spatial and temporal layers, i.e.

$$H_m = \text{TemporalLayer}_m(S_{m-1}),$$

$$S_m = GNNLayer_m(H_m, \widehat{A}(\phi)), m = 1, \dots M,$$

### TransGTR - City-agnostic Node Features





(a) Learning Node Features with Knowledge Distillation

#### Learning City-agnostic Node Features via Knowledge Distillation

- Follow STEP\* to pre-train node feature network
- Distill the rich knowledge encoded
  - Given a long-term sequence, obtain its corresponding short-term sequence  $x' \in \mathbb{R}^{L_{short} \cdot P}$

$$\mathbf{x}_{enc} = f_{\theta_{nf},S}(\mathbf{x}) \in \mathbb{R}^{L \times n_{emb}},$$

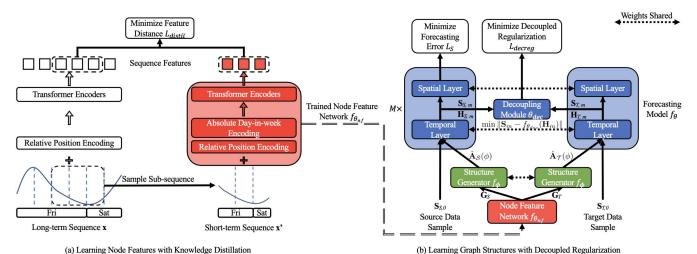
$$\mathbf{x}'_{enc} = f_{\theta_{nf}}(\mathbf{x}') \in \mathbb{R}^{L_{short} \times n_{emb}}.$$
(8)

$$\mathcal{L}_{distil}(\mathbf{x}) = \left\| \mathbf{x}'_{enc} - \mathbf{x}_{enc}[p:p+L_{short}] \right\|^2, \tag{9}$$

Zezhi Shao, Zhao Zhang, Fei Wang, and Yongjun Xu. 2022. Pre-Training Enhanced Spatial-Temporal Graph Neural Network for Multivariate Time Series Forecasting. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. ACM, New York, NY, USA, 1567–1577.

## TransGTR - Decoupled Regularization





# Learning Graph Structures via Temporal Decoupled Regularization.

• Propose a spatial feature regularization term to minimize the distance between spatial features

$$\mathcal{L}_{reg} = \sum_{m=1}^{M} d\left(S_{\mathcal{S},m}, S_{\mathcal{T},m}\right), \tag{11}$$

- Robust Regularization via Temporal Decoupling (For I.I.D)
  - Data samples from different time steps do not necessarily follow the same distribution.
  - Train the decoupling modules to reconstruct Sm with its preceding temporal features Hm

$$\min_{\{\theta_{dec,m}\}_{m=1,\dots M}} \mathcal{L}_{recons} = \sum_{m=1}^{M} \left\| \mathbf{S}_m - f_{\theta_{dec,m}}(\mathbf{H}_m) \right\|^2.$$
 (12)

## **Experiments**

BIG

Table 1: Comparative evaluation results with PEMSD7M and HKTD as target cities. LA and BAY stand for METR-LA and PEMS-BAY as source cities, respectively. In each column, the best result is presented in bold and the second best is underlined.

|             |                    | <b>Target Data</b> |         | 7-day |       |       |         |       |       | 3-day   |       |       |       |         |       |       |       |       |  |
|-------------|--------------------|--------------------|---------|-------|-------|-------|---------|-------|-------|---------|-------|-------|-------|---------|-------|-------|-------|-------|--|
| Target City | <b>Baselines</b>   | Horizon            | 30 mins |       |       |       | 60 mins |       |       | 30 mins |       |       |       | 60 mins |       |       |       |       |  |
|             |                    | Metrics            | RMSE    |       | MAE   |       | RMSE    |       | MAE   |         | RMSE  |       | MAE   |         | RMSE  |       | MAE   |       |  |
| PEMSD7M     | Target Only        | ARIMA              | 6.525   |       | 3.682 |       | 8.942   |       | 5.426 |         | 6.526 |       | 3.698 |         | 8.946 |       | 5.453 |       |  |
|             |                    | GWN                | 5.748   |       | 2.999 |       | 7.279   |       | 3.824 |         | 6.053 |       | 3.126 |         | 7.994 |       | 4.1   | 4.162 |  |
|             |                    | GTS                | 5.639   |       | 2.988 |       | 7.071   |       | 3.746 |         | 5.831 |       | 3.111 |         | 7.508 |       | 4.014 |       |  |
|             | Transfer           | Source             | LA      | BAY   | LA    | BAY   | LA      | BAY   | LA    | BAY     | LA    | BAY   | LA    | BAY     | LA    | BAY   | LA    | BA    |  |
|             |                    | FT-GWN             | 5.645   | 5.771 | 2.913 | 2.970 | 7.038   | 7.128 | 3.636 | 3.690   | 5.873 | 5.935 | 3.045 | 3.077   | 7.349 | 7.596 | 3.845 | 3.97  |  |
|             |                    | FT-GTS             | 5.685   | 5.651 | 2.908 | 2.901 | 6.952   | 6.899 | 3.526 | 3.543   | 5.946 | 5.986 | 3.024 | 3.078   | 7.203 | 7.205 | 3.736 | 3.74  |  |
|             |                    | RegionTrans        | 5.654   | 5.702 | 2.909 | 2.935 | 6.986   | 7.077 | 3.597 | 3.659   | 5.868 | 5.948 | 3.046 | 3.073   | 7.376 | 7.545 | 3.862 | 3.96  |  |
|             |                    | DASTNet            | 5.659   | 5.633 | 2.901 | 2.905 | 6.976   | 6.954 | 3.553 | 3.599   | 5.839 | 5.908 | 3.031 | 3.078   | 7.245 | 7.294 | 3.774 | 3.81  |  |
|             |                    | ST-GFSL            | 5.647   | 5.642 | 2.941 | 2.927 | 6.937   | 6.931 | 3.535 | 3.541   | 5.840 | 5.912 | 3.012 | 3.071   | 7.219 | 7.218 | 3.738 | 3.74  |  |
|             |                    | TransGTR           | 5.461   | 5.454 | 2.800 | 2.802 | 6.565   | 6.601 | 3.340 | 3.373   | 5.627 | 5.679 | 2.960 | 2.958   | 6.922 | 6.931 | 3.604 | 3.59  |  |
|             |                    | Std. Dev.          | 0.024   | 0.015 | 0.019 | 0.007 | 0.041   | 0.022 | 0.028 | 0.008   | 0.029 | 0.040 | 0.017 | 0.016   | 0.040 | 0.053 | 0.026 | 0.02  |  |
|             |                    | ARIMA              | 6.648   |       | 3.816 |       | 8.249   |       | 4.843 |         | 6.650 |       | 3.822 |         | 8.253 |       | 5.863 |       |  |
| нкто        | <b>Target Only</b> | GWN                | 6.0     | 6.062 |       | 3.386 |         | 7.206 |       | 4.000   |       | 6.333 |       | 3.477   |       | 7.727 |       | 4.333 |  |
|             |                    | GTS                | 6.0     | 052   | 3.3   | 880   | 6.9     | 954   | 3.9   | 003     | 6.2   | 252   | 3.4   | 153     | 7.2   | 249   | 4.011 |       |  |
|             |                    | Source             | LA      | BAY   | LA    | BAY   | LA      | BAY   | LA    | BAY     | LA    | BAY   | LA    | BAY     | LA    | BAY   | LA    | BA    |  |
|             |                    | FT-GWN             | 5.755   | 5.792 | 3.237 | 3.264 | 6.552   | 6.551 | 3.682 | 3.728   | 5.939 | 5.949 | 3.351 | 3.373   | 6.984 | 6.927 | 3.922 | 3.98  |  |
|             |                    | FT-GTS             | 5.792   | 5.796 | 3.242 | 3.253 | 6.420   | 6.496 | 3.633 | 3.682   | 5.999 | 5.982 | 3.369 | 3.351   | 6.784 | 6.849 | 3.854 | 3.80  |  |
|             | Transfer           | RegionTrans        | 5.696   | 5.728 | 3.216 | 3.228 | 6.424   | 6.456 | 3.654 | 3.683   | 5.935 | 5.943 | 3.342 | 3.345   | 6.870 | 6.894 | 3.880 | 3.9   |  |
|             |                    | DASTNet            | 5.690   | 5.704 | 3.200 | 3.221 | 6.411   | 6.442 | 3.619 | 3.655   | 5.905 | 5.921 | 3.379 | 3.361   | 6.786 | 6.798 | 3.881 | 3.8   |  |
|             |                    | ST-GFSL            | 5.704   | 5.739 | 3.225 | 3.231 | 6.477   | 6.435 | 3.624 | 3.638   | 5.960 | 5.993 | 3.392 | 3.388   | 6.847 | 6.821 | 3.869 | 3.8   |  |
|             |                    | TransGTR           | 5.666   | 5.661 | 3.141 | 3.140 | 6.205   | 6.232 | 3.441 | 3.455   | 5.928 | 5.877 | 3.305 | 3.290   | 6.622 | 6.589 | 3.693 | 3.6   |  |
|             |                    | Std. Dev.          | 0.018   | 0.016 | 0.007 | 0.018 | 0.026   | 0.022 | 0.013 | 0.017   | 0.019 | 0.018 | 0.010 | 0.011   | 0.031 | 0.025 | 0.011 | 0.0   |  |

Table 2: Results of Model Analysis. The target city is chosen as PEMSD7M with 7-day data.

| Analyzed        | Source            |         | MET   | R-LA    |       | PEMS-BAY |       |         |       |  |
|-----------------|-------------------|---------|-------|---------|-------|----------|-------|---------|-------|--|
| Component       | Horizon           | 30 mins |       | 60 mins |       | 30 mins  |       | 60 mins |       |  |
| Component       | Metric            | RMSE    | MAE   | RMSE    | MAE   | RMSE     | MAE   | RMSE    | MAE   |  |
| Node Feature    | TransGTR-NoDistil | 5.573   | 2.869 | 6.742   | 3.439 | 5.545    | 2.846 | 6.761   | 3.474 |  |
| Learning        | TransGTR-NoWP     | 5.519   | 2.837 | 6.671   | 3.382 | 5.559    | 2.833 | 6.715   | 3.423 |  |
| Graph Structure | TransGTR-NoSL     | 5.645   | 2.913 | 7.038   | 3.636 | 5.771    | 2.970 | 7.128   | 3.690 |  |
| Learning        | TransGTR-NoReg    | 5.591   | 2.860 | 6.764   | 3.434 | 5.591    | 2.873 | 6.778   | 3.460 |  |
| Learning        | TransGTR-NoDec    | 5.552   | 2.843 | 6.693   | 3.415 | 5.529    | 2.840 | 6.729   | 3.428 |  |
|                 | TransGTR          | 5.461   | 2.800 | 6.565   | 3.340 | 5.454    | 2.802 | 6.601   | 3.373 |  |

METR-LA->PEMSD7M PEMS-BAY->PEMSD7M 6.75 6.75 RMSE (Left) RMSE (Left) MAE (Right) 3.40 MAE (Right) 6.70 8WSE 6.6: WAE.8 6.60 6.60 0.1 0.5 0.1 0.5  $\lambda_d$  $\lambda_d$ (a) METR-LA to PEMSD7M (b) PEMS-BAY to PEMSD7M

Figure 3: Results of parameter analysis on  $\lambda_d$ , from both METR-LA and PEMS-BAY to PEMSD7M. The reported metrics are evaluated with a forecasting horizon of 60 minutes.

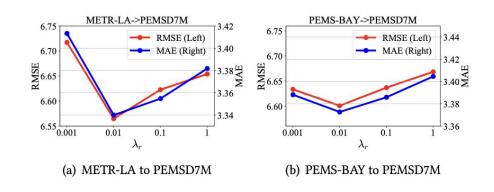


Figure 4: Results of parameter analysis on  $\lambda_r$ , from both METR-LA and PEMS-BAY to PEMSD7M. The reported metrics are evaluated with a forecasting horizon of 60 minutes.

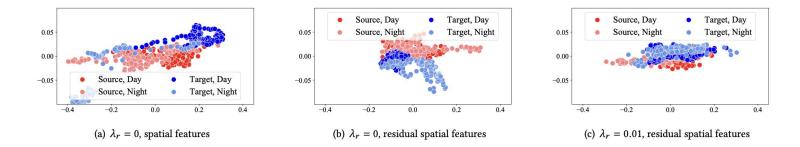


Figure 5: Visualization of spatial features  $S_M$  and residual spatial features  $\tilde{S}_M$  obtained from TransGTR with  $\lambda_r=0$  and  $\lambda_r=1$ . Red dots represent source features, while blue dots represent target features. In addition, dark dots represent day-time features, while light dots represent night-time features. The axes in all sub-figures are of the same range.

Table 3: Mean RMSE and MAE (± std. dev. within the graph) between connected node pairs in different graph structures.

| Graph Structures | RMSE             | MAE              |  |  |  |  |
|------------------|------------------|------------------|--|--|--|--|
| Random           | 14.90±4.63       | $10.00 \pm 3.49$ |  |  |  |  |
| Pre-defined      | $13.86 \pm 5.21$ | $9.27 \pm 3.79$  |  |  |  |  |
| Target-only      | $13.80 \pm 4.19$ | 9.21±3.12        |  |  |  |  |
| TransGTR         | $12.85 \pm 4.17$ | $8.43 \pm 3.22$  |  |  |  |  |



## Thanks.