China CDC Weekly

Methods and Applications

High-Resolution Data on Human Behavior for Effective
COVID-19 Policy-Making — Wuhan City, Hubei Province, China,
January 1-February 29, 2020

Jingyuan Wang'***; Honghao Shi'; Jiahao Ji'; Xin Lin'; Huaiyu Tian**

ABSTRACT

Introduction: High-resolution data is essential for
understanding the complexity of the relationship
between the spread of coronavirus disease 2019
(COVID-19), resident behavior, and interventions,
which could be used to inform policy responses for
future prevention and control.

Methods: We obtained high-resolution human
mobility data and epidemiological data at the
community level. We propose a metapopulation
Susceptible-Exposed-Presymptomatic-Infectious-
Removal (SEPIR) compartment model to utilize the
available data and explore the internal driving forces of
COVID-19 transmission dynamics in the city of
Wuhan. Additionally, we will assess the effectiveness of
the interventions implemented in the
administrative  units  (subdistricts)  during  the
lockdown.

Results: In the Wuhan epidemic of March 2020,
intra-subdistrict transmission caused 7.6 times more
infections than inter-subdistrict transmission. After the
city was closed, this ratio increased to 199 times. The
main transmission path was dominated by population
activity during peak evening hours.

Discussion: Restricting the movement of people
within cities is an essential measure for controlling the
spread of COVID-19. However, it is difficult to
contain intra-street transmission solely through city-
wide mobility restriction policies. This can only be
accomplished by quarantining communities or
buildings with confirmed cases, and conducting mass
nucleic acid testing and enforcing strict isolation
protocols for close contacts.

smallest

In the ongoing coronavirus disease 2019 (COVID-
19) pandemic (/), human mobility has been identified
as a key factor in the spread of the disease (2) and in
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shaping its transmission dynamics (3—4). From a global
perspective, cross-border travel can be used to predict
the potential trajectory of global transmission (5-6).
From a country-wide scale, studies have shown that
human mobility from Wuhan City to other cities in
China had a significant impact on the epidemics in
these cities during the first wave of the outbreak (7-8).
Control measures implemented in China, as well as in
other countries, were successful in substantially
suppressing the transmission of COVID-19. The
transmission between subdistricts in a city is usually
responsible for most of the disease transmission across
spatial scales, but it is rarely measured (9).

We will demonstrate how different types of human
mobility can affect transmission dynamics in a city.
Therefore, we can identify social behaviors that are
strongly associated with the epidemic trajectory in a
metropolis of 10 million residents.

METHOD

The calibration of parameters is performed with the
Python (version 3.6.0, Python Software Foundation,
Wilmington, US) and the Python package PyMC
(version 2.3.8). The data of COVID-19 cases (high-
resolution) were sourced from the large epidemic
network of China Electronics Technology Group
Corporation (CETC), which was obtained indirectly
from the front-line hospitals and disease control
departments in Wuhan. Population mobility data was
derived from China Mobile’s cell phone signaling

records.

Model Development
We adopt a metapopulation model to simulate the
transmission of COVID-19 in Wuhan City.
Supplementary Figure S1 (available in https://weekly.
chinacde.cn/) shows the schematic diagram of the
model. Our model treats each subdistrict as a
metapopulation. For each subdistrict, the model
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divides the whole population into five compartments,
i, the susceptible population ,
population F, the pre-symptomatic infectious
population P, the infectious population 7, and the

the exposed

effectively removed population R. Therefore, our
model is named as a metapopulation Susceptible-
Exposed-Presymptomatic-Infectious-Removal (SEPIR)
model. The equations of transition relationships

between the five populations are given as follows.
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where i denotes the subdistrict index. The variables S,
E;, P, I; R, denote the corresponding compartments’
population of the i-th subdistrict. The parameter § is
the transmission rate between susceptible and
infectious populations. «, is the transition rate from
the population £ to P, a, is the incidence rate, and v is
the removal rate.

Parameter Setting

The transition rate «, is set as the inverse of the
average period between exposure and presymptomatic
infectious (the incubation period minus 2.3 days), and
the incidence rate «, is set as the inverse of the average
presymptomatic infectious period (2.3 days). The
removal rate v was dynamically set as the inverse of the
average duration from symptom onset to confirmation
for every day. As shown in Supplementary Figure S2
(available in https://weekly.chinacdc.cn/), this duration
substantially reduces as a result of intervention policies.

In our model, we set the transmission rates 3 to be
dynamic. Given a subdistrict 7, there were four
transmission rates, namely B{',l, ﬁiz, 5{73, Bé. For any
one of the four transmission rates, denoted as 3., we
set it as By = fy - M, on the day t, where 3, was a basic
transmission rate and M. was the total volume of
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resident mobility in the subdistrict 7 on the day #. The
M. was calculated as M. = (Xl.].wi]-, + by, + 1) [ N;, where
wy;;; was the amount of inter-subdistrict mobility from
subdistrict i to subdistrict j during the morning-peak
(to-workplace) period, 4,; was during the evening-peak
was during the off-peak

ijt
(to-home) period, and 7y
period.

We derived the effective reproduction number R, of
the metapopulation SEPIR model by the next
generation matrix. Suppose a model with m
metapopulations, let x= (£, E,...,E, P, DPs,.... D0,
L.L,...,1,)" be the number of individuals for each
infected compartments, ;= S ,82 0=y B S Thﬁ

> NP2 0= Ly N
The detailed calculation process is shown in
Supplementary Material (available in https://weekly.

chinacdc.cn/).

Evaluation Experiments
We adjusted the parameters of the calibrated model
to estimate the effectiveness of different interventions
and their interactions with the effective reproduction
number R,. Using the calibrated model parameters on
January 23, 2020 as the benchmark, we adjusted the

resident mobility intensity, i.e., Wies Py and Tijrs 1O

i
simulate the effectiveness of the mobility restriction
policy, as well as adjusted the average duration from
symptom onset to isolation, i.e., 1/7, to simulate the
effectiveness of the policies aiming to reduce the
infectious period. We construct the contour plot of R,
in Figure 1A through traversing the relative resident
mobility intensity and the average duration from
symptom onset to isolation to generate corresponding
effective reproduction numbers.

We designed two evaluate the
effectiveness of non-pharmaceutical interventions. In
the first scenario, we set the mobility volume after the
Wuhan lockdown to the same level as the last day
before the lockdown (January 22, 2020), while the
infectious period is reduced to reflect reality. This
scenario aims to simulate the condition where only
interventions to reduce the infectious period are
implemented (Scenario 1). Alternatively, in Scenario 2,
we simulate the condition where only the intra-city
mobility restriction is implemented. In this scenario,
the duration from symptom onset to isolation after the
Wuhan lockdown was set as 15.7 days (the average
time on January 22, 2020) and the mobility volume
was reduced to its lowest level.

We re-conducted experiments in Figure 1A with the

scenarios to
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FIGURE 1. Simulation experiments on transmission dynamics and non-pharmaceutical interventions from January 1 to
February 29, 2020 in Wuhan, China. (A)The contour plot between effective reproduction number R, and the two categories
of interventions implemented. (B) The number of cumulative exposed cases caused by intra- and inter-subdistrict
transmissions.

Note: two categories of interventions implemented in Wuhan included mobility restriction (corresponding to relative mobility
volume) and infectious period reduction (corresponding to duration from symptom onset to isolation). The color on the
contour plot represents the value of R, of corresponding relative mobility volume and duration from symptom onset to
isolation. The line formed by blue dots reflects the R, from January 1 to February 29, 2020.

parameters from Zhang et al. (/0) to simulate the
impact of the COVID-19 Delta variant B.1.617.2.

transmission dynamics using a multi-phase framework.

The first wave of COVID-19 in Wuhan can be divided

Specifically, the incubation period was uniformly set to
4.4 days, and all the transmission rates were set to
twice those fitted by the data. Supplementary Figure
S3 (available in https://weekly.chinacdc.cn/) showed

the contour plot of R, under the Delta variant.

RESULTS

We first analyzed the intra-city human mobility and
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into three phases: 1) From January 1 to January 23,
2020, there were nearly no interventions; 2) On
January 23, 2020, mobility
implemented; and 3) On February 3, 2020, in
addition to mobility restrictions, large-scale centralized

restrictions  were

isolation policies for suspected, mild patients, and close
contacts were implemented to reduce the duration of
the infectious period (7).

Based on the above framework, we further analyzed

Chinese Center for Disease Control and Prevention


Supplementary Figure S3
Supplementary Figure S3
https://weekly.chinacdc.cn/
Supplementary Figure S3
Supplementary Figure S3
https://weekly.chinacdc.cn/

China CDC Weekly

the role of resident mobility in intra- and inter-
subdistrict transmission. We used the mobility network
phone data to establish a
metapopulation model to simulate the spread of the
between  subdistricts

measured by cell
disease ~ within  and
(Supplementary Material and Supplementary Figure
S1). Since different travel purposes may lead to
different behaviors that could impact transmission, we
further divided residents’ inter-subdistrict mobility
into three categories based on the hours of a day
(Supplementary Figure S2C and Supplementary Figure
S4, available in https://weekly.chinacdc.cn/):  the
morning-peak period (7 a.m. to 9 a.m.), the evening-
peak period (4 p.m. to 6 p.m.), and the off-peak period
(the remaining hours of the day). Therefore, in our
model, the infection rate of a contact is determined by
subdistricts, mobility type (intra- and inter-subdistrict),
and mobility purpose (during morning-peak, evening-
peak, and off-peak periods). Our model accurately
captured the daily number of onset cases in all 99
subdistricts, with a mean absolute percentage error
(MAPE) of 7.04% (see Supplementary Figures S5 and
S6, available in https://weekly.chinacdc.cn/). We
investigated the influence of intra- and inter-subdistrict
mobility on COVID-19 transmission using the model.
Before intra-city mobility was restricted, the volume of
intra- and inter-subdistrict mobility was 71.9% and
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28.1%, respectively. This indicates that intra-
subdistrict mobility was about 2.5 times higher than
inter-subdistrict mobility. Our model indicated that
the number of infections caused by intra-subdistrict
transmission in the first phase was 20,011 [95%
confidence interval (CI): 18,556-21,967], which was
approximately 7.6 times (95% CI: 6.9-8.4) that caused
by inter-subdistrict transmission (2,650, 95% CI:
2,209-3,164).

We analyzed the relationship between inter- and
intra-subdistrict transmission. In the second phase, the
inter-subdistrict mobility was suppressed by 98.9% due
to mobility restrictions (Figure 2), resulting in almost
termination of the inter-subdistrict
transmission  (Figure 1B).  The  intra-subdistrict
mobility decreased by 84.0% (Figure 2), yet the intra-
subdistrict transmission persisted until the centralized
isolation policy was implemented
(Figure 1B). Our model showed that the intra-
subdistrict transmission caused 23,321 (95% CI:
21,097-25,350) infections after the mobility
restrictions, accounting for 99.5% (95% Cr:
99.5%-99.5%) of the new infections. According to

individual-level clinical data, the average time from

complete

onset to isolation of a case was more than 15 days in
the first phase, reducing to less than 3 days in the third
phase (Supplementary Figure S2).
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FIGURE 2. Dynamics of intra-city mobility from January 1 to February 29, 2020 in Wuhan, China. (A) The heatmaps of
average daily inflow mobility volume for each subdistrict in Wuhan with different dates among the three phases. (B) Changes
of intra- and inter-subdistrict mobility volume in Wuhan during the outbreak. (C) Changes of inter-subdistrict mobility during

different peak periods of one day.
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DISCUSSION

Since 2021, the COVID-19 Delta variant B.1.617.2
has spread rapidly around the world, posing a serious
challenge to containing the pandemic. We designed a
scenario to simulate the case of the Delta variant
transmitting in Wuhan in early 2020, and investigated
the impacts of the interventions discussed above using
parameters obtained from Zhang et al. (10)
(Supplementary Material).  Under this  scenario,
mobility restriction alone is unable to reduce R, to 1
due to the high transmissibility of the Delta variant,
and containment of the epidemic could only be
achieved by a 30% relative mobility volume, together
with a short infectious period (less than 2.5 days)
(Supplementary Figure S3). There would be an
estimated 3.81 million (95% CI: 3.54—4.02 million)
cases as of March 1, 2020, if the same interventions
were implemented in Wuhan under the Delta variant.
This result indicates the difficulty of containing this
new variant, and underscores the importance of
reducing the infectious period.

Our work also investigated the effectiveness of non-
pharmaceutical interventions implemented in Wuhan.
Although travel restrictions could reduce the number
of new cases in the short term, they were not sufficient
to terminate transmission. Strict isolation policies in
exchange for a relaxation of traffic control have been
helpful in restoring the economy damaged by the
epidemic. In fact, this was the policy that the Chinese
government adopted to reduce the spread of the virus.
During several rounds of cluster outbreaks after May
2020 in China, the government blocked communities
and buildings with confirmed cases, implemented
large-scale nucleic acid tests, and enforced strict
isolation policies to reduce the duration of the
infection (712-13). Comprehensive and precise control
measures can contain the outbreak while minimizing
its impact on people’s daily lives and the economy.

In summary, we completed a review of the Wuhan
COVID-19 outbreak using a refined metapopulation
model. Based on this, we can make counterfactual
inferences about policies that are more beneficial for
decision-making in advance than the predictions and
analyses of similar work (10,14).

However, the metapopulation model used in this
work has limitations in terms of generalizability. First,
this model requires high-quality raw data and refined
population flow data. Second, the number of
parameters is large, and when the preset parameters are
significantly different from the original data, effective
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fitting cannot be achieved.
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SUPPLEMENTARY MATERIAL

Epidemiological and Demographic Data of Wuhan

The epidemiological data of Wuhan were extracted from the Notifiable Disease Report System of China. This
study used anonymous individual coronavirus disease 2019 (COVID-19) case data, including residential subdistrict,
date of onset, and date of confirmation, from January 1, 2020 to March 1, 2020, for analysis. The demographic
data for the subdistricts in Wuhan City, including population and geographical boundaries, were obtained from the
Sixth Census conducted by the National Bureau of Statistics. We matched the epidemiological cases to the
subdistricts. A total of 161 subdistricts with COVID-19 cases were used for further analysis. Since there were
subdistricts with insufficient cases of COVID-19 to be modeled, we merged the epidemiological and demographic
data of these subdistricts into the geographically closest subdistricts. Lastly, there are #=99 subdistricts for model
simulation.

Proxies for Human Mobility Data in Wuhan
We used cell phone signaling data as a proxy to measure population mobility in Wuhan during the epidemic. The
anonymous cell phone mobility data, provided by a major mobile carrier in China, covered approximately 51.9%
(5.82 million/11.21 million) of the population in Wuhan. The raw cell phone signaling data records the visiting
trajectories of cell phone users at each cellular base station. We integrated the raw data as travel flow of phone users
between 500 m x 500 m grids for each hour. We further integrated the data as travel flow between subdistricts by
merging the flows of grids in the same subdistrict together.

Periods Division of Residents’ Mobility in One Day

Supplementary Figure S4 illustrates the average hourly volume of inter-subdistrict mobility on workdays prior to
January 23, 2020. As shown in the figure, there is a morning peak at 8 a.m. and an evening peak at 5 p.m.,
reflecting the temporal rhythm pattern of residents’ mobility behaviors on workdays. Based on this, we classified
residential mobility in one day into three categories based on the time of departure. The first category is the mobility
from 7 a.m. to 9 a.m.,, i.e., the morning rush hour when people commute to work from their homes. The second
category is the mobility from 4 p.m. to 6 p.m., i.e., the evening peak period when people are returning home from
their workplaces. The last one is mobility during off-peak periods, excluding morning and evening rush hours. The
mobility during the off-peak period is relatively random.

—— Inter-subdistrict visiting Mobility restriction
—— State transition Infectious period
______ - Infection reduction
Subdistrict i
b
T T T T T T -~
s, E %) p |2 1 2R
|§\,_‘]ﬂ: _-"
[ -
H By T~==<l
-~
‘/ ] _‘ q/)) 1 Ir hY _I
| 1/2: | | P j2i |
~ = ~ o
Other Subdistrict j

SUPPLEMENTARY FIGURE S1. Schematic diagram of the metapopulation SEPIR model.
Abbreviation: SEPIR=Susceptible-Exposed-Presymptomatic-Infectious-Removal
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SUPPLEMENTARY FIGURE S2. COVID-19 cases by date of symptom onset and by date of diagnosis from January 1 to
February 29, 2020 in Wuhan, China.

Note: Changes in the average duration between symptom onset and laboratory-confirmed.

Abbreviation: COVID-19=coronavirus disease 2019; C/=confidence interval.
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SUPPLEMENTARY FIGURE S3. Simulation experiments on transmission dynamics and non-pharmaceutical interventions
under the Delta variant.

Note: The contour plot between effective reproduce number R, and the two categories of interventions implemented in
Wuhan, i.e., mobility restriction (corresponding to relative mobility volume) and infectious period reduction (corresponding to
duration from symptom onset to isolation) with the parameter of Delta variant. The color on the contour plot represents the
value of R, of corresponding relative mobility volume and duration from symptom onset to isolation. The line formed by blue
dots reflects the R, from January 1 to February 29, 2020 in Wuhan.

Metapopulation SEPIR Model
In order to study the impacts of different patterns of resident mobility on intra-city epidemic transmission, our
model refines the transmission process into two parts, namely the intra-subdistrict transmission and the inter-
subdistrict transmission, and further divides the inter-subdistrict transmission into three categories, i.e., transmission

in the evening-peak, morning-peak, and off-peak periods. As shown in Formula 1, for the intra-subdistrict

transmission, the number of newly exposed population for metapopulation 7 in one day is 8 ﬁl,[i’ which is the same
7

as the definition of the standard SEIR model. For the inter-subdistrict transmission, the increment of the exposed
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SUPPLEMENTARY FIGURE S4. Changes in the average amount of inter-subdistrict traffic at different times of the workday
before January 23, 2020.
Note: Shadowed regions in different colors denote the split of time.
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SUPPLEMENTARY FIGURE S5. Observation and model simulation of onset cases for Wuhan City.
Note: The shadowed regions represent the 95% confidence interval of model simulation.

Si

population in the metapopulation 7 caused by the inflow mobility from the metapopulation j is expressed as 3 ~ o
Thir - C: !

where Ijz,:%lj, i.e., the infectious population traveled from the metapopulation j to 7 is calculated using 7; and

scaled by human mobility data. Here, N; represents the population of subdistrict j, which is obtained from the
census data. 7} is the amount of inter-subdistrict mobility from the subdistrict j to i in the period 4 of the day 7
where /=1 for the morning-peak, /=2 for the evening-peak, and /=3 for the off-peak period. The parameter C; the
ratio of N, and the number of cell phone users in subdistrict 7, which is used to calibrate the mismatch between cell
phone users and the population.

As different patterns of mobility should have different effects to transmission of COVID-19, we set the
transmission rate 3 as four types in Formula 1. Specifically, ﬂf’l, ﬂf,z, ﬁfﬁ denote the transmission rates for the inter-
subdistrict transmission in the evening-peak, morning-peak, and off-peak periods in the metapopulation i,
respectively, while 3 denotes the transmission rate of intra-subdistrict transmissions in the metapopulation 7. The
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presymptomatic infectious population may have different infectiousness with infectious population (7), we multiply
/8 with a factor ¢ for the transmission between presymptomatic infectious population and susceptible population.

Parameter Setting, Calibration and Epidemic Dynamic Simulation

In the epidemiological data, the original record of each infected case includes two dates: the date of symptom
onset and the date of laboratory confirmation. We sampled an incubation period from a Weibull distribution, as
reported in a previous study (2). By using the sampled incubation period and the symptomatic onset date, we can
approximate the exposure date for each case. Moreover, we set the last 2.3 days of the incubation period as the
presymptomatic infectious period according to previous studies (3). In this way, the timeline for an infected case is
divided as five periods, i.c., the Susceptible period (before the date of exposure), the Exposed period (from the date
of exposure to 2.3 days before the date of onset), the Presymptomatic infectious periods (the last 2.3 days before the
date of onset), the Infectious periods (from the date of onset to the date of confirmation), and the Removal periods
(after the date of confirmation). We set a confirmed case as a removed one since all infected persons will be
immediately quarantined once they get confirmation in China and therefore would not cause secondary infections
anymore. We calculate the size of population E;, P;, I; R; in Formula (1) using the number of cases on each day for
each subdistrict 7, and calculate the size of the susceptible population as §; = N, - E; = P, - I, - R,.

In Formula (1), the transition rate ¢, is set as the inverse of the average period between exposure and
presymptomatic infectious (the incubation period minus 2.3 days), and the incidence rate a,, is set as the inverse of
the average presymptomatic infectious period (2.3 days). The removal rate ~ is dynamically set as the inverse of the
average duration from symptom onset to confirmation for every day. As shown in Supplementary Figure S2, this
duration substantially reduces as a result of intervention policies.

In our model, we set the transmission rates 5 in a dynamic way. Given a subdistrict 7, there are four transmission
rates, namely nyl, 6{72, ﬁfﬁ, 35, For any one of the four transmission rates, denoted as 35, we set it as 85 = 3 - M, on
the day 7 where [, is a basic transmission rate and A, is the total volume of resident mobility in the subdistrict i on

. , Zl]u/,ﬁ + by + 1y
the day 7. The M, is calculated as M, = —
subdistrict 7 to subdistrict j during the morninlg—peak (to-workplace) period, 4
home) period, and r;, is during the off-peak period.

, where w;;, is the amount of inter-subdistrict mobility from

it
s is during the evening-peak (to-

The basic transmission rates nyl, Bf’z, Bfé, B3, and the presymptomatic infectiousness discount factor ¢ are
calibrated by the Metropolis-Hastings Markov Chain Monte Carlo (MCMC) algorithm (4), with the state P, I; R,
for each day as supervisions. The process of the parameter generation is performed separately for each subdistrict and
for three phases. For each phase, after a burn-in of 1,000 iterations, we run the MCMC simulation for 10,000
times, with sampling at every 50th step. The average root mean square error (RMSE) for each subdistrict is 4.35,
and the simulation results are shown in Supplementary Figure S5. The calibration of parameters is performed with
the Python (version 3.6.0, Python Software Foundation, Wilmington, US) and the Python package PyMC (version
2.3.8) (5).

Estimation of Effective Reproduce Number from Model Parameters
We derive the effective reproduce number R, of the metapopulation SEPIR model by the next generation matrix
(6). Suppose a model with 7 metapopulations, let x = (£, Es, ..., E,,, P\, Py, ..., P L Lo, . .. .I,)" be the number of
S; i S T
individuals for each infected compartments, », = ﬁll Br1, i =) 0 ,,N’i ch]

Furthermore, we have
% < F4- Vil
Where F;(x) is the rate of generating new infections in the i-th compartments of vector x, V;(x) is the transition
rate of infections in the 7-th compartments of vector x by all other means, F(x), V(x) € R, and based on the
ordinary differential equations in Formula (7), we can derive the formulation of F(x) and V(x) as

F(x) = ([Fs (9], [Fp (0], [ (9]
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With Fy(x) = [Zjﬁqvﬁf} + gu;P; + Zj#”ji]j + ui[i]217 Fp(x) = Fi(x) = OmX1,

V) = ([Ve @1, [Ve (1,2 ()"
With Vi (x) = [0, E]L, Vo (%) = [—aoE + o, 2] Vilx) = [~ P+ L]
Next, we have the matrix
_[0F (] _ | 9Fx(x) OF; (x) OFy () 0F; (x) OF (x) OF, (x) OF; (x) OF (x) OF; (x)
F(x)‘[ ]" dE, 0P, o, 9E op, o, 0 o ol

J J J J J

%

OFg () N )6 L , —
Where [ o | {qui, i = jqvy;, i # j, o |” {;,i = jv;,i # j, and other sub-matrixes are 0™,

Similarly, we have

Vi) [avz-(x)} [avg'(x)avg(x)aVé(x)av;(x)8v,i(x)av;(x)8v;(x)av;<x)8v;(x)}

x) = = -

% 0E, 0P, 0, 0OE 0P, 0l OE or, 0l
[[ael]mxmOmxmOmxm[_ael]me[apl]meOmxmOme[_aPl]me[,_Yl]mxm]

and
~1 -1 MXM S~ mXm -1 mxXm -1 mXm _gpxml —1 mXmp -1 mXmp -1 mXm
174 (x)=[[at -1] OXOX[aP-l] [ap-l] OX['y -1] ['y -1] ['y -1} ]
Where 1 denotes identity matrix.
Based on this, we can derive the next generation matrix for the metapopulation SEPIR model as

FV' = [ABCDEFGHI]
9w i Yo g% w9V Vi
Where A_{a_+7’l_]a_],+7’l¢]’8_{ +—i=j—+ = i¥j,C={=,i=

i Yji
Q, vy Q, v’

,i#j, and other sub-

matrixes equal to 0.

Finally, by Driessche and Watmough (6), the effective reproduce number R, can be derived as
R.=p(FV7),
Where p(A) represents the spectral radius of a matrix 4. According to the property of matrix computation, this is
equivalent to the maximum of absolute eigenvalues of the matrix

g9 1 .o
A= (L4 2t

Evaluate on the Effectiveness of Non-Pharmaceutical Intervention
We adjust the parameters of the calibrated model to estimate the effectiveness of different interventions and their
interactions to the effective reproduce number R,. Using the calibrated model parameters on January 23, 2020 as the
benchmark, we adjust the resident mobility intensity, i.e., Wiies hies and Tijes 1O simulate the effectiveness of the

mobility restriction policy, as well as adjust the average duration from symptom onset to isolation, i.e., 5 to

simulate the effectiveness of the infectious period reduction policies. We construct the contour plot of R, in
Figure 2 through traversing the relative resident mobility intensity and average duration from symptom onset to
isolation to generate corresponding effective reproduction numbers.

We design two scenarios to evaluate the effectiveness of non-pharmaceutical interventions. In the first scenario,
we set mobility volume after the Wuhan lockdown to be the same as the last day before the lockdown (January 22,
2020), while the infectious period declines as the reality. This scenario is set to simulate the condition where only
the interventions to reduce the infectious period are implemented, which is called Scenario 1. Oppositely, in the
second scenario (Scenario 2), we simulate the condition where only the intra-city mobility restriction is
implemented, where the duration from symptom onset to isolation after the Wuhan lockdown is set as 15.7 days
(the average time on January 22, 2020) in the model, and the mobility volume drops to its lowest level as the reality.

To simulate the impact of the COVID-19 Delta variant B.1.617.2, we reconducted the experiments in Figure 2
with the parameters from Zhang et al. (7). Specifically, the incubation period was set to 4.4 days uniformly, and all
the transmission rates were set to 2 times of those fitted by data. Supplementary Figure S3 shows the contour plot of
R, under the Delta variant.
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