
28

DGeye: Probabilistic Risk Perception and Prediction for

Urban Dangerous Goods Management

JINGYUAN WANG and XIN LIN, School of Computer Science and Engineering, Beihang University.

Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University. State Key Lab-

oratory of Software Development Environment, Beihang University

YUAN ZUO and JUNJIE WU, School of Economics and Management, Beihang University. Beijing

Advanced Innovation Center for Big Data and Brain Computing, Beihang University. Beijing Key Laboratory

of Emergency Support Simulation Technologies for City Operations, Beihang University

Recent years have witnessed the emergence of worldwide megalopolises and the accompanying public safety

events, making urban safety a top priority in modern urban management. Among various threats, dangerous

goods such as gas and hazardous chemicals transported through cities have bred repeated tragedies and

become the deadly “bomb” we sleep with every day. While tremendous research efforts have been devoted

to dealing with dangerous goods transportation (DGT) issues, further study is still in great need to quantify

this problem and explore its intrinsic dynamics from a big data perspective. In this article, we present a novel

system called DGeye, to feature a fusion between DGT trajectory data and residential population data for

dangers perception and prediction. Specifically, DGeye first develops a probabilistic graphical model-based

approach to mine spatio-temporally adjacent risk patterns from population-aware risk trajectories. Then,

DGeye builds the novel causality network among risk patterns for risk pain-point identification, risk source

attribution, and online risky state prediction. Experiments on both Beijing and Tianjin cities demonstrate the

effectiveness of DGeye in real-life DGT risk management. As a case in point, our report powered by DGeye

successfully drove the government to lay down gas pipelines for the famous Guijie food street in Beijing.
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1 INTRODUCTION

Dangerous goods refer to materials that are radioactive, flammable, explosive, or toxic. Rapid in-
dustrialization associated with urbanization leads to increasing dangerous goods applications in
densely populated urban areas and the subsequent massive transport and storage of dangerous
goods, which have exposed huge risks to modern cities. For instance, a warehouse storing danger-
ous goods in the port area of Tianjin, exploded on August 12, 2015, causing 173 deaths, hundreds of
wounded, and 304 buildings severely damaged.1 On August 4, 2020, a massive explosion at the port
of the city of Beirut, the capital of Lebanon, caused at least 180 deaths, 6,000 injuries, and US$10–15
billion in property damage, leaving an estimated 300,000 people homeless.2 These bloody lessons
bring urban dangerous goods safety back to sight as a top priority in urban management. Discov-
ering and managing the risks caused by dangerous goods have become an essential task for urban
governments and a big challenge to researchers involved.
In the literature, the problem of dangerous goods transportation (DGT) has attracted great

attention, but mainly focused on transportation route planning [24] and risk assessment [14] and
mostly from an operation and optimization view. These studies, though providing constructive
managerial insights, usually lack a micro-view of DGT threats from a big data perspective, which
is deemed critically important for gaining actionable rules. For instance, we need to learn the
geographical distributions of dangerous goods transporters (DGT)3 and urban residents for real-
time risk monitoring. Also, we should identify the latent spatio-temporal risk patterns and the
intrinsic mechanism behind them for risk perception and prediction as well as sustainable urban
planning. These practical needs indeed motivate our study in this article, which aims to leverage
heterogeneous big data to deal with urban risks stemming from DGT. Our study falls into the
research category of urban computing [43] and thus can also enrich the dangerous goods-related
studies in this area. The key research question in this work is how to identify the latent spatio-
temporal risk patterns and the intrinsic mechanism behind them from dangerous-goods-related
big data. The key question could be divided into three specific research questions:

(1) How to identify spatio-temporal risk patterns from DGT trajectory and human mobility
data.

(2) How to model intrinsic relations among the spatio-temporal risk patterns and exploit the
relations for urban risk management.

(3) How to predict urban DGT risks based on spatio-temporal risk pattern mining and pattern
relations modeling.

In this work, we present a system calledCity Eyes on Dangerous Goods (DGeye) for real-world
DGT safety management to answer the three research questions. DGeye takes spatio-temporal risk
patterns as the “magic wand” for urban DGT risk analysis and adopts three probabilistic-approach-
based components for risk pattern mining, risk sources tracking, and risky states prediction. In the
“risk pattern mining” component, DGeye designs a novel probabilistic graphical model, named

1https://en.wikipedia.org/wiki/2015_Tianjin_explosions.
2https://en.wikipedia.org/wiki/2020_Beirut_explosion.
3We use DGT to denote both Dangerous Goods Transportation and Transporter interchangeably, which can be distin-

guished with reference to the context.
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nRTG, to mine urban risk patterns from a joint dataset consisting of DGT trajectory data and
resident mobile-phone signaling data. The nRTG model is also equipped with a neighbor regu-
larization to model the spatio-temporal connections in urban risk patterns. In the “risk source
tracking” component, a novel trajectory-driven risk causal network is built upon found risk pat-
terns for pattern importance ranking and risk attribution analysis. In the “risky state prediction”
component, DGeye is capable of predicting risk patterns’ risky states by applying an EM-enabled
Bayesian network model to the generated causal network. DGeye has established itself as a suc-
cessful deployment in various real-world applications. For instance, as a look-back to the Tianjin
port explosion disaster, DGeye accurately located the explosion site as one urban zone inside the
top-ranked risk pattern in the port area. More interestingly, DGeye disclosed that the first and
most important risk source in Beijing is formed by the transportation of liquefied gas cylinders to
an old famous food street: Guijie.4 The advisory report technically powered by DGeye has driven
the Beijing government to lay down gas pipelines for Guijie.
Our main research contributions to DGeye are summarized as follows: First, to our best knowl-

edge, DGeye (and its previous version [30]) is among the earliest data-driven systems that take
both vehicle trajectories and human mobilities into account for DGT safety management and
gain successful deployment. Second, DGeye is among the very few works that apply probabilistic
graphical model to mine spatio-temporal patterns from two dynamic data sources simultaneously.
Compared with our previous work in Reference [30], which adopts an Apriori-like algorithm to
discover spatial-only risk patterns, the nRTG model proposed in this work can uncover spatio-
temporally adjacent risk patterns and has the potential to suit other spatio-temporal pattern min-
ing scenarios such as co-location pattern mining. Third, in DGeye, we design a trajectory-driven
risk causal network to describe influential relationships among risk patterns, based on which a
risk source tracking algorithm is proposed to rank the priority of risk patterns for treatment al-
location. As shown in the experiments on the Beijing and Tianjin datasets, following the priority
ranks generated by our approach, the decrease of the holistic risk of all patterns can reach 50%
even if only the top-five patterns are treated. Fourth, we propose an EM-enabled Bayesian net-
work model in DGeye to predict risky states of patterns consecutively. Comparative experimental
studies with various baselines demonstrate the excellent predictive power of DGeye, especially
when we have only a small data sample. Moreover, compared with our previous work in Reference
[30], the new version of the DGeye system also achieved improved performance over the Beijing
and Tianjin real-world datasets for both the risk source tracking and pattern risk state prediction
applications.
The remainder of this article is organized as follows: Section 2 briefly introduces the DGeye

system. Section 3 present the data precessing step of the DGeye system. Sections 4 to 6 present the
technical details of the three functional components of DGeye orderly. We present the experimen-
tal results in Section 7, introduce related work in Section 8, and conclude our work in Section 9.

2 THE SYSTEM OVERVIEW

Figure 1 shows the framework of DGeye with four layers. The data source layer of the system
consists of DGT trajectory data, mobile phone signaling data, and city map data, which, respec-
tively, represent the information about dangerous goods, human populations, and city geography.
In the data processing layer, the system partitions a city map into multiple urban zones and spatio-
temporal zones, and then uses mobile phone signaling data and DGT trajectory data to calculate
the crowd scores for each urban zones and risk trajectories (see Section 3 for details).

4https://www.youtube.com/watch?v=gP08plZygHE.

ACM Transactions on Information Systems, Vol. 39, No. 3, Article 28. Publication date: May 2021.

https://www.youtube.com/watch?v=gP08plZygHE.


28:4 J. Wang et al.

Fig. 1. The system framework of DGeye.

The knowledge modeling layer is concerned with the pain points of DGT risks within a city.
While crowd scores in urban zones and risk trajectories are important for real-time monitoring,
they are just the “irregular symptoms” of the underlying DGT risks, changing across different
time slices and in different days. For an urban management perspective, we would like to un-
veil the relatively stable patterns behind the time-variable symptoms. Therefore, we adopt a Risk
Pattern Mining component as a knowledge modeling layer, which reveals the spatio-temporal
patterns of risks from crowd scores and risk trajectories (see Section 4 for details). The DG-
eye system implements this function via a neighbor-regularized Risk Trajectory Generation

(nRTG) model, which is a probabilistic graphical model describing the generation process of
DGT trajectories and a spatio-temporal neighbor regularization mechanism. A pattern postpro-
cesses step is also adopted to ensure risk patterns satisfy frequency, connectivity, and crowdedness
requirements.
Based on the risk patterns, in the user application layer, we develop two applications for different

types of users. For urban planners, the system adopts a Risk Source Tracking component to pick out
the risk patterns (i.e., risk sources) that have high influences on the formation of other risk patterns
(see Section 5 for details). To this end, the risk patterns generated previously are ranked according
to their causal influences to other patterns. The ranking gives high priority to the patterns that
lead to many other patterns of high importance. According to the ranking list, urban planners
can fix the pain points gradually from high-priority patterns to low-priority ones. The system
implements this function through building a causal network among risk patterns and running a
probabilistic randomwalk algorithm over the network. For the emergency monitoring application,
the system adopts a Risky State Prediction component to predict the risky states of risk patterns in
the next time slice based on their historical states and the mutual influences defined in the causal
network (see Section 6 for details). The DGeye system adopts an EM-enabled Bayesian approach
over the risk pattern causal network to fulfill this task.

3 DATA PROCESSING

The input of the system mainly consists of three types of data sources, i.e., the map of a city, the
DGT trajectory, and the mobile phone signaling data. In this section, we introduce the data sources
and processing step of the data sources in DGeye.

ACM Transactions on Information Systems, Vol. 39, No. 3, Article 28. Publication date: May 2021.
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Fig. 2. An illustration of the ST-Cube and risk patterns.

3.1 Spatio-Temporal Zone

In the DGeye system, the map of a city is segmented as many basic units, namely, Urban Zones

and ST-Zones, for DGT risk analyzing.

Definition 1 (Urban Zone). We divide the map of a city as a I × J checkerboard. A grid in a
checkerboard is defined as an Urban Zone.

Definition 2 (ST-Zone). We divide one day into H time slices. A Spatio-Temporal Zone, abbrevi-
ated as ST-Zone, is defined as an instance of an urban zone for a time slice. Given a city with I × J
urban zones, there are V = I × J × H ST-Zones. The ST-Zone corresponding to the (i, j )-th urban
zone at the time slice h is denoted as si jh . We also use sv to denote thevth ST-Zone if all ST-Zones
are lined up as a vector, v = 1, . . . ,V .

Definition 3 (ST-Cube). All ST-Zones constitute a Spatio-Temporal Cube, abbreviated as ST-Cube,
with the size of I × J × H (as shown in Figure 2). The ST-Zone si jh is the (i, j,h)-th cell of the
ST-Cube.

3.2 Crowd Score

For each ST-Zone, the DGeye system generates a Crowd Score usingMobile Phone Signaling (MPS)

Data. TheMPS data refers to communication records betweenmobile phones and base stations. An
MPS record contains <user ID, station ID, timestamp> fields. The user ID and base station ID are
unique identifications for cell phones and base stations. The timestamp records the occurrence time
of communication. The DGeye system uses the location of the base station that provides signaling
services to a mobile phone to approximate the position of the phone user. Given the pretty high
penetration rate of mobile phones in metropolises, we can use the number of mobile phone users
to approximate the population in an urban zone. In our system, the user IDs are anonymous and
the MPS data do not contain any communication contents of cell phone users.
For each time slice, the system maintains a binary user-zone matrix U, where a row vector

corresponds to a cell phone user and a column corresponds to a urban zone. The element ũxy = 1
indicates user x appears in urban zone y during the time slice, and 0 otherwise. At the end of a
time slice, the population of the urban zone y is calculated as

uy =
∑
x

ũxy∑
y ũxy

. (1)

ACM Transactions on Information Systems, Vol. 39, No. 3, Article 28. Publication date: May 2021.
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In this way, if a user visits K urban zones in a time slice, then the user is only counted 1/K times
for each zone. Using the population of urban zones in each time slice, the DGeye system calculates
Crowd Score of each ST-Zone.

Definition 4 (Crowd Score). Let ui jh denote the population in the ST-Zone si jh , i.e., the popula-
tion in the (i, j )-th urban zone at the hth time slice of a certain day. The Crowd Score of si jh in the
day is then defined as

ci jh = σ

(
ui jh − ū
std(u)

)
, (2)

where ū and std(u) are, respectively, the mean and standard deviation of the populations in all
ST-Zones and in all days, and the sigmoid function σ (·) maps ci jh to the range of (0, 1).

We use crowd scores to measure the relative population density level of an ST-Zone. Or equiv-
alently, we can take the crowd score ci jh as an associated population property of an ST-Zone si jh .

3.3 Risk Trajectory

DGT trajectories are collected by GPS terminals that are equipped with dangerous goods trans-
porters. A DGT trajectory record contains < vehicle ID, location, speed, timestamp > fields, where
the Vehicle ID field is a unique identification of a DGT, the location and speed fields record the
real-time location and speed of a transporter, and the timestamp field records the report time of the
record. From the DGT trajectory dataset, the DGeye system extracts Risk Trajectories for further
risk analysis.

Definition 5 (Risk Trajectory). A Risk Trajectory is a set of ordered ST-Zones visited in sequence
by a dangerous goods transporter in one transportation task. A risk trajectory with the indexm
is defined as tm = {(zm1, cm1), . . . , (zmn , cmn ), . . . , (zmN , cmN )}, where zmn ∈ {s1, . . . , sV} indicates
the ST-Zone at thenth point of the trajectory tm , with zmn and zm (n+1) being two spatio-temporally
adjacent ST-Zones, and cmn is the associated crowd score of the ST-Zone zmn .

For a raw trajectory of a DGT, if its zmn and zm (n+1) are spatio-temporally adjacent, then we
include the ST-Zones on the shortest path between zmn and zm (n+1) into the risk trajectory. A
risk trajectory contains not only the spatio-temporal location information of a dangerous goods
transporter but also the population density at each location that can help indicate the potential
risk.

4 RISK PATTERN MINING

In this section, we define the key concept of Risk Pattern and propose a probabilistic framework
for risk pattern mining. Table 1 gives the math notations.

Definition 6 (Risk Pattern).A Risk Pattern is a set of spatio-temporally adjacent ST-Zones that are
fully connected in a ST-Cube (see Figure 2), frequently visited by dangerous goods transporters,
and crowded with relatively dense populations.

A risk pattern can be regarded as an episode of risk trajectories frequently adopted by DGT dri-
vers in their route planning and passing by crowded city areas. Hence, the frequency, connectivity
and crowdedness are three key features that define a risk pattern. In what follows, we will give a
probabilistic framework with neighbor regularization and postprocessing mechanism to mine risk
patterns from risk trajectories and meanwhile enable these three features.

ACM Transactions on Information Systems, Vol. 39, No. 3, Article 28. Publication date: May 2021.
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Table 1. Math Notations for the Risk Trajectory Generation Model

Variable Definition

M,m m denotes the indicator of trajectories,m ∈ {1, . . . ,M }.
Nm ,nm nm denotes the indicator of the points in the risk trajectory tm ,

nm ∈ {1, . . . ,Nm }.
K ,k k denotes the indicator of risk patterns, k ∈ {1, . . . ,K }.
V ,v v denotes the indicator of ST-Zones in a ST-Cube, v ∈ {1, . . . ,V }.
zmn The zone indicator for the nth point in the risk trajectory tm .
cmn The crowd score of the nth point in the risk trajectory tm .
rmn The indicator of the pattern that generates the nth point of the risk

trajectory tm .
Pr The selection probability of risk patterns for points in a given risk trajectory.
Pz The selection probability of ST-zones for a given risk pattern.
Pc The generation probability of crowd scores for a given risk pattern.

ϑ (m) The parameter of the multinomial distribution for pattern selection,
i.e., the mixture proportion of risk patterns for tm .

φ (k ) The parameter of the multinomial distribution for zone selection,
i.e., the mixture proportion of ST-Zones in the risk pattern k .

ψ (k ) The parameters of the Beta distribution for the crowd score of ST-Zones in
the risk pattern k .

ξv The neighbor-based probability estimation of the ST-Zone sv belonging to
the K risk patterns.

α The parameter of the prior Dirichlet distribution of ϑ (m) .

β The parameter of the prior Dirichlet distribution of φ (k ) .

4.1 Risk Trajectory Generation Model

In this section, we design a generative Bayesian network model, named Risk Trajectory Genera-

tion (RTG) model, to describe the generative process of risk trajectories. The RTG model focuses
on describing the frequency feature of risk patterns. Here, a risk trajectory is assumed to be gener-
ated from a set of spatio-temporal patterns that were frequently visited by DGTs, and we estimate
the parameters of the risk trajectory generation process to mine the hidden patterns from the risk
trajectories.

4.1.1 Trajectory Generation Process. We here take a topic model view of the risk trajectory
generation process by having a trajectory as a document and the ST-Zones in the trajectory as
words, and having risk patterns as latent topics that generate the ST-Zones. Specifically, assuming
there exist K risk patterns in the ST-Cube of a city, given a risk trajectory tm with N points, the
nth point of tm , i.e., (zmn , cmn ), is generated by the following three steps:

• Step 1–Select rmn : We denote the risk pattern that generates the point (zmn , cmn ) is rmn ∈
{1, . . . ,K }, which is one of the K risk patterns. To generate the point (zmn , cmn ), the RTG
model first selects rmn from the K risk patterns. The probability of selecting the kth pattern
as rmn follows a trajectory-conditioned discrete distribution ofK outputs, i.e., P (rmn = k |m).
We further assume the distribution of P (rmn = k |m) is identical over different points in tm .
Hence, the risk patterns selected for the whole trajectory tm are rm = {rm1, . . . , rmN}, which
follows a trajectory-conditioned multinomial distribution (i.e., Pr ) with {P (k |m)}K

k=1
as the

simplex parameters.

ACM Transactions on Information Systems, Vol. 39, No. 3, Article 28. Publication date: May 2021.
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• Step 2–Select zmn : For the nth point with rmn = k , the model selects a ST-Zone from the
ST-Cube as zmn . The probability of selecting the vth ST-Zone (i.e., sv ) as zmn follows a
pattern-conditioned discrete distribution P (zmn = sv |k ). Or equivalently, we can character-
ize the zone selection by amultinomial distribution (i.e., Pz ) with {P (sv |k )}Vv=1 as the simplex
parameters.

• Step 3–Generate cmn : For the nth point with rmn = k , the crowd score cmn ∈ (0, 1) is gener-
ated from a pattern-conditioned continuous distribution Pc (cmn |k ).

The above generation process indeed coincides with the real-world scenario of dangerous goods
transportation. For a one-time transportation task, a transporter first plans a general route accord-
ing to his/her experience, i.e., some risk patterns in mind, which corresponds to Step 1. During the
transportation, the transporter visits specific ST-Zones covered by different risk patterns, which
corresponds to Step 2. The crowdedness of the visited ST-Zones is then measured by the popu-
lation density levels of the risk patterns that cover the ST-Zones, which corresponds to Step 3.
The purpose of using a pattern-conditioned distribution for crowd score is to infer risk patterns
in different crowdedness levels.

4.1.2 The Generative Bayesian Network Model. In this section, we choose specific types of dis-
tributions for the above-mentioned probabilities and build the Bayesian network model for risk
pattern learning.
The trajectory generation process first selects rmn using the probability Pr , and then selects zmn

using the probability Pz and generates cmn using the probability Pc to form the point (zmn , cmn )
of a risk trajectory. The probabilities Pr , Pz , Pc proposed in the trajectory generation process are
described as follows:

Pr
(
k ���ϑ (m)

)
∼ Multinomial

(
ϑ (m)
)
,

Pz
(
sv
���φ (k )
)
∼ Multinomial

(
φ (k )
)
,

Pc
(
c ���ψ (k )

)
∼ Beta

(
ψ (k )
)
.

(3)

Here, the parameter ϑ (m) = {ϑ (m)
1 , . . . ,ϑ

(m)
k
, . . . ,ϑ (m)

K
} denotes the mixture proportion of the K

risk patterns in the trajectorym. The parameter φ (k ) = {φ (k )
1 , . . . ,φ

(k )
v , . . . ,φ

(k )
V
} denotes the mix-

ture proportion of theV ST-Zones for the pattern k .ψ (k ) = {ψ (k )
α ,ψ

(k )
β
} is the parameter of the Beta

distribution for the pattern k .
For different risk trajectories, the pattern mixture proportions should be different. We therefore

introduce a Dirichlet prior to ϑ (m) as

Pϑ
(
ϑ (m) |α

)
∼ Dirichlet (α ) , (4)

where α = {α1, . . . ,αk , . . . ,αK } is the hyper-parameter.
For different patterns, the ST-Zone mixture proportions should be also different, so we again

introduce a Dirichlet prior to φ (k ) as

Pφ
(
φ (k ) |β

)
∼ Dirichlet (β ) , (5)

where β = {β1, . . . , βv , . . . , βV } is the hyper-parameter.
According to the distributions in Equation (3) to Equation (5), the generative process of a risk

trajectory can be modeled by a Bayesian network in Figure 3 (we here ignore the left-bottom
regularization part of the plate). Given a risk trajectory tm = {(zm1, cm1), . . . , (zmN , cmN)}, the joint

ACM Transactions on Information Systems, Vol. 39, No. 3, Article 28. Publication date: May 2021.
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Fig. 3. The Bayesian network with the neighbor regularization for risk trajectory generation.

probability of the observed and hidden variables is

P
(
zm ,cm ,rm ,ϑ

(m),Φ,Ψ���α , β)
=Pϑ
(
ϑ (m) ���α ) ·

K∏
k=1

Pφ
(
φ (k ) ���β) ·

N∏
n=1

⎡⎢⎢⎢⎢⎣Pz
(
zmn

���φ (rmn )
)
Pc
(
cmn

���ψ (rmn )
)
Pr
(
rmn

���ϑ (m)
) ⎤⎥⎥⎥⎥⎦ ,

(6)

where Φ = {φ (k ) }K
k=1

, Ψ = {ψ (k ) }K
k=1

, and zm and cm are vectors consisting of zmn and cmn ,
respectively.
Then, the likelihood probability of the trajectory point (zmn , cmn ) with particular observation

is

P
(
zmn , cmn

���ϑ (m),Φ,Ψ
)
=

K∑
k=1

Pz
(
zmn

���φ (k )
)
Pc
(
cmn

���ψ (k )
)
Pr
(
k ���ϑ (m)

)
. (7)

The likelihood of all trajectories Z = {zm }Mm=1 and corresponding crowd scoresC = {cm }Mm=1 is

P (Z ,C |Θ,Φ,Ψ) =
M∏

m=1

Nm∏
nm=1

P
(
zmn , cmn

���ϑ (m),Φ,Ψ
)
, (8)

where Θ = {ϑ (m) }Mm=1 is the set of parameters of all trajectories.
In Equation (8), the variablesZ ,C are observable, andΘ,Φ,Ψ are unobservable. We estimate the

unobservable variables using the Gibbs sampling method [11], which is detailed in the Appendix.

Here, risk patterns are characterized as a probabilistic form by the unobservable variablesφ (k ) ∈ Φ,
which expresses a risk pattern as a distribution over all the ST-Zones in a ST-Cube.

The risk patterns expressed by φ (k ) meet the frequency requirement of Definition 6 implicitly,
because they are directly mined from the trajectory data of DGTs. However, the patterns might
not meet connectivity and crowdedness requirements. We amend this by adopting neighbor reg-
ularization in Section 4.2 and pattern postprocessing in Section 4.3.

4.2 Spatio-temporal Neighbor Regularization

We here introduce a spatio-temporal neighbor regularization to our RTG model to meet the con-
nectivity requirement.

ACM Transactions on Information Systems, Vol. 39, No. 3, Article 28. Publication date: May 2021.
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Specifically, for each ST-Zone, we use the kernel density method to generate an estimated prob-

ability of the ST-Zone sv belonging to a pattern k as

ξ (k )v = softmax 	

∑
u

φ (k )
u д(sv , su )�� , (9)

where д(sv , su ) is a Gaussian kernel density of the ST-Zone su to sv . The expression of д(sv , su ) is

д(sv , su ) = exp

(
− ‖v −u‖

2

2σ 2

)
, (10)

where the vectors v = (iv , jv ,hv ) and u = (iu , ju ,hu ) are the location indices of sv and su in the
ST-Cube, respectively. The parameter σ is the standard deviation of Gaussian kernels and is set as
σ = 1 in practice.

We also define the observed probability of sv belonging to the pattern k as

ξ̂ (k )v =
dvk∑K
l=1 dvl

, (11)

where dvk is the number of all risk trajectory points with zmn = sv and rmn = k . The variable zmn

can be obtained from the raw trajectory data, and rmn can be obtained in Step 1 of the trajectory
generation process.

We consider the variable ξ̂ (k )v as a noisy observation of ξ (k )v drawn from a Gaussian distribution
with zero mean and variance σ 2

ξ
as follows:

Pξ
(
ξ̂ (k )v

���ξ (k )v ,σ
2
ξ

)
=

1

σξ
√
2π

exp
	


−
(
ξ̂ (k )v − ξ (k )v

)2
2σ 2

ξ

���� . (12)

Plugging the regularization into the risk trajectory generation model, the joint probability of all
observed and hidden variables with given hyper-parameters is

P
(
zm ,cm ,rm ,ϑ

(m),Φ,Ψ,Ξ���α , β ,σ 2
ξ

)

= Pϑ
(
ϑ (m) ���α ) ·

K∏
k=1

Pφ
(
φ (k ) ���β) ·

N∏
n=1

⎡⎢⎢⎢⎢⎣Pz
(
zmn

���φ (rmn )
)

Pc
(
cmn

���ψ (rmn )
)
Pr
(
rmn

���ϑ (m)
)
Pξ
(
ξ̂ (rmn )
zmn

���ξ (rmn )
zmn
,σ 2

ξ

) ⎤⎥⎥⎥⎥⎦ ,
(13)

where Ξ = {ξ̂v }Vv=1. The probability graph of the regularized risk trajectory generative model is
shown in Figure 3. The dash circle in the figure denotes the variables that are generated from
parent variables using a deterministic function rather than a probability distribution. The hidden

variables ϑ (m) , Φ, Ψ and Ξ are inferred by Gibbs sampling, which is detailed in the Appendix.
We name this model the neighbor-regularized Risk Trajectory Generation (nRTG), since it

plugs a neighbor regularization into the RTGmodel. The neighbor regularization lets the ST-Zones
with closer distances in ST-Cube have higher probability belong to the same risk pattern, so the
nRTG model meets the connectivity requirement of Definition 6.

4.3 Risk Pattern Post-processing

In this section, the DGeye system postprocesses the probabilistic risk patterns expressed by φ (k )

by the following three steps:
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• Step 1–Pattern discretization: This step binarizes φ (k ) to concentrate on several representa-
tive ST-zones. Specifically, given a risk pattern k , we rank ST-Zones by Pz (sv |k ). Only the
ST-Zones with a rank higher than a given threshold will be kept for the pattern. We call the

binarized φ (k ) as raw patterns.
• Step 2–Pattern splitting: Although the nRTG model adopts a neighbor-regularization mech-

anism, it inevitably generates raw risk patterns containing some nonadjacent parts. There-
fore, this step adopts a post-filtering scheme to split nonadjacent parts of a raw pattern
into different patterns. This step could also generate some repeated patterns. We merge the
repeated split patterns as a same pattern.

• Step 3–Risk evaluation: This step calculates the risk severity of each pattern. Intuitively, the
risky level of a pattern is more serious if the general population density of its ST-Zones
is higher. Therefore, for a risk pattern k , we use the expectation of its crowd score, i.e.,

E[Pc (c |ψ (k ) )], to indicate the risk severity. We call this expectation the severity score of the
risk pattern. Patterns that have severity scores over some given threshold turn out to be the
targeted risk patterns defined in Definition 6.

After postprocessing, a risk pattern mined by the DGeye system is a group of spatio-temporally
adjacent ST-Zones with a severity score indicating the risk level.

5 RISK SOURCE TRACKING

In this section, we probe the forming reason of risk patterns to locate risk sources for administra-
tion. Indeed, risk patterns in a same city usually have some causal relationships among one another
due to the “invisible hand” of supply-and-demand. For example, dangerous goods transportation
across a residential area might be caused by the liquefied gas demand of a restaurant located in
downtown. If we do not locate the demand source, i.e., the restaurant, but only forbid transporters
to drive through the residential area, we just transfer the risk from one area to another.
Inwhat follows, we propose aRisk Source Tracking (RST)method to track the demand sources

of dangerous goods forming the risk patterns. In short, RST first builds a causal network among
risk patterns, and then applies random walk to rank the patterns. The top-ranked patterns are
finally considered as the sources of DGT risks.

5.1 Building Risk Causal Network

RST first builds a weighted directed network, called the DGT network, to describe the influences
among risk patterns. In the network, the vertices are risk patterns, and the edge weights are traffic
volumes of DGT among the patterns.
Assume there are K risk patterns R = {rk }Kk=1. We express the adjacent matrix of the DGT net-

work asW ∈ RK×K , where the element wxy denotes the weight of edge from rx to ry . Given a
set of DGT trajectories, wxy is measured by the number of DGT driving from rx to ry (here, a
DGT driving through a pattern means it passes at least one ST-Zone in the pattern). For a DGT
passing through a sequence of patterns, we count the DGT to wxy of any pair of the patterns in
the sequence. Figure 4 shows a toy example for network building illustration. Since a DGT orderly
drives through the patterns r1, r4, and r5, the weights of r1 → r4, r1 → r5 and r4 → r5 all need be
increased by one.
In a DGT network, we regard ry as a risk source of rx if there exist vehicles carrying dangerous

goods from rx to ry , since the reason a DGT has to pass rx is there are dangerous goods (trans-
portation) requirements in ry . From this perspective, a DGT network is also a causal influence
network among risk patterns. Therefore, we also name the DGT network as Risk Causal Network
in our system.
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Fig. 4. An illustration of building a risk causal network.

5.2 Ranking Risk Patterns

Next, we rank the risk patterns according to their importance in the risk causal network. A Ran-

domWalk with Restart (RWR) algorithm [29] is applied for this task, with the assumption that
a pattern that induces more and important patterns should have a higher rank of importance.
For the K patterns in the causal network, we define a ranking score vector s =

(s1, . . . , sk , . . . , sK )
�, where sk is the score of pattern k . For the edge rx → ry with a weight wxy ,

we define the causal transition probability дxy as

дxy =
wxy∑K
k=1wxk

. (14)

The RWR algorithm iteratively updates the ranking score vector s using a transition matrix
G ∈ RK×K composed of дxy . In the (τ + 1)-th round, s is updated as

s (τ+1) = αGs (τ ) + (1 − α )q, (15)

where q is the normalized risk severity vector of the risk patterns, with the kth element given by

qk =
severity(rk )∑K
x=1 severity(rx )

, (16)

where severity(rx ) is rx ’s severity measured by the expectation of the distribution Beta(ψ (x ) ).
Note that we also useq to initialize s , i.e., let s (0) = q. It is easy to show that the above iterations

will converge to the following steady state when τ → ∞ [45],

s∗ = (1 − α )q(I − αG )−1, (17)

which is finally adopted to rank the risk patterns. The pattern with a greater ranking score has a
higher priority to be a risk source. A list of ranked risk patterns is valuable to the city’s adminis-
trative department of dangerous goods. Urban planners can also optimize the functional layout of
a city according to the list to eliminate the risk sources.

6 PATTERN RISKY STATE PREDICTION

Risk patterns and risk sources can indicate the general DGT risks existing in a city, which, how-
ever, is not adequate for real-time risk monitoring. In real-world applications, urban emergency
services need to monitor the real-time state of risk patterns and predict their risky states to allocate
emergency resources in a proactive manner. Therefore, the DGeye system adopts a Risky Score to
indicate the risky state of risk patterns and provides a Bayesian network model to predict pattern
states.
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Fig. 5. An illustration of the predictive model.

6.1 Risky State of ST-Zones

In Section 3.2, we have defined the Crowd Score ci jh to indicate the population density of a ST-zone
si jh . We here introduce the concept of the DGT Score, denoted as di jh , to indicate the DGT density
of si jh , i.e., the number of risk trajectory samples that cover si jh . Given ci jh and di jh , we can now
define the Risky Score of si jh , with the assumption that ST-zones with more crowded populations
and transporters of dangerous goods tend to be more risky.
Let ui jh denote the risky score of si jh , we have

ui jh = DM

(
(di jh , 0)

�, 0
)
× DM

(
(0, ci jh )

�, 0
)
, (18)

where DM (·, ·) is the Mahalanobis distance. For two vectors a and b in a vector set, DM (a,b) is
defined as

DM (a,b) =

√
(a − b)�Σ−1 (a − b), (19)

where Σ is the covariance matrix of the vectors set. If ui jh is greater than a threshold, then we say
zone si jh is in a risky state (or a Risky-Zone, for short), otherwise in a safe state. In practice, the
threshold is set to the 90% upper quantile of all the risky scores [30].

6.2 Pattern State Prediction Model

For a risk pattern, we say it is in the risky state at time t when it contains at least one risky-zone
at time t , otherwise it is in the safe state. The task of pattern state prediction is to predict a risk
pattern’s state at t using the states of all patterns at time < t . For a risk pattern, there is only one
risky state sample for each time slice. Therefore, the DGeye system adopts a Bayesian model for
pattern state prediction, since the model is more suitable to the small sample scenario.

Given K risk patterns, we denote the state of pattern k at time t as f (t )
k

, where f (t )
k
= 1

for the risky state and 0 for the safe state. We denote the state of the pattern to be pre-
dicted at time t as fe , group the states of other patterns at time t into an unobservable set

F = { f (t )1 , . . . , f
(t )
k
, . . . , f (t )

K1 }, where fe � F , and group the pattern states before t into an observ-

able set H = { f (<t )1 , . . . , f (<t )
k
, . . . , f (<t )

K2 }. It is reasonable to assume f (t )
k

is only influenced by the
states of patterns connected with rk in the Risk Causal Network (see Section 5.1). The pattern state
prediction problem can then be modeled by a Bayesian network, shown in Figure 5.
According to the Bayes’ Theorem, the posterior probability of fe conditioned on H and F is

Pr( fe | H , F ) = Pr( fe ) Pr(H , F | fe )
Pr(H , F )

, (20)
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which can be approximated by a naïve Bayesian method as

Pr( fe | H , F ) ∝ Pr( fe )
K1∏
k=1

Pr
(
f (t )
k
| fe
) K2∏
k=1

Pr
(
f (<t )
k

| fe
)

∝ ln (1 + Pr( fe )) +
K1∑
k=1

ln
(
1 + Pr

(
f (t )
k
| fe
))
+

K2∑
k=1

ln
(
1 + Pr

(
f (<t )
k

| fe
))
,

(21)

with Laplacian smoothing. Since the pattern states in F are unobservable, we cannot directly use
Equation (21) to calculate the posterior probability of fe . Therefore, we propose an Expectation-

Maximization (EM) algorithm to estimate F and predict e in an iterative way. The influences
among patterns in the risk causal network are also introduced into the algorithm.

The EM algorithm first initializes f (t )x and fe using an edge-weighted naïve Bayes model as
follows:

f (t )x (0) = argmax
f
(t )
x ∈{0,1}

[
дxx ln

(
1 + Pr

(
f (t )x

))
+

K2∑
k=1

дkx ln
(
1 + Pr

(
f (<t )
k

| f (t )x

)) ]
,

fe (0) = argmax
e ∈{0,1}

[
дee ln (1 + Pr( fe )) +

K2∑
k=1

дke ln
(
1 + Pr

(
f (<t )
k

k | fe
)) ]
,

(22)

where дkx is the normalized causal influence between patterns rk and rx , as calculated in Equa-
tion (14).

In the τ th round of the E-step, we update fx (τ ) using fe (τ − 1), F (τ − 1) and H as

f (t )x (τ ) = argmax
f
(t )
x ∈{0,1}

⎡⎢⎢⎢⎢⎣дxx ln
(
1 + Pr

(
f (t )x

))
+ дex ln

(
1 + Pr

(
fe (τ − 1) | f (t )x

))

+

K2∑
k=1

дkx ln
(
1 + Pr

(
f (<t )
k

| f (t )x

))
+

K1∑
k=1

дkx ln
(
1 + Pr

(
f (t )
k

(τ − 1) | f (t )x

)) ⎤⎥⎥⎥⎥⎦ .
(23)

In the M-step, we predict fe using H and F (τ ) as

fe (τ ) = argmax
fe ∈{0,1}

[
дee ln (1 + Pr( fe )) +

K2∑
k=1

дke ln
(
1 + Pr

(
f (<t )
k

| fe
))

+

K1∑
k=1

дke ln
(
1 + Pr

(
f (t )
k

(τ ) | fe
))]
.

˜ (24)

When the algorithm reaches a stable state, we use the final fe (τ ) as the state prediction result. The
prior probabilities and likelihoods are counted from the dataset.

7 EXPERIMENTS AND APPLICATIONS

In this section, we evaluate the effectiveness of the DGeye system over the DGT trajectory and
mobile phone signaling datasets of two big cities in China: Beijing and Tianjin. In Section 7.1,
we first introduce the datasets and the setups of experiments. In the next three subsections, we
designed the experiments to evaluate the performance of the three components (i.e., Risk Pattern
Mining, Risk Source Tracking, and Pattern State Prediction) of the DGeye system. In Section 7.2,
we demonstrate the experiment results of the risk pattern mining component by visualizing the
temporal feature and spatial distributions of the patterns. In Section 7.3, we evaluate the perfor-
mance of the risk source tracking component through risk treatment simulation experiments and
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Table 2. Statistics of Datasets after Pre-processing

Statistics Beijing Tianjin
#days 90 60
#vehicles 3,790 2,677
#GPS records 12,388,526 3,277,491
#trajectories 471,871 317,802
Average #grids an vehicle visits 522.6 407.2

case studies. Finally, in Section 7.4, we evaluate the effectiveness of the pattern state prediction
component by comparing its prediction performance with several classic baselines.

7.1 Experimental Setup and Datasets

In the experiments, we apply the DGeye system for two big cities of China: Beijing5 and Tianjin.6

Beijing is the capital of China with a 21 million population, and Tianjin is a municipality directed
by the central government with a 15 million population. The urban safety of the two cities is of the
utmost importance undoubtedly. The datasets used in the experiments were collected from January
1 to March 31 in 2015 for Beijing, and from January 1 to March 1 in 2015 for Tianjin, including
MPS records of population data and GPS records of road-specific vehicles transporting hazardous
chemicals, fireworks, and civilian explosives. In the experiments, the system divides one day into
24 time slices, i.e., one hour per slice, and divides themaps of the two cities into 500m × 500m urban
zones, both resulting in 80×160 zones. Table 2 presents some detailed statistics of the datasets used
in the experiments.
The types of dangerous goods in the dataset include hazardous chemicals, fireworks and crack-

ers, and civil explosive materials. Hazardous chemicals refer to highly toxic chemicals and other
chemicals that are toxic, corrosive, explosive, combustion-supporting, and so on, which are harm-
ful to human installations and the environment. Typical civil explosive materials include gasoline
and liquefied natural gas. The datasets do not contain the category information of the transport
vehicles. According to the law of China, only vehicles that have special licenses are allowed to
transport dangerous goods. In the experiments, we do not distinguish the types of dangerous goods
and transport vehicles.
Figure 6(a) and Figure 6(b) show the spatial distributions of populations and DGTs in Beijing at

10:00 in one day. The colors indicate the distributional intensities: the redder, the higher. As can
be seen, the populations of Beijing concentrate in the downtown area, but high DGT zones mainly
locate at an outer beltway surrounding Beijing, i.e., the 5th ring road.7 Figure 6(c) and Figure 6(d)
exhibit the case of Tianjin at the same time slice. Obviously, the populations of Tianjin concentrate
in two areas: the main urban area and the port area. The DGTs, however, are mainly distributed
on the beltways and expressways connecting the port area and the main urban area.
While Figure 6 indicates the distributional strengths of populations and DGTs do not resonate

for both Beijing and Tianjin, the cities still expose to severe DGT risks given the painful historical
lessons such as the massive explosion in Tianjin Port in August 2015.8 That is why we consider to
link the two variables together for risk pattern mining and risky state prediction.

5https://en.wikipedia.org/wiki/Beijing.
6https://en.wikipedia.org/wiki/Tianjin.
7https://en.wikipedia.org/wiki/5th Ring Road (Beijing).
8http://news.cntv.cn/special/video2015/tianjinbaozha/.
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Fig. 6. Spatial distributions of residential populations and DGTs in Beijing and Tianjin.

Table 3. The Number of Patterns That Are Split

from Raw Risk Patterns

nRTG RTG

City Beijing Tianjin Beijing Tianjin
Pattern # 671 407 1,320 517

7.2 Experimental Results of Risk Pattern Mining

We here demonstrate the risk pattern mining function of our system. In the experiments, we set
the number of raw risk patterns as K = 200. K is a key parameter in the nRTG, which directly
determines the number of risk patterns. Therefore, if we set K as a small number, then the nRTG
model could not discover enough pattern. On the other side, we also find a large K will result
in repeating risk patterns. Fortunately, the pattern repeat problem could be handled by the post-
processing (see Section 4.3). In the second step of the post-processing, the nRTG model adopts a
post-filtering scheme to split nonadjacent parts of a raw pattern into different patterns. If we set K
as a large size, then the model will generate many repeat patterns in this post-processing step. To
handle this problem, we merge the repeated split patterns as the same pattern. Taking advantage
of this mechanism, the nRTG could handle the pattern repeat problem caused by setting K as a
too-large size. In our experiments, we setK to 200, which is large enough in our datasets according
to a trial and error method.
The number of output patterns is larger than this number due to the pattern splitting in post-

processing (see Section 4.3). Table 3 gives the numbers of patterns mined from the Beijing and
Tianjin datasets. As a bigger city, Beijing has more risk patterns than Tianjin.
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Fig. 7. The numbers of risk patterns with different β-severity.

Fig. 8. Spatial distribution of high-severity risk patterns in Beijing: (a) to (f) are the risk patterns’ maps in

Beijing from 8:00 to 13:00 AM.

In our system, each pattern has a Beta distribution to describe its severity score, denoted as
β-severity for concision, stemming from populations. Figure 7 shows the β-severity distributions
of the risk patterns for Beijing and Tianjin, respectively. As can be seen, the distribution of β-
severity has a long tail for both cities, and the high β-severity patterns in the tail indeed need
special attentions. In Figure 8 and Figure 10, we plot the risk patterns whose β-severity values are
higher than the average. Figure 8 is for Beijing and Figure 10 for Tianjin. Since the risk patterns are
3D manifolds in the ST-Cube, we visualize them as 2D shapes on urban maps along the horizontal
axis of time slice, which exhibits the dynamic evolution of the risk patterns over time.

ACM Transactions on Information Systems, Vol. 39, No. 3, Article 28. Publication date: May 2021.



28:18 J. Wang et al.

Fig. 9. An illustration of the evolution of risk pattern in Beijing.

Let us take a close look into Figure 8 for the risk patterns in Beijing with β-severity > 0.2 from
8:00 to 13:00. We use colors to distinguish different patterns. As can be seen, most of the high
severity patterns located in the downtown area of Beijing, which is very different from the DGT
distribution over the 5th ring road in the suburb areas in Figure 6(b). The reason for this difference
is that DGeye considers both DGT and population at the same time for risk pattern mining. That
means while there exist many DGTs driving over the suburb roads, only those passing through
densely populated areas would lead to risks. Some unknown risks in Figure 6 (especially in the
downtown areas) are discovered by our model in Figure 8. This indeed validates the effectiveness
of our probabilistic mining model.
Furthermore, Figure 8 demonstrates the dynamics of risk patterns. As can be seen, there exists

no high-severity pattern in the downtown area at 8:00. The patterns are gradually increasing in the
downtown area from 8:00 to 10:00, and gradually decreasing from 11:00 to 13:00, which indicates an
obvious “tide” in the pattern evolution process. We can also perceive the “tide” by watching how a
typical risk pattern goes through the germination, prosperity, and decay periods. For instance, the
risk pattern in Figure 9 appears at 9:00 with a small size, then becomes a big one from 9:00 to 11:00
and gradually disappears from 11:00 to 13:00. Compared to our previous work in Reference [30],
where the risk patterns only contain one time slice, our new approach can reveal more dynamic
information of urban risks.
Figure 10 plots the dynamics of risk patterns from 8:00 to 13:00 in the port area of Tianjin, and

the left-bottom small maps show the patterns of the downtown area. Different from Beijing, most
of big-size patterns in Tianjin are in the port area rather than downtown area. The reason lies in
the distinct requirements of dangerous goods of the two cities. The demand for dangerous goods
in Beijing is people’s daily consumption, such as gasoline for gas stations and liquefied gas for
restaurants densely located in the downtown area. In consequence, DGTs have to drive through
many densely populated zones in downtown, which results in big-size risk patterns appearing
in the center area of Beijing. In contrast, the dangerous goods for Tianjin are mostly chemical
materials for import and export trade. Therefore, most of the big-size patterns are generated in the
port area of Tianjin.
The risk patterns of Tianjin also have different temporal distribution compared with that of

Beijing. Figure 11 shows the numbers of risk patterns for Beijing and Tianjin, respectively, along
time slices, with different colors indicating diverse pattern sizes (i.e., the number of ST-Zones in a
pattern). As can be seen, the temporal distribution of risk patterns has an obvious tide in Beijing
but is much more smooth in Tianjin. Moreover, Beijing has more big-size patterns compared with
Tianjin. The two differences again verify the distinct types of dangerous goods requirements of the
two cities and sheds light on making differentiated DGT monitoring policies. That is, the Beijing
government should pay more attention to DGTs in the downtown area in the middle of a day,
while the Tianjin government should keep close watch over the port area for a longer time period.

ACM Transactions on Information Systems, Vol. 39, No. 3, Article 28. Publication date: May 2021.



DGeye: Probabilistic Risk Perception and Prediction 28:19

Fig. 10. Spatial distributions of high-severity risk patterns in Tianjin: (b) to (e) are the risk patterns’ maps in

Tianjin from 09:00 to 12:00 AM.

Fig. 11. Temporal distributions of risk patterns in Beijing and Tianjin.
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Fig. 12. Mining risk patterns using the RTG model (without the neighbor regularization).

We finally compare the risk patterns generated with and without neighbor regularization.
Figure 12 plots the risk patterns mined by the RTGmodel, i.e., our nRTGmodel without the neigh-
bor regularization, for both Beijing and Tianjin at 9:00. By comparing Figure 12(a) with Figure 8(b)
and Figure 12(b) with Figure 10(b), respectively, we can observe that the patterns mined by RTG
are much more fragmented than those by nRTG. This also coincides with the fact that in Table 3
RTG generates much more risk patterns than nRTG. This indicates that the connectivity of the
raw patterns generated by nRTG is better than that by RTG, which can help to reduce administra-
tive workloads for false alarms. In short, this experiment verifies the effectiveness of the neighbor
regularization mechanism in our nRTG model.

7.3 Experimental Results of Risk Source Tracking

7.3.1 Risk Treatment Simulation. The function of the RST algorithm in Section 5 is to rank the
importance of risk patterns and urban governments can use the ranking as a priority list for DGT
risk treatment. In real-world DGT risk management, the patterns with high rankings should be
treated preferentially. Since the high-priority patterns in the RST ranking are risk sources of other
patterns, if the high-priority patterns were treated, the risks in other patterns should also reduce.
Therefore, it could be considered as quantitative performance merit of the RST algorithm that the
average risk-reducing of all ST-Zones after top-L patterns were treated.
In this section, we give a simulation experiment to demonstrate the effectiveness of our pattern

ranking algorithm using this performance merit. The experiment runs a simulated risk treatment
over the Beijing and Tianjin datasets. Specifically, we apply the ranking algorithm on the data
of first 2/3 days, i.e., 60 days for Beijing and 40 days for Tianjin, to get pattern rankings, and
then artificially remove the DGT trajectories whose destinations are within the top-L ranking
patterns. After removing the trajectories, we calculate the average risky score (see Equation (18))
of the ST-Zones in a risk pattern or in a particular area of a city on the rest days of the data. The
reduced percentage of the new risky score compared with that before the trajectory removal is
considered as a performance estimation of the RST algorithm.We also conduct the paired t-test [12]
between RST and other baselines on the simulation results of each day to test the significance of
improvement.
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Table 4. Results of Risk Pattern Treatment Simulation for Beijing and Tianjin

Panel A: Reduce of Average Risky Scores in Beijing
Patterns Area Method

RST PRW Risky-Score DGT-Score β-severity Crowd-Score
Top 5 Patterns 45.52%** 41.40% 21.00% 15.05% 14.17% 6.09%

Downtown 24.51%** 20.33% 10.42% 10.59% 6.51% 3.42%
Entire City 20.25%** 13.08% 8.40% 9.88% 5.19% 2.72%

Top 10 Patterns 67.20%** 62.10% 35.09% 40.90% 29.55% 14.09%
Downtown 37.30%** 32.14% 18.08% 22.72% 14.01% 7.57%
Entire City 31.60%** 26.30% 14.81% 19.75% 11.11% 6.42%

Top 20 Patterns 73.88%** 65.02% 51.05% 58.24% 35.44% 20.77%
Downtown 42.75%** 35.10% 28.01% 32.49% 18.81% 11.89%
Entire City 37.53%** 31.49% 23.21% 29.14% 14.81% 10.12%

Top 50 Patterns 82.23%** 73.76% 70.93% 69.84% 45.67% 45.75%
Downtown 51.22%* 48.02% 41.69% 41.45% 26.71% 26.38%
Entire City 44.94%* 42.10% 35.06% 37.28% 21.98% 21.98%

Panel B: Reduce of Average Risky Scores in Tianjin
Patterns Area Method

RST PRW Risky-Score DGT-Score β-severity Crowd-Score
Top 5 Patterns 59.14%** 46.15% 39.68% 5.30% 8.62% 15.06%

Downtown 26.30%** 24.13% 22.00% 0.80% 1.90% 7.40%
Port Area 38.68%** 32.05% 19.34% 3.54% 5.66% 11.32%
Entire City 27.71%** 22.11% 18.07% 2.01% 3.21% 6.83%

Top 10 Patterns 68.80%** 63.00% 40.72% 24.34% 12.64% 26.35%
Downtown 28.70%** 23.03% 22.20% 8.40% 2.80% 14.40%
Port Area 42.92%** 37.16% 19.58% 13.21% 8.49% 15.57%
Entire City 32.53%** 26.01% 18.88% 10.04% 4.82% 12.05%

Top 15 Patterns 76.11%** 60.05% 43.11% 44.01% 23.96% 34.90%
Downtown 33.80%** 28.00% 25.90% 18.90% 10.80% 20.90%
Port Area 50.47%** 44.04% 20.52% 22.88% 12.97% 20.05%
Entire City 37.35%** 31.12% 20.48% 18.88% 10.84% 17.27%

Top 20 Patterns 80.47%** 76.70% 69.77% 51.35% 48.51% 54.67%
Downtown 39.50%** 35.38% 31.70% 24.90% 27.50% 33.30%
Port Area 56.84%** 51.22% 41.04% 29.25% 28.77% 34.67%
Entire City 43.37%** 38.69% 31.73% 24.10% 24.50% 28.51%

Significantly outperforms PRW at the: ** 0.01 and * 0.05 level, paired t-test.

Table 4 shows the results. Here, we compare the RST algorithm with three baselines:

• Risky-Score: ranking risk patterns according to the average risky score of ST-Zones in a
pattern.

• DGT-Score: ranking risk patterns according to the average DGT score of ST-Zones in a
pattern.

• β-severity Score: ranking risk patterns according to the mean of Beta distribution of a
pattern.

• Crowd-Score: ranking risk patterns according to the average crowd score of ST-Zones in a
pattern.
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The score definitions can be found in Section 3 and Section 6.1. Besides, we also use the ranking
algorithm of our previous work [30] as a baseline, named PRW. Especially, we divide the patterns
discovered by nRTG model as several sub-patterns by time slices. In this way, the sub-patterns are
in the same format as the risk patterns discovered by our previous work [30]. We adopt importance
ranking method in Reference [30] to calculate the ranking score of each sub-patterns, and we rank
risk patterns using the summation of its sub-patterns.
In the simulation experiment, we remove trajectories with destinations in the top 5, 10, 20, 50

ranking patterns, respectively. From the table, we can observe that:

• The RST algorithm achieves the best performance compared with the best baseline under a
significance level of 0.01 for most of the scenarios, which verifies the effectiveness of our approach.
For both Beijing and Tianjin, using the RST-based treatment strategy, we can reduce the overall
risk level of risk patterns by 50% even only the top-five patterns are treated. The reduced pro-
portions for the entire city are more than 20% for both Beijing and Tianjin, which is a significant
performance for effective urban risk treatment and implies much lower administrative costs as
well.
• The second best algorithm is our previous work [30]. It is much better than other baselines.

This indicates causal network and RWR framework adopted by both RST and our previous work is
an effectiveness approach to discover important risk patterns. The performance of PRW is less than
the RST. This verifies the effectiveness of the new pattern mining method proposed in this article.
The patterns discovered by nRTG can cross multiple time slices, so it provides a more complete
coverage of DGT risks in a city. Therefore, the nRTG-based risk source tracking algorithm has
better performance.
• The third-best algorithm is Risky-Score, but its performance even cannot reach a half of that

of the RST algorithm. The reason is that the Risky-Score approach only pays attentions to high-
risk patterns but cannot maximize the treatment effect through exploiting the causal relationships
among risk patterns. This in turn validates the importance of the risk causal network proposed in
Section 5.1.
• DGT-Score performs better than β-severity Score and Crowd-Score. This indeed agrees with

our intuition that it is the DGTs rather than populations that trigger the urban risks. The DGT
trajectories rather than the residential areas are the key to probing the risks.
• The performance of β-severity is better than Crowd-score in Beijing and worse than Crowd-

score in Tianjin. It is understandable that the performance of β-severity is comparable with Crowd-
score, since both β-severity and Crowd-score stem from populations.

In summary, the experiment results demonstrate that our RST algorithm can indeed locate
highly influential risk patterns in a city, which is of great use to setting treatment priority for
risk pattern management given limited administrative resources.

7.3.2 Cases of Risk Sources Tracked. Here, we verify the effectiveness of the RST algorithm by
illustrating two real-world cases of risk sources traced by our approach.
Figure 13 shows the No. 1 risk pattern (the red block in the map) detected by RST in Beijing.

As can be seen, this pattern is located at the Dongzhimen and Dongsi district, which is a famous
entertainment district of Beijing.9 Especially, the Dongzhimen area has an extremely well-known
food street, Guijie.10 Amajor cuisine ordered by crowded diners in Guijie is the “hotpot,” which is a
kind of cuisine that cooks raw foods in a simmering metal pot at the center of dining tables. A hot-
pot table is usually equipped with a mini gas stove connected to a liquid gas cylinder, which forms

9https://en.wikipedia.org/wiki/Dongzhimen.
10https://www.travelchinaguide.com/attraction/beijing/guijie-street.htm.
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Fig. 13. The No. 1 risk pattern provided by RST in Beijing.

Fig. 14. The types and relations of the risk patterns in Beijing at 9:00.

an enormous demand of gas cylinders transported by DGTs to Guijie every day. This finding was
reported to the Beijing government as a report of the DGeye system. The Beijing government later
launched a gas pipeline laying project in Guijie in September 2016. As reported by the media [23],
Beijing “Guijie” finally bid farewell to the gas-cylinder era in 2017.
Figure 14 gives the risk pattern distribution at 9:00 in Beijing. As shown in the figure, there is

a pink color pattern on the upper right part of the map, which is the top-1 source pattern of DGT
risks in Beijing. In Figure 14, we connect several patterns to the pink pattern using black arrows.
These patterns are downstream patterns of the pink pattern in the pattern causal network. We
can see these patterns cover the roads from suburb to the pink pattern. In addition to the above
patterns, we also see there are some patterns located over the outer ring road of Beijing. These
patterns are gathering points of dangerous goods transporters entering the city. From the figure,
we can see at least three types of patterns, i.e., destination of DGTs, the area that must be passed
by DGTs to their destination, and gathering points of entering the city. The three types of patterns
construct a logistics chain of dangerous goods in Beijing city. If we want to treat the risk caused by
the DGT logistics chain, removing the demands for dangerous goods in the risk source pattern is
the most fundamental method. That is why the RST algorithm can achieve superior risk treatment
performance compared with other priority ranking algorithms.
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Fig. 15. The No. 1 risk pattern provided by RST in Tianjin.

Figure 15 shows the No. 1 risk pattern in Tianjin. We can see this pattern resides in the port area,
along with a north-south oriented road aside a wharf. Around this pattern is a financial district
crowded with residents, which reveals a hidden defect of urban planning in this area: the depots
of dangerous goods in the wharf are too close to the residential areas. This fatal defect actually
triggered an irreparable tragedy: the Tianjin port explosion of dangerous goods on August 12,
2015, which happened right at a road intersection covered by the No. 1 risk pattern, as shown in
the bottom-right sub-figure of Figure 15.

7.4 Experimental Results of Pattern State Prediction

In this section, we evaluate the pattern state prediction performance of the DGeye system. The
datasets of Beijing and Tianjin contain trajectories and mobile-phone records of 90 and 60 days,
respectively. We use data in the first 2/3 days (60 days for Beijing and 40 days for Tianjin) as
the training set and the rest as the test set. The following baseline methods are included for
comparison:

• Likelihood model (LL), which uses the likelihood probability to predict the state of a pattern at

a given time slice. Given a pattern state fe to be predicted, we calculate the Pr( f
(<t )
k

| fe ) for each
pattern from training dataset as

Pr( f (<t )
k

| fe ) =
Pr( f (<t )

k
, fe )

Pr( fe )
. (25)

Then, we use the likelihood
∑K2

k=1 дke ln(1 + Pr( f
(<t )
k

| fe )) in Equation (22) to predict pattern
states.
• Naive Bayes model (NB), which uses the initialization model of the EM algorithm in Equa-

tion (22) for prediction.
• EM without casuality (EM¬д), which uses the EM model without the weight дke in Equa-

tion (22)–Equation (24) to predict the pattern state fe . This baseline is used to evaluate the value
of pattern causal relationships in the prediction.
It is easy to note that LL, NB, and EM¬д are the simplified versions of our proposed EM model.

We use them as references to verify the effectiveness of the disabled components of the EMmodel.

• Logistic Regression model (LR), which usesдke f
(<t )
k

as features of the pattern state fe and trains
a logistic regression to predict the pattern state fe at time t .
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Table 5. Prediction Performance Comparison for the Beijing Dataset

EM EM¬д PRW NB LL LR SVM ANN
Pr-risk 0.742 0.736 0.732 0.728 0.543 0.727 0.724 0.688
Re-risk 0.768* 0.756 0.748 0.738 0.302 0.720 0.736 0.687
F1-risk 0.754* 0.746 0.740 0.733 0.388 0.723 0.730 0.687
Pr-safe 0.720* 0.708 0.701 0.692 0.467 0.680 0.688 0.706
Re-safe 0.691 0.682 0.671 0.707 0.687 0.687 0.675 0.707

F1-safe 0.705 0.687 0.686 0.698 0.562 0.683 0.682 0.707

Pr-all 0.732* 0.723 0.719 0.711 0.508 0.705 0.707 0.697
Re-all 0.732* 0.724 0.718 0.712 0.489 0.704 0.707 0.697
F1-all 0.732* 0.724 0.719 0.712 0.498 0.705 0.707 0.697

Significantly outperforms EM¬д at the: * 0.05 level, paired t-test.

Table 6. Prediction Performance Comparison for the Tianjin Dataset

EM EM¬д PRW NB LL LR SVM ANN
Pr-risk 0.590* 0.585 0.578 0.552 0.541 0.528 0.559 0.505
Re-risk 0.648 0.571 0.567 0.346 0.622 0.643 0.657 0.590
F1-risk 0.618** 0.603 0.574 0.562 0.422 0.580 0.604 0.545
Pr-safe 0.774* 0.763 0.755 0.736 0.676 0.751 0.767 0.724
Re-safe 0.728 0.721 0.718 0.823 0.734 0.653 0.686 0.650
F1-safe 0.750 0.748 0.736 0.728 0.742 0.698 0.724 0.685
Pr-all 0.705* 0.696 0.687 0.667 0.625 0.667 0.689 0.641
Re-all 0.698 0.692 0.685 0.664 0.643 0.649 0.675 0.628
F1-all 0.701 0.694 0.686 0.665 0.634 0.658 0.682 0.634

Significantly outperforms EM¬д at the: ** 0.01 and * 0.05 level, paired t-test.

• Support Vector Machine model (SVM), which uses дke f
(<t )
k

as features of the pattern state fe
and trains an SVM model to predict the pattern state fe at time t .

•Artificial Neural Networksmodel (ANN), which also usesдke f
(<t )
k

as features and trains a neural
network model with two hidden layers and each layer has 30 neurons to predict the pattern state
fe at time t .
• Previous Work (PRW), which divides the patterns discovered by nRTG model as several sub-

patterns by time slices, and adopts the method in Reference [30] to predict pattern states.

Table 5 and Table 6 give the prediction performance of our EM algorithm and the baselines.
Here, the evaluation metrics include precision (Pr), recall (Re), and F1 scores (F1) for the risky
state, safe state, and both. We replicate 30 times for each experiment to conduct the paired t-test
[12] and the mean values of each metrics are presented. As the tables show:

• For both Beijing and Tianjin datasets, the proposed model (EM) performs the best in most
of the cases. Specifically, EM outperforms the second-best algorithm (the EM¬д baseline) under a
significance level of 0.01 for most cases, which generally verifies the effectiveness of our algorithm.
• The performance of EM is better than the NB baseline. Since the EMmodel takes unobservable

real-time pattern states f (t )
k

into consideration but the NB model does not, this result verifies the
information value of the unobservable states in prediction.
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• The performance of EM is better than the EM¬д baseline. Since the latter is a simplified EM
model that does not consider causality among patterns, this result again verifies the importance
of pattern causal relationships for pattern state prediction.
• The performance of EM and EM¬д is better than the PRW baseline. This verified the new

pattern mining method proposed by this article is more effective than the previous version of
DGeye.
• LR, SVM, and ANN perform relatively poor. This might be ascribed to the scarcity of training

samples; that is, we can only sample the state of fe one time in one day, and hence only have 60 and
40 training samples for every pattern state for Beijing and Tianjin, respectively. In this situation,
Bayesian methods seem more effective than completely supervised classification models.

To sum up, our EM-enabled Bayesian model is very suitable for pattern risky state prediction
by incorporating the real-time information of unobservable pattern states and the causal relation
information among risk patterns.

8 RELATEDWORK

Dangerous Goods Transportation. Dangerous goods is an important topic in hazardous mate-
rials management and intelligent transportation systems (ITS) [6]. To control societal risks
caused by dangerous goods, some DGT monitoring systems, like MITRA [25], are deployed [5].
Most of them focus on monitoring and collecting locations of DGTs only but omit the impor-
tant human activities. In academia, most ITS researchers focus on DGT route planning [24] and
transportation systems design such as railway DGT [26]. In hazardous materials management, re-
searchers focus on DGT risk assessment [14] and analysis [18]. Most of these works study DGT
from an operations and optimization view and have a basic assumption: If a plan is well designed
and deployed, DGT risks will be under control. In practice, however, many uncertainties could dis-
turb the deployment of plans. Data-driven approaches are thus becoming more desired to detect
and analyze risks of dangerous goods in real-world applications.
Spatio-temporal Pattern Mining. Mining latent patterns from spatio-temporal datasets is

a popular area in the data mining community. Many spatial clustering algorithms, such as DB-
SCAN [7], and ST-DBSCAN [2], generate spatial patterns from a spatial distance view [9]. The
collocation [15] and spatio-temporal sequential patterns mining [4, 16] algorithms detect frequent
collocations and/or concurrences from spatio-temporal datasets. Our previous work [30] proposes
an Apriori-like algorithm for mining spatial risk patterns from dangerous goods transportation
and human activity data. The probabilistic graph-based topic model is another type of widely used
methods for spatio-temporal pattern mining. One stream of such research is to discover urban
activity rhythms from human mobility data, like geo-location-based check-in data or trajectory
data. For instance, in Reference [10], the authors explore urban activity patterns from check-in
data of social media based on topic models. In Reference [27], the authors use topic model to
explore the evolution of urban traffic dynamic patterns from Origin-Destination (OD) data. An-
other research stream applies probabilistic graph-based methods that combine human mobility
spatio-temporal data with some static domain knowledge for urban region function inference [40,
41], location recommendation [13, 22], regional health level prediction [38], urban culture pat-
tern exploration [44], and still more. The risk pattern mining method in DGeye is also based on
probabilistic graph models, but the goal of mining spatio-temporal patterns from multivariate risk
trajectory data in this article leads to a completely different model with crowd score generation
and neighbor regularization.
Transportation Causality Analysis and Prediction. Transportation causality analysis and

prediction are also the key functions of DGeye. In the transportation causal analysis area, most of
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works focus on discovering causal relations in regular urban transportation. For instance, Refer-
ence [21] proposes an outlier tree–based causality discovery algorithm for spatio-temporal inter-
actions in urban traffic data. In Reference [31], the authors adopt an interpretable deep learning
method to discover inferences between road segments. Reference [3] proposes a two-step frame-
work for inferring the root cause of anomalies in urban traffic data. However, few works have
analyzed causality for cargo transportation. In the transportation prediction area, most of works
focus on traffic speed prediction [19, 32] and traffic flow prediction [1]. Recent works in this area
are devoted to designing complex deep learning network structures to achieve high-performance
traffic speed/flow prediction [37], route recommendation [35] and trajectory recovery [34]. These
solutions are not suitable to small example applications such as the risk pattern prediction in this
article.
Urban Computing. Our work also falls into the research category of urban computing [43].

Besides the above-mentioned works on urban discovery, there are many others related to our
study, including: data-driven urban analysis [28, 33], urban anomaly detection [42], urban public
security [17], citizen behavior prediction [20], road network representation [39], and still more. To
our best knowledge, our work is among the earliest studies in urban computing area that try to
snuff out the threats from dangerous goods.

9 CONCLUSION

In this article, we present a novel system called DGeye for urban dangerous goods management.
DGeye features in leveraging both DGT trajectory data and human activity data for risk tracking
and monitoring. Specifically, DGeye discovers spatio-temporally adjacent risk patterns in a city by
a carefully designed neighbor-regularized Risk Trajectory Generation model. Taking risk patterns
as basic units, a Risk Causal Network is built for risk source tracking, and an EM-enabled algorithm
is designed for risky state prediction, which makes DGeye an ideal decision support system for
urban DGT risk management. In the introduction, we raised three research questions of this study:
(1) how to identify risk patterns, (2) how to model relations among the patterns, and (3) how to
predict the state of the patterns. In the DGeye system, the three questions have been answered by
the three components of the system, i.e., the nRTG model for question (1), Risk Causal Network
for question (2), and the EM-enabled prediction algorithm for question (3). DGeye has proven
itself in the successful deployment for DGT risk management in two cities: Beijing and Tianjin. In
particular, the report from DGeye has driven the Beijing government to lay down a gas pipeline
in famous food street: Guijie, which finally bid farewell to the long history of gas-cylinder usage.
As for future work, we will consider extending our system from three directions. The first is to

consider the types of dangerous goods. In this version of the DGeye, we consider all dangerous
goods as the same type. In future work, we could introduce the type of dangerous goods and their
level of danger in our nRTG model. The second direction is to extend the system as a human-in-
the-loop mode, where the system could update the causal network and the risk ranks of patterns
after a person removes a pattern in risk treatment simulation. In this way, the system could be
more suitable for decision-making scenarios. The third direction is to introduce the dangerous
goods transporter scheduling function in our DGeye system. This function is indeed needed in
urban dangerous goods transportation management.

APPENDIX

A GIBBS SAMPLING FOR NRTG

Exact posterior inference is intractable in our model, therefore, we turn to a collapsed Gibbs sam-
pling algorithm for approximate posterior inference, which is simple to derive, comparable in speed
to other estimators, and can approximate a global maximum [8].
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Integrating outϑ andφ analytically, the latent variable needed by the sampling algorithm is the
pattern indicator r . Dirichlet hyperparameters α and β are fixed before sampling. The parameter
ψ of the continuous Beta distribution is updated after each Gibbs sample by the method of mo-
ments. Due to the spatio-temporal neighbor regularization, we also have ξ to be estimated during
sampling (see Section 4.2).

Sampling pattern assignments r . Given rest variables, sampling r is similar to sampling ap-
proach for Topics over Time [36]. The difference lies in that RTG has a spatio-temporal neighbor
regularization. That is,

p (rmn = r ) =
(
n(r )m + α

(r ) − 1
) n(v )r + β

(v ) − 1∑V
v=1 (n

(v )
r + β (v ) ) − 1

× (1 − cmn )
ψα−1cψβ−1mn

B (ψα ,ψβ )
exp 	


−(ξ (r )v − φ (r )
v )2

2σ 2
ξ

�� ,
(26)

where n(r )m indicates the number of ST-Zones assigned to pattern r in themth trajectory, and n(v )r

indicates the number of times ST-Zone v is assigned to pattern r .
Updating of ξ . With the sampled r , we can obtain the estimated φ (see Section 4.2), which

enables us to estimate the ξ (see Section 4.2).
Updating ofψ. For simplicity, we updateψ after each Gibbs sample by the method of moments,

detailed as follows:

ψ̂α = c̄r

(
c̄r (1 − c̄r )

b2r
− 1
)
, ψ̂β = (1 − c̄r )

(
c̄r (1 − c̄r )

b2r
− 1
)
, (27)

where c̄r and br indicate, respectively, the sample mean and the biased sample variance of the
crowd scores c belonging to pattern r .

B COMPLEXITIES OF NRTG

We first discuss the time complexity of the nRTGmodel. As shown in the APPENDIX A, the major
computation cost during the Gibbs sampling of nRTG is inferring value of latent variable rm,n .
Specifically, for each zone, we need to infer rm,n takes which value in the set {1, . . . ,K }, i.e., the
probability p (rm,n = k |rest) for each k ∈ {1, . . . ,K } need to be computed. Thus, the time complex-
ity of sampling the risk pattern for each zone is O (K ). Therefore, for the V zones in the ST-Cube,
the time complexity of the Gibbs sampling is O (VK ).

Next, we analyze the space complexity. For the nRTG model, the parameters include {ψ (k ) }K
k=1

,

{ϕ (k ) }K
k=1

, {θ (m) }Mm=1, and {ξ̂v }Vv=1, where K is the number of patterns,M is the number of trajecto-

ries, andV is the number of zones. As eachψ (k ) has two dimensions, {ψ (k ) }K
k=1

has 2K parameters.

Similarly, each ϕ (k ) has V dimensions, {ϕ (k ) }K
k=1

has VK parameters. Each θ (m) has K dimensions,

therefore, {θ (m) }Mm=1 has MK parameters. {ξ̂v }Vv=1 has V parameters. In summary, the space com-
plexity of nRTG is O (VK + 2K +MK +V ) = O ((V + 2 +M )K +V ).
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