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Abstract—Traffic flow prediction is of great importance
in traffic management and public safety, but is challenging
due to the complex spatial-temporal dependencies as well as
temporal dynamics. Existing work either focuses on traditional
statistical models, which have limited prediction accuracy, or
relies on black-box deep learning models, which have superior
prediction accuracy but are hard to interpret. In contrast,
we propose a novel interpretable spatiotemporal deep learning
model for traffic flow prediction. Our main idea is to model
the physics of traffic flow through a number of latent Spatio-
Temporal Potential Energy Fields (ST-PEFs), similar to water
flow driven by the gravity field. We develop a Wind field
Decomposition (WD) algorithm to decompose traffic flow into
poly-tree components so that ST-PEFs can be established. We
then design a spatiotemporal deep learning model for the ST-
PEFs, which consists of a temporal component (modeling the
temporal correlation) and a spatial component (modeling the
spatial dependencies). To the best of our knowledge, this is the
first work that make traffic flow prediction based on ST-PEFs.
Experimental results on real-world traffic datasets show the
effectiveness of our model compared to the existing methods.
A case study confirms our model interpretability.

Keywords-Potential Energy Fields; Spatiotemporal Model;
Interpretable Prediction; Deep Learning;

I. INTRODUCTION

Traffic flow prediction is of great importance in traffic and

urban management. In general, an accurate traffic prediction

model plays a critical role in many real-world applications.

For example, traffic flow prediction on the vehicle can help

the transportation department better understand and manage

congestion [1]. Accurate crowd flow prediction can help

event organizers maintain the safety of crowded people [2].

Besides, long-term population tracking prediction of a city

is also very valuable for urban planners.

Extensive studies exist on traffic flow prediction over the

last few decades. Early approaches for this problem are usu-

ally based on statistical models in time series analysis (e.g.,

auto-regressive integrated moving average, or ARIMA [3]).

These models are easy to interpret but cannot capture

complex non-linear and dynamic spatial-temporal depen-

dencies. Recently, a series of studies are inspired to apply

deep learning technique [4] to traffic flow prediction. These

methods usually utilize recurrent neural networks (RNN) and

its variants to model dynamic temporal dependencies [1],

and employ convolutional neural networks (CNN) to extract

spatial relationships from the whole city by modeling city-

wise traffic as a grid heatmap [5]. When it comes to non-

Euclidean structured data such as spatial networks, some

studies use graph convolution networks (GCN) to capture

spatial patterns [6].

Although spatial correlation and temporal dynamics have

been considered in existing deep learning models, these

models are often black-box with poor interpretability. It is

hard to explain the rationale behind model predictions for

decision making in real-world transportation applications.

There are some studies on interpreting black-box deep

learning models, e.g., explaining their working mechanism

and decision-making process. However, in terms of spa-

tiotemporal prediction, the explanation of the mechanism of

urban dynamics with physical meaning is not well studied.

To fill the gap, we propose an interpretable spatiotemporal

deep learning model for traffic flow prediction. Our main

idea is to model the physics of traffic flow through a

number of latent spatiotemporal potential energy fields (ST-

PEFs), similar to water flows driven by the gravity field.

Our framework first decomposes traffic flows into poly-tree

components so that ST-PEFs can be established. We then

design a spatiotemporal deep learning model for the ST-

PEFs. The model consists of a temporal component (Gated

Recurrent Units, GRU [7]) and a spatial component (graph

attention networks, GAT [8]). The predicted potential energy

fields can be used to predict future traffic flows as well

as help interpret the predictions being made. Our main

contributions are summarized as follows.

• We develop a flow graph decomposition algorithm to

extract potential energy fields from traffic flow graphs.

• We design a spatiotemporal deep learning model for

potential energy fields, which models temporal dynamics

and spatial dependencies, respectively.

• Extensive experiments show that our model outperforms

several state-of-the-art methods. A case study confirms out

model interpretability.
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Figure 1. Illustration of basic concepts.

II. PRELIMINARIES

A. Definitions

Definition 1 (Spatial Raster Framework). A Spatial
Raster Framework is a tessellation of a spatial region into
a regular grid. Each cell in the framework is a Spatial
Data Sample.

Figure 1(a) shows an example of a spatial raster frame-

work with 4×4 cells. Each cell contains inflow and outflow

to neighboring cells in four different directions (up, right,

down, and left).

Definition 2 (Flow Graph). A Flow Graph G(VG, EG) is
a directed grid graph of which nodes are the cells in a
raster framework and edges are the traffic flow volume and
direction between pairs of adjacent cells.

Figure 1(b) shows an example of a flow graph for the

4 by 4 raster framework. Note that there are two different

color in edge of flow graph indicating the major flow graph

(black) and the minor flow graph (yellow).

Definition 3 (Flow Poly-tree). A Flow Poly-tree
T (VT , ET ) is a directed spanning tree of the flow
graph. In other words, it is a poly-tree whose nodes are the
set of all nodes (VT = VG) and whose edges are a subset
of all edges in the flow graph (ET ⊂ EG).

For instance, Figure 1(c) and 1(d) are both flow poly-tree

of the major flow graph in Figure 1(b), for the reason that

they have the same nodes as the major flow graph and their

edges are a subset of all edges in the major flow graph.

Definition 4 (Flow Graph Decomposition). Flow Graph
Decomposition is the process of decomposing a flow graph
G into k flow poly-trees T1, T2, ..., Tk, such that ETi∩ETj =

∅ for any i, j and
⋃k

i=1 ETi
= EG.

Definition 5 (Potential Energy Field). A Potential Energy
Field is a scalar field defined on a graph, whereby gradients
between adjacent nodes represent traffic flow along poly-tree
edges.

Figure 1(d) to 1(f) provide an illustration. (d) Given a

flow poly-tree consisting of 16 nodes and 15 edges with

flow volume besides the corresponding edge and a randomly

selected node as the zero-potential node. (e) We can calcu-

late the potential energy value of all other nodes. (f) The

potential energy field value can be readjusted based on any

fixed node, which is assumed to be zero-potential.

B. Flow Prediction Problem

Given a spatial raster framework of a city, as well as

the historical traffic flow between neighboring grid cells,

the traffic flow prediction problem aims to predict the flow

between neighboring cells at the next time step (or next few

time steps).

III. APPROACH

In this section, we propose an interpretable deep learning

framework for traffic flow prediction.

Our approach is based on a key idea that traffic flow is

driven by a set of latent potential energy fields, similar to

water flow driven by the gravity field. However, generalizing

the idea of water flow modeling to traffic flow modeling is

non-trivial. Because unlike water flows, traffic flows may

contain cycles. The existence of cycles violates the concept

of potential energy fields.

To address this challenge, we propose to decompose the

traffic flow graph into a number of components, whereby

each component is acyclic, then model the potential energy

field for each component. The potential energy fields, after

being learned, provide an opportunity to interpret model

predictions on traffic flow. In order to maintain the good

interpretability of potential energy fields (the effects of traffic

flow and energy field are more complicated over a long

distance), we propose to partition the region of study into

a number of communities and apply our model to each

individual community (divide and conquer strategy).

A. Overall Framework

Figure 2 provides an overview of the proposed deep

learning framework. The unique design in our framework is

to conduct a spatiotemporal predictive model on potential

energy fields instead of directly on the flow graph. The

reason is that potential energy fields provide important latent

information to explain the predicted traffic flow.

B. Community Partition

The goal of community partition is to divide the study

region into smaller contiguous zones so that each zone has

a smaller footprint and thus easier to explain based on its
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Figure 2. The overall architecture of our framework. (a) Community
partition step divides the study region into small contiguous zones. (b)
Flow graph decomposition step decomposes the traffic flow graph within
a community into K flow poly-trees and then converts each poly-tree into
a potential energy field. (c) Flow prediction step predicts the flow from
potential energy fields of all communities.

potential energy field. Given a study region as a regular

grid of cells, as well as historical traffic flows between

cells, the object of the zone partition is to maximize the

intra-zone traffic flow and minimize the inter-zone traffic

flow. The problem is similar to community partition in

social network analysis. We propose to use the improved

Girvan–Newman (GN) algorithm [9]. The main idea is to

progressively remove edges from a network and then to

partition the network based on a measure of modularity.

Edge removal is based on the edge betweenness, i.e., the

number of shortest paths between all node pairs that run

through an edge.

C. Flow Graph Decomposition

The goal of the flow graph decomposition is to decompose

the traffic flow graph within a community into four orthog-

onal flow poly-trees so that each flow poly-tree corresponds

to a potential energy field.

The flow graph decomposition problem, however, is com-

putational challenging in three aspects. First of all, it is

not clear whether a solution exists for this graph problem.

Moreover, it is not clear what is the number of poly-tree

components we can produce in the decomposition. At last,

it is harder to decompose a flow graph within a community

because its spatial footprint is more irregular.

In order to prove the decomposition problem is solvable,

we adopt the theorem from [10]. It describes as Theorem 1

that studies on what condition a graph can be decomposed

into edge-disjoint spanning trees.

Theorem 1. A finite graph G has k edge-disjoint spanning
trees if and only if ΔG(VG) = 0 and ΔG(X) ≥ 0 for every
non-empty subset X of VG.

Here, ΔG(X) = k(|X|−1)−|EX | and the order | · | of a

set is the number of elements. There are only two constraints

Algorithm 1 Wind Field Decomposition Algorithm

Input: Flow graph G(VG, EG).
Output: A set of two edge-disjoint flow poly-trees {T1, T2}.
1: Initialize backbone node set B = {}, backbone extension direction set

D = {}.
2: for i = 1 to 2 do
3: Initialize Ti = {}.
4: Select backbone node bi of Ti in VG and add bi to B.
5: Decide the extension direction di of bi and add di to D.
6: for i = 1 to 2 do
7: Extend bi along di to obtain the backbone subgraph Gb.
8: Ti.add(Gb).
9: Extend all nodes in VGb along the axial direction of di to obtain

the tooth subgraph Gt.
10: Ti.add(Gt).
11: for vt ∈ VGt do
12: Extend it along di to get node m.
13: if m does not form loop in Ti then
14: VGb .add(m) and jump to step 9.
15: for e ∈ ET1

do
16: if e ∈ ET2 then
17: Flow volume of e is halved in T1 and T2.
18: return {T1, T2}.

that need to be satisfied if a graph can be decomposed into k
edge-disjoint spanning trees. In fact, our flow graph exactly

satisfies both constraints when k = 2, making the flow graph

decomposition problem solvable.

Based on Theorem 1, we design Algorithm 1 (Wind field
Decomposition, WD) to solve the flow graph decomposition

problem. The intuition is that we can project the flow

graph within a community into four basic directions: north

to south, south to north, east to west, and west to east.

The projected flow graph in each basic direction forms a

poly-tree with a comb-like structure. Such a decomposition

has two advantages. First, it is simple and can be easily

generalized to an arbitrary flow graph within a community.

Second, the basic directions are orthogonal and easy to

explain based on our common knowledge.

D. Spatiotemporal Model for Potential Energy

Here we aim to predict the potential energy of a poly-tree

node v at time step t, a.k.a., pv,t. Because the estimation

process can be repeated on all the poly-tree nodes in parallel.

Temporal Modeling. The historical potential energy data of

the node can be formed as time series, {pv,1, · · · , pv,t−1}.

Given the current time step t, we consider a closeness

relation of tS time steps in a short period, i.e., from t− tS
to t− 1. To model the temporal dynamics, we employ GRU

to encode a subsequence of the near recent potential energy.

At time step t, we update the hidden state of a poly-tree

node v according to the GRU networks as

hv,t = GRU(hv,t−1, pv,t), (1)

where hv,t ∈ R
KS encodes the necessary temporal informa-

tion, will be the input of the spatial module.

Spatial Modeling. To capture the spatial dependencies, we

utilize the novel GAT. Formally, the update of GAT can be
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given as

N (z) = GAT(N z−1|t). (2)

The vk-th column nvk ∈ R
KG of N (z) denotes the graph

representation of node vk, where vk is a node in set V . Note

that z indicate the number of iteration for a specific time step

t. The GAT module aims to learn a dynamic representation

of a poly-tree node at time step t. In detail, we initialize

the node representation by the temporal representations at

time step t, n
(0)
vk = hv,t. Note that the time index of nvk is

omitted for simplicity.

A key point in GAT is the setting of attention weights

between two nodes. Here we set the weights between two

nodes vi and vj as

α(vi,vj) =
exp

(
w� · (W1nvi +W2nvj

))
∑

vk∈Nvi
exp (w� · (W1nvi +W2nvk))

, (3)

where α is the attention weight, w and W(·) are learnable

parameters, ·� represents transposition, and Nvi denotes the

node neighbours of poly-tree node vi. To capture the com-

plex spatial influence and stabilize the learning process of

self-attention, we employ the multi-head attention proposed

in [8]. Here we use M independent attention mechanisms,

resulting in the following output:

n(z)
vi =

∥∥∥
M

m=1
ReLU

⎛
⎝ ∑

vk∈Nvi

α
(m)
(vi,vk)

W (m)n(z−1)
vk

⎞
⎠ , (4)

where ‖ represents concatenation, α
(m)
(vi,vk)

is the normal-

ized attention coefficients computed by the m-th attention

mechanism, and W (m) is the corresponding input linear

transformation’s weight matrix.

Finally, we use a MLP-based predictor to estimate the

potential energy of poly-tree node v at time step t, a.k.a.,

p̂v,t. To train the spatial-temporal model, we compute the

mean squared error loss by

L = (pv,t − p̂v,t)
2
. (5)

E. Flow Pediction from Potential Energy

After a potential energy field is predicted in every com-

munity, the future flow prediction component will derive

flow poly-tree from the potential energy fields and predict

the city-wise flow graph by combining the flow poly-trees

of each community. A detailed algorithm can be found in

Algorithm 2.

IV. EXPERIMENT

In this section, we conduct extensive experiments on three

real-world trajectory datasets to evaluate our ST-PEF.

Algorithm 2 Potential Energy to Flow Algorithm

Input: List of potential energy field P, list of community C.
Output: City-wise flow graph G.
1: Initialize flow graph G.
2: for c ∈ C do
3: Initialize flow graph Gc of community c.
4: for p ∈ P do
5: Initialize temporary flow graph Gt.
6: for (u, v) ∈ p do
7: if pu > pv then
8: Gt(u, v) = pu − pv .
9: else

10: Gt(v, u) = pv − pu.
11: Add Gt to Gc.
12: Get the border of c.
13: Add Gc to G according to the border.
14: return G.

A. Experimental Setup

Datasets. Xi’an taxi dataset comes from GAIA Open

Dataset. It contains 3,784,063 trajectories of taxicab sampled

every 3 seconds. Beijing taxi dataset contains 60,828,387

taxicab GPS trajectories sampled every minute. Porto taxi

dataset is originally released for a Kaggle trajectory predic-

tion competition with a sampling period of 15 seconds. The

dataset contains 1,891,921 trajectory. For each dataset, we

choose the previous 80% as training data and the rest as

testing data.

Preprocessing. We split city area as 18× 18, 32× 32, and

12 × 8 regions for Xi’an, Beijing, and Porto, making the

real-world size of each region is about 500m× 500m in all

three cities. In order to evaluate the performance on different

prediction lengths, we set the time interval as 5, 30, and 60

minutes for Xi’an, Beijing, and Porto datasets, respectively.

The sliding window method is utilized for sample generation

on both training and testing data.

Evaluation Metrics & Baselines. We evaluate our method

and baselines by Root Mean Square Error (RMSE)

and Coefficient of Determination (R2). We compare ST-

PEF with the following baselines: (1) Historical Average

(HA), (2) ARIMA, (3) Spatio-Temporal Auto-Regressive

(STAR) [11], (4) LSTM, (5) XGBoost, (6) Convolutional

LSTM (CLSTM), (7) Spatio-Temporal Residual Convolu-

tional Network (STResNet) [2], (8) Spatial-Temporal Dy-

namic Network (STDN) [1].

Task Setting. For each dataset, we use the previous 90%

of the training data to train the model and the remaining

10% to optimize the model. On all the test datasets, we

generate three types of tasks using the next 1, 2, and 4 time

steps. Then we set the hyperparameters based according to

the performance on the validation set. The batch size is

set as 100. The number of community C is 4, 12, and 8

for Xi’an, Beijing, and Porto datasets. A flow graph in a

community has K = 4 flow poly-trees components. For

temporal information, we set the length of short-term GRU

1079

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 16,2023 at 02:12:28 UTC from IEEE Xplore.  Restrictions apply. 



Table I
PERFORMANCE COMPARISON USING TWO METRICS ON THREE DATASETS. “M” AND “H” DENOTE MINUTE AND HOUR, RESPECTIVELY. THE RESULTS

ARE BETTER WITH SMALLER RMSE, BUT LARGER R2 .

Metric RMSE R2

Datasets Xi’an Taxi Beijing Taxi Porto Taxi Xi’an Taxi Beijing Taxi Porto Taxi
Length 5m 10m 20m 30m 1h 2h 1h 2h 4h 5m 10m 20m 30m 1h 2h 1h 2h 4h

HA 3.845 3.858 3.778 10.052 10.547 11.741 4.580 4.689 4.755 0.256 0.252 0.283 0.610 0.571 0.469 0.245 0.209 0.186
ARIMA 3.040 3.040 3.040 11.490 11.490 11.490 3.870 3.870 3.870 0.570 0.570 0.570 0.480 0.480 0.480 0.460 0.460 0.460
STAR 3.440 3.320 3.430 11.220 11.380 12.730 4.470 4.580 4.930 0.410 0.450 0.410 0.500 0.490 0.360 0.280 0.240 0.130
LSTM 1.990 2.040 2.140 7.960 9.150 11.220 2.770 3.200 4.440 0.800 0.790 0.770 0.750 0.670 0.470 0.720 0.630 0.290

XGBoost 1.970 2.000 2.140 5.370 6.880 8.960 2.930 3.370 3.960 0.810 0.800 0.770 0.860 0.810 0.680 0.690 0.590 0.440
CLSTM 1.801 1.903 1.988 5.682 6.414 7.880 2.847 3.173 3.693 0.837 0.818 0.813 0.875 0.841 0.761 0.709 0.638 0.509

STResNet 1.885 1.956 1.989 5.199 5.884 6.726 2.896 2.942 3.128 0.815 0.797 0.792 0.883 0.856 0.841 0.728 0.683 0.611
STDN 1.905 1.984 2.106 7.199 9.384 11.578 2.838 3.242 3.675 0.836 0.822 0.800 0.819 0.692 0.531 0.702 0.611 0.499

ST-PEF 1.774 1.897 1.926 5.134 5.782 6.543 2.814 2.910 3.115 0.821 0.809 0.803 0.886 0.859 0.843 0.734 0.697 0.637

Table II
SUMMARY OF PERFORMANCE COMPARISONS.

Metric HA ARIMA STAR LSTM ST-PEF
Win times 0 0 0 1 14

AVG arithmetic ranking 8.444 7.056 8.167 5.278 1.333
AVG geometric ranking 8.408 6.964 8.151 4.923 1.220

Metric XGBoost CLSTM STResNet STDN ST-PEF
Win times 0 2 0 1 14

AVG arithmetic ranking 4.889 2.778 2.722 4.222 1.333
AVG geometric ranking 4.794 2.587 2.559 3.909 1.220

as 4, and the dimension of the hidden representation is 128.

We set M = 8 in spatial modeling. MLP consists of one

hidden layer with 128 hidden units. All the representations

are initialized by a truncated normal distribution with zero

mean and 0.01 variance, the biases are initialized as zero

as well. Here we set the max epoch number as 100, then

choose the Adaptive Moment Estimation (Adam) optimizer

with learning rate 0.001 and Early-Stopping technique to

train the model until convergence.

B. Results and Analysis

Table I shows the performance comparison of our ST-PEF

and other baselines, with the summarized information listed

in Table II. Note that the best performance is highlighted

in bold. From Table I, we can see that the traditional

autoregression methods don’t perform well, including HA,

ARIMA, and STAR. They are too simple to catch the

temporal dynamics in traffic flow forecasting. However, with

the benefit of deep learning, LSTM performs much better.

By comparing the performance of LSTM and CLSTM, short

for ConvLSTM, the spatial factor plays an important role

in this task. So the models with good performance are all

spatiotemporal ones. In Table II, among all the competitors,

ST-PEF achieves the best performance in terms of both the

largest number of wins (the best in 14 out of 18 experiments)

and the smallest average ranking. Our model mainly differs

from other spatiotemporal models in its PEF, which indicates

that the PEF we proposed makes great sense.

By summarizing these results, we can see deep learning

models perform much better than the statistical ones. Both

(a) Flow volume (b) Potential energy

Figure 3. Spatial distribution of key regions on flow volume and potential
energy. The background color are used to distinguish different community.
Each small block is a region in reality. Pink and yellow denotes high and
low value, respectively. When two colors are overlapped, we color it blue.

temporal and spatial factors play an important role in traffic

flow prediction. Our proposed model ST-PEF, which com-

bines the potential energy field and deep learning technique,

achieves good performance and interpretability.

C. Case Study

Next, we show the potential energy learned by our ap-

proach and demonstrate a case study on the Beijing taxi

dataset.

Figure 3 shows the spatial distribution of key regions on

flow volume and potential energy. For a flow graph, we can

calculate the inflow and outflow of each region by easily

adding the flow leaving from this region and flow coming

to this region in each direction. Then we choose the top 4%

outflow regions of each community as outflow key regions

and color them pink in Figure 3(a), while inflow key regions

are colored yellow. If the key regions of inflow and outflow

are overlapped, we color them blue. The same operations are

repeated on potential energy fields to get Figure 3(b). It can

be observed that there exist many overlapping regions in the

flow graph but no one in the potential energy field, indicating

potential energy is easier to understand. For example, a

region that has a higher outflow at the evening peak may

be defined as an office area in many studies. But we argue

that if the inflow is high as well, the region is more likely
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to be a transportation station. However, the potential energy

can define a functional region clear, where the high potential

energy region in the evening is an office area and low means

a residential area. On the other hand, the key regions of the

flow graph scatter on the whole city, while those of potential

energy tend to gather and form a contiguous zone which may

be a functional area. In a word, potential energy fields show

better patterns and are easier to understand.

V. RELATED WORK

Existing works on traffic flow prediction can be divided

into two categories: traditional statistical models and deep

learning models. Traditional statistical models, such as

ARIMA and STAR [11], assume traffic data to follow certain

distributions and may not capture the complex, non-linear,

and dynamic relationships in traffic flow data. Deep learn-

ing models include purely temporal models, purely spatial

models, and spatiotemporal models (e.g., ST-ResNet [2]

based on residual network, STDN [1] based on LSTM,

ITRCN [12] based on GRU). Besides, graph neural networks

have also been proposed for traffic flow prediction that

uses graph convolution instead of 2D image convolution,

such as DCRNN [13]. Deep learning models have shown

promising prediction accuracy compared with traditional

statistical models. However, the prediction model is not

easily interpretable.

There exist some research on interpretable machine learn-

ing [14] (or explainable AI [15]). Related work can be di-

vided into intrinsic interpretation and post-hoc interpretation

according to the time when the interpretation is obtained.

Intrinsic interpretation aims to construct a self-explainable

model to help a human understand the overall logic behind

the model and its internal working mechanism [16], such

as decision tree and capsules [17]. Post-hoc interpretation

requires creating a second model to explain an existing

model, such as LIME [18], SHAP [19], and Anchor [20].

These methods assume that the predictions around the

neighborhood of a given input can be approximated by

an interpretable white-box model. Then they identify the

contributions of each feature in the input towards a specific

prediction made by a model. Our proposed model belongs

to intrinsic interpretation since we develop a deep learning

model that is partly self-explainable. Contrast by existing

self-explainable models and deep learning models with post-

hoc explanation methods (such as ST-ResNet plus SHAP),

we directly model the underlying physics of traffic flows

based on potential energy fields.

VI. CONCLUSION

In this paper, we propose a spatiotemporal deep learning

model for the ST-PEFs, which consists of GRU for temporal

dynamics as well as graph attention networks for spatial de-

pendencies. Experimental results on three real-world traffic

datasets show the effectiveness of our model compared to the

state-of-the-art methods. Furthermore, a case study confirms

the ability of our interpretable model to reveal some hidden

urban dynamic patterns that are not apparent in present flow

prediction models.
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