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ABSTRACT
The availability of electronic health record data makes it possible to

develop automatic disease diagnosis approaches. In this paper, we

study the early diagnosis of diseases. As being a difficult task (even

for experienced doctors), early diagnosis of diseases poses several

challenges that are not well solved by prior studies, including insuf-

ficient training data, dynamic and complex signs of complications

and trade-off between earliness and accuracy.

To address these challenges, we propose a Reinforced Siamese
network with Domain knowledge regularization approach, namely

RSD, to achieve high performance for early diagnosis. The RSD

approach consists of a diagnosis module and a control module. The

diagnosis module adopts any EHR Encoder as a basic framework

to extract representations, and introduces two improved training

strategies. To overcome the insufficient sample problem, we design

a Siamese network architecture to enhance the model learning. Fur-

thermore, we propose a domain knowledge regularization strategy

to guide the model learning with domain knowledge. Based on

the diagnosis module, our control module learns to automatically

determine whether making a disease alert to the patients based

on the diagnosis results. Through carefully designed architecture,

rewards and policies, it is able to effectively balance earliness and

accuracy for diagnosis. Experimental results have demonstrated

the effectiveness of our approach on both diagnosis prediction and

early diagnosis. We also perform extensive analysis experiments to

verify the robustness of the proposed approach.
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1 INTRODUCTION
Various chronic diseases seriously threaten the health of humans,

for example, according to the World Health Organization (WHO),

seven of the top ten causes of death in 2019 were chronic non-

communicable diseases [35]. It also has been shown that medical

interventions at an early stage of disease progression can effec-

tively prevent the potential health threats [13]. However, even for

experienced doctors, it is not easy to accurately diagnose diseases

at an early stage. Firstly, for most diseases (especially the diseases

with severe harm), evident symptoms usually appear at the final

stage of disease progression. It is difficult to capture faint evidence

from complex examination record data. Secondly, the physical ex-

amination indicators of patients dynamically change in the disease

progression, and the sign of complications are usually hidden in the

change trends of indicators. Therefore, early diagnosis of diseases

requires the ability to capture diagnostic features from time-varying,

complex electronic health records.

In recent years, with the revival of neural networks, deep learn-

ing provides a promising computational framework for solving com-

plicated health care tasks [5, 7]. Many studies try to utilize the ex-

cellent modeling capacity for automatically learning effective diag-

nostic features or representations from electronic health records [7].

Especially, Recurrent Neural Networks (RNN) are widely used in

health care studies, since many electronic examination records can

be formed into sequences [3, 25].

However, there are three major challenges to adapt existing neu-

ral network models to early diagnosis. The first challenge is the

insufficiency of positive cases in training data. The incidence rates

of diseases are relatively low. For example, the incidence rate is

about 1.0% for hypertension [44], and is about 1.8% for diabetes [11].

Usually, it is more difficult to collect positive samples due to pri-

vacy or other constraints. The lack of positive training samples

may cause the over-fitting in training deep learning models for the

diagnosis task, which leads to performance decreasing in practice.

The second challenge is the dynamic and complex signs of compli-

cations. During the disease progression, substantial changes would
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take place in the physical indexes of patients [43], such as body

weights. It is difficult to effectively extract and learn distinguishing

features from dynamic, irregular, and unstable examination records

for automatically diagnosing diseases. The third challenge is the

trade-off problem between earliness and accuracy in diagnosis. On

one hand, to reduce the risk to patients, diseases should be diag-

nosed as early as possible, so that their harm can be effectively

prevented or controlled. On the other hand, automatic diagnosis

requires sufficient examination records for learning, and incom-

plete information in early examinations is likely to cause improper

treatment. We need to balance the two factors in practice.

To address the above three challenges, in this paper, we propose a

Reinforced Siamese networks with Domain knowledge regularization
approach, namely RSD, to achieving high performance for early

diagnosis. The RSD approach consists of a diagnosis module and a

control module.

The diagnosis module adopts any EHR Encoder as a basic frame-

work to extract feature representations from the visit sequence

data of examination records and introduces two improved train-

ing strategies. To overcome the insufficient sample problem, we

design a Siamese network architecture to utilize pairwise sample

relations to enhance the model learning. Such a learning strategy

is effective to increase the potential use of limited positive samples.

In addition, the Siamese network can also provide more informa-

tion (i.e., mean encodings of healthy samples and diseased samples)

to the control module which can help the control module determine

whether to make a disease alert to the patients. Furthermore, we

propose a domain knowledge regularization strategy that leverages

prior medical knowledge to guide the model to learn more stable

representations.

Based on the diagnosis module, our control module determines

whether to make a disease alert to the patients based on the diagno-

sis results obtained from the diagnosis module. We carefully design

the model architecture, rewards, and policies in the reinforcement

learning framework, so that our control module is effective to bal-

ance earliness and accuracy for diagnosis. Our solution integrates

the above techniques in a joint approach, which can simultaneously

address the aforementioned three challenges.

Overall, our contributions are summarized as follows:

• We design two improvement techniques to obtain more sta-

ble representations for early diagnosis, namely Siamese net-

work training and domain knowledge guidance.

• We design a reinforcement learning framework as control

module which is effective to balance earliness and accuracy

for diagnosis.

• Extensive experiments on three real-world EHR datasets

demonstrate the effectiveness of our method. The proposed

RSD approach achieves superior performance for both of

the diagnosis prediction and the early diagnosing tasks com-

pared with several state-of-the-art baselines.

2 PROBLEM FORMULATION
In this section, we introduce the background for this work and

formally define our task.

EHR Sequence Data. In the disease progression, patients need to

visit the hospital multiple times for physical index examination. We
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Figure 1: Overview of the proposed approach RSD. In our
approach, the diagnosis module learns to predict the con-
fidence score for the disease outcome, and another control
module determines whether making the diagnosis alert or
continuing observation.

represent the examination records for a patient during his disease

progression as a visit sequence of chronologically ordered events

with irregular time intervals. For the patient 𝑖 , his visit sequence is

denoted as

𝑿 (𝑖 ) =
(
𝒙 (𝑖 )
1
, 𝒙 (𝑖 )

2
, . . . , 𝒙 (𝑖 )

𝑡 , . . . , 𝒙 (𝑖 )
𝑇𝑖

)
, (1)

where 𝒙 (𝑖)
𝑡 is the examination records (i.e., a feature vector consist-

ing multiple examination results) for the 𝑡-th visit. The visits are

unevenly distributed over the duration of disease progression. For

the 𝑡-th visit, we denote the visit time as 𝜏𝑡 , which is the timestamp

for the 𝑡-th visit.

EHR Encoder. As mentioned before, our method is a general meth-

ods which can adopt any existing model as its EHR encoder to

extract representations of EHR data [2, 7, 28, 29, 45]. We formally

define these methods as sequence-to-vector model which output a

representation vector of EHR visit sequences, i.e.,

𝒔 (𝑖 ) = Model

(
𝑿 (𝑖 )

)
, (2)

where 𝒔 (𝑖) is the representation that represents the whole visit

sequence, e.g., the last hidden state of LSTM, and the average hidden

state of Transformer.

Diagnosis Prediction. Since not all the EHR data can be observed

in its entirety, it is needed to adaptively make the diagnosis based

on current data. Given the visit sequence 𝑿 (𝑖)
of a patient, we

define the early partial observation of 𝑿 (𝑖)
as

𝑿 (𝑖 )
𝑡 =

(
𝒙 (𝑖 )
1
, 𝒙 (𝑖 )

2
, . . . , 𝒙 (𝑖 )

𝑡

)
, (3)

which is a sub-sequence of 𝑿 (𝑖)
, representing the available exami-

nation data at the 𝑡-th visit. With available records, we would like

to automate the diagnosis by learning a diagnosis model. For the

𝑡-th visit, we define our diagnosis model as a prediction function

that is with 𝑿 (𝑖)
𝑡 as inputs and gives the output:

𝒔 (𝑖 )𝑡 = Model

(
𝑿 (𝑖 )
𝑡

)
, 𝑦

(𝑖 )
𝑡 = 𝑓

(
𝒔 (𝑖 )𝑡

)
, (4)

where 𝑦
(𝑖)
𝑡 ∈ {healthy, diseased} is a binary diagnosis label indicat-

ing whether the patient will suffer from a disease or not.
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Early Diagnosis. To reduce the risk of diseases to patients, the

diagnosis for diseases should be given as early as possible, so that

the possible risks could be prevented at an early stage. However,

early diagnosis is difficult based on given limited symptoms or signs.

It is likely to lead to inappropriate or even wrong diagnosis and

treatment. Therefore, our diagnosis model should be as accurate
as possible, meanwhile, as early as possible. In order to balance

earliness and accuracy, we equip our diagnosis model 𝑓 (·) in Eq. (4)

with a control module. The role of the control module is to monitor

the health condition of a patient, and makes the alert when it was

confident with the diagnosis results. Formally, it associates the

diagnosis label 𝑦
(𝑖)
𝑡 with a learned confidence score 𝑐

(𝑖)
𝑡 ∈ [0, 1] at

each visit. The controller makes the alert when the confidence score

is above a threshold. As will be shown in Section 3.2, we automate

the progress with a reinforcement learning framework.

To develop our approach, we design two core components, namely

diagnosis module and control module, which makes the diagnosis

and determines whether to make the disease alert, respectively.

Figure 1 presents the overview of our proposed approach. Next, we

describe the two modules in detail.

3 METHODS
In this section, we present the proposed method. Our core idea

is to perform dynamic early diagnosis by extending traditional

EHR Encoder with two modules: diagnosis module and control

module. We start with the diagnosis module, then present how to

construct the control module based on the diagnosis module and

finally discuss how to train the entire network.

3.1 Diagnosis Module
The diagnosis module aims to generate the diagnosis results ac-

cording to the available EHR data. With the EHR Encoder, it is

straightforward to feed diagnostic features into a prediction unit

(e.g., MLP) for diagnosis. However, insufficient training data and

complex signs problems make the model learning particularly diffi-

cult. In order to better optimize the diagnosis prediction model, we

propose two strategies to tackle the issues, namely Siamese network
training and domain knowledge guidance. After that, we present
how to predict with the trained model in the inference stage.

3.1.1 Siamese Network Training. Instead of considering individual

training samples, Siamese networks [8] model the relations between

sample pairs. Given a dataset of 𝑁 samples, a Siamese network can

induce 𝑁 × (𝑁 − 1)/2 sample pairs as its training data, while a tra-

ditional supervised model has only 𝑁 training samples. Therefore,

Siamese networks are likely to be more suitable for application

scenarios with insufficient samples.

Specifically, Siamese network learns to map samples into a latent

space, where the samples with the same label have close semantic

distance. Given the encoded diagnostic features of a sample pair,

denoted by 𝒔 (𝑖) and 𝒔 ( 𝑗) (see Eq. (2)), we first employ a projection

head (e.g., MLP with batch normalization [21]) to generate more

qualitative representation for Siamese network [4]:

𝒐 (𝑖 ) = MLP(𝒔 (𝑖 ) ) . (5)

Then, we use the Euclidean distance to measure their semantic

distance as

𝑑𝑖 𝑗 = ∥𝒐 (𝑖 ) − 𝒐 ( 𝑗 ) ∥2 . (6)

In our model, we consider three types of sequence pairs in Eq. (7),

which are {𝒐 (𝑖 )
𝑇𝑖
, 𝒐 ( 𝑗 )

𝑇𝑗
}, {𝒐 (𝑖 )

𝑡 , 𝒐 (𝑖 )
𝑇𝑖

} and {𝒐 (𝑖 )
𝑡 , 𝒐 ( 𝑗 )

𝑇𝑗
}. Besides the pairs con-

sisting of two entire sequences ({𝒐 (𝑖 )
𝑇𝑖
, 𝒐 ( 𝑗 )

𝑇𝑗
}), we also pair an entire

sequence with its subsequence ({𝒐 (𝑖 )
𝑡 , 𝒐 (𝑖 )

𝑇𝑖
}), and pair a subsequence

with another entire sequence ({𝒐 (𝑖 )
𝑡 , 𝒐 ( 𝑗 )

𝑇𝑗
}), where 𝑇𝑖 and 𝑇𝑗 are the

lengths of the two sequences, respectively. There are two major

purposes for considering subsequences. First, it can augment the

training data with more supervision signals. Second, since our fo-

cus is to make the prediction based on partial observations, such a

strategy can enhance the capacity of learning from subsequences.

Given a subsequence, we use the final health status corresponding

to the entire sequence as its ground-truth label.

Formally, the loss of the Siamese network over 𝑁 visit sequences

is defined as:

L1 =
1

𝐾

𝑁∑︁
𝑖=1

∑︁
𝑖≠𝑗

𝑤𝑖

(
1 − 𝑧𝑖 𝑗

)
max(Δ − 𝑑𝑖 𝑗 , 0)2 + 𝑧𝑖 𝑗𝑑2𝑖 𝑗 , (7)

where 𝐾 = 𝑁 × (𝑁 − 1), 𝑧𝑖 𝑗 indicates whether the labels of the
samples 𝑖 and 𝑗 are the same (𝑧𝑖 𝑗 = 1 when 𝑦 (𝑖) = 𝑦 ( 𝑗) , otherwise
𝑧𝑖 𝑗 = 0), the threshold Δ in Eq. (7) is a preset parameter, and𝑤𝑖 =

𝑡
𝑇𝑖

denotes the instance weight for the 𝑖-th subsequence (𝑡 denotes the

𝑡-th visit out of the total𝑇𝑖 visits). Here, we incorporate the instance

weight to adaptively set the instance weight of a subsequence
1
.

The basic idea is that the fewer data we have observed, the less

certain we make the right predictions. Besides, subsequences are

usually not stable and easy to contain noise. Such an adaptive

weight strategy is also to reduce the influence of noise. Minimizing

the loss of L1 enforces the EHR Encoder (e.g., Model in Eq. (2)) to

extract similar features for prenatal care sequences with the same

outcome.

3.1.2 Domain Knowledge Guidance. In the medical field, some

physical examination indicators have been found to be closely

related to diseases. For example, diastolic pressure and systolic

pressure are strong indicators of hypertension [42], and Body Mass

Indexes (BMI) of patient are strong indicators of diabetes [18]. These

distinguishing indicators (i.e., features) in the examination data of

patients are more important to consider in diagnosis prediction.

Specially, we consider the normal ranges of these distinguishing

features suggested by doctors as domain knowledge. To incorpo-

rate such domain knowledge, we adopt a posterior regularization

method [9] to model the effect of these distinguishing features in

diagnosis prediction. Given a distinguishing feature 𝑔, such as dias-

tolic pressure at a certain visit time, we assume its values follow

different Gaussian distributions for healthy cases and for diseased

cases:

𝑃ℎ (𝑔) ∼ N
(
𝜇ℎ, 𝜎

2

ℎ

)
, 𝑃𝑑 (𝑔) ∼ N

(
𝜇𝑑 , 𝜎

2

𝑑

)
, (8)

where 𝑃ℎ (·) and 𝑃𝑑 (·) denote the value distributions of feature

𝑔 for healthy and diseased cases, respectively, and 𝜇ℎ and 𝜎ℎ are

mean and standard deviation of 𝑔 for healthy cases, as well as 𝜇𝑑
and 𝜎𝑑 are for diseased cases. Note that normal distribution is a

1
Note that the second sequence in our equation is always complete, so that we do not

incorporate a similar weight for it.
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widely adopted distribution for characterizing examination records,

and we also can use other distributions depending on the situation.

In our experiments, we use the normal distribution because these

features are basically in line with the normal distribution.

Given a feature 𝑔 for the 𝑖-th patient, denoted 𝑔 (𝑖) , we express
the domain knowledge for discriminating between healthy and

diseased conditions as a Bernoulli distribution as

𝑃
(𝑖 )
𝑃𝑅𝐼

=

(
𝑃 (𝑦 (𝑖 ) = healthy), 𝑃 (𝑦 (𝑖 ) = diseased)

)
= Normalization

(
𝑔
(𝑖 )
𝑡 − 𝜇ℎ
𝜎ℎ

,
𝑔
(𝑖 )
𝑡 − 𝜇𝑑
𝜎𝑑

)
, (9)

which defines the prior distribution of the diagnosis label 𝑦 (𝑖) ,
Normalization(𝑝1, 𝑝2) = ( 𝑝1

𝑝1+𝑝2 ,
𝑝2

𝑝1+𝑝2 ) and 𝑔
(𝑖)
𝑡 is actual value of

feature 𝑔 for the 𝑖-th patients at the 𝑡-th visit.

Using the feature 𝒐𝑖𝑡 extracted by EHR Encoder for the 𝑖-th pa-

tient at the 𝑡-th visit, we compute the likelihood probability distri-

bution of 𝑦 (𝑖) given the examination data as

𝑃
(𝑖 )
𝐿𝐿

= Softmax

(
Dis(𝒐 (𝑖 ) , 𝒐𝑑 ),Dis(𝒐 (𝑖 ) , 𝒐ℎ)

)
, (10)

where Dis(·, ·) is the Euclidean distance, and Softmax(𝑝1, 𝑝2) =

( 𝑒𝑝1

𝑒𝑝1+𝑒𝑝2 ,
𝑒𝑝2

𝑒𝑝1+𝑒𝑝2 ). 𝒐ℎ and 𝒐𝑑 denote the mean of feature encodings

for all cases with healthy and diseased outcomes, defined as

𝒐ℎ =
1

𝑁ℎ

𝑁ℎ∑︁
𝑖=1

𝒐 (𝑖 )
ℎ
, 𝒐𝑑 =

1

𝑁𝑑

𝑁𝑑∑︁
𝑖′=1

𝒐 (𝑖′)
𝑑

(11)

where 𝒐 (𝑖)
ℎ

(𝒐 (𝑖
′)

𝑑
) denotes the feature encoding of the 𝑖-th healthy

sample (𝑖 ′-th diseased sample) by Siamese network (Eq. (5)), and

𝑁ℎ and 𝑁𝑑 are the numbers of healthy and diseased samples, re-

spectively, in training set.

We incorporate domain knowledge using a posterior regular-

ization approach. The core idea is to pull the model-dependent

diagnosis towards the prior estimation with domain knowledge, so

that domain knowledge can be leveraged to guide the learning of

our diagnosis model. Formally, we define the posterior regulariza-

tion loss as:

L2 =
1

𝑁

𝑁∑︁
𝑖=1

min

0<𝑔<𝐺

(
KL(𝑃 (𝑖,𝑔)

𝑃𝑅𝐼
∥ 𝑃 (𝑖 )

𝐿𝐿
)
)
, (12)

where𝐺 is the number of features used as domain knowledge, 𝑃
(𝑖,𝑔)
𝑃𝑅𝐼

is the prior distribution of being diseased given the 𝑔-th domain

knowledge feature for the 𝑖-th sample, 𝑃
(𝑖)
𝐿𝐿

is the likelihood of being

diseased for the 𝑖-th sample, and KL(·∥·) denotes the Kullback-

Leibler divergence which measures the difference between two

distributions.

Finally, the loss of diagnosing module is defined as

L𝐷 = L1 + 𝛼 × L2, (13)

where 𝛼 is hyper-parameter to balance the weights for the Siamese

network (L1) and posterior regularization (L2).

3.1.3 Diagnosis Generation as Classification. After training the

loss in Eq. (13), we can learn the parameters of EHR Encoder. In the

diagnoses generation step, we calculate the mean of features for all

cases with health outcomes and with diseased outcomes as 𝒐ℎ and

𝒐𝑑 (following Eq. (11)), respectively. For a case to be diagnosed, we

first apply the Encoder to obtain his feature encoding 𝒐 (𝑖) . Then,

we compare its distances to both 𝒐ℎ and 𝒐𝑑 , and use the label with

closer distance as the diagnosis results:

𝑦 (𝑖 ) =

{
healthy if 𝐷𝑖𝑠 (𝒐 (𝑖 ) , 𝒐ℎ) < 𝐷𝑖𝑠 (𝒐 (𝑖 ) , 𝒐𝑑 ),
diseased if 𝐷𝑖𝑠 (𝒐 (𝑖 ) , 𝒐ℎ) ≥ 𝐷𝑖𝑠 (𝒐 (𝑖 ) , 𝒐𝑑 ) .

(14)

Such a method is simple yet non-parametric, which does not rely

on manual selection of a classification threshold.

3.2 Control Module
The function of the control module is to determine whether making

the diagnosis alert or continuing observation. It needs to make a bal-

ance between earliness and accuracy. We formulate such a decision

problem in a reinforcement learning (RL) framework, where the

key point is how to train an effective policy based on appropriate

rewards for the control module.

3.2.1 Reinforcement Learning Framework. The framework contains

four major parts: State, Policy, Action, and Reward.
State. For the 𝑡-th visit of the 𝑖-th patient, the state observed by

the control module is the feature encoding 𝒔 (𝑖)𝑡 extracted from 𝒙 (𝑖)
𝑡

by the EHR Encoder (Eq. (2)).

Action and Policy. Our control module considers two kinds of

actions, namely { Observation, Alert }. Once it has adopted the

Alert action, it will halt the monitor process, and meanwhile make

the diagnosis alert. At each time step, we draw an action 𝑎
(𝑖)
𝑡 from

a stochastic policy conditioned on current state.

As mentioned above, there are limited symptoms or signs for

early diagnosis. To effectively capture limited signs, we carefully

design a symptom-trend-aware network, namely STAN. Instead

of directly employing a simple network (e.g., MLP) to learn the

stochastic policy, we introduce the mean encodings of health and

diseased samples 𝒔ℎ and 𝒔𝑑 to provide more information. We first

employ multi-head attention (MHA) and residual connection [17]

to learn symptom-aware representations, i.e.,

𝒖 (𝑖 )
𝑡 = MHA

(
𝒔 (𝑖 )𝑡 ,𝑶𝑚,𝑶𝑚

)
,

𝒈 (𝑖 )
𝑡 = 𝒖 (𝑖 )

𝑡 + 𝒔 (𝑖 )𝑡 ,

(15)

where𝑶𝑚 are constructed by stacking themean encodings of health

and diseased samples 𝒐ℎ and 𝒐𝑑 . Andmulti-head attention is defined

as

Attn(𝒒,𝑲 ,𝑽 ) = softmax

(
𝒒𝑲⊤
√
ℎ

)
𝑽 ,

MHA(𝒒,𝑲 ,𝑽 ) =𝑾𝑜Concat(ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑𝑛),

where ℎ𝑒𝑎𝑑 𝑗 = Attn

(
𝒒𝑾 ( 𝑗 )

𝑞 ,𝑲𝑾 ( 𝑗 )
𝑘
,𝑽𝑾 ( 𝑗 )

𝑣

)
,

(16)

where 𝑾 (𝑖)
𝑞 ,𝑾 (𝑖)

𝑘
,𝑾 (𝑖)

𝑣 ∈ Rℎ×ℎ , 𝑾𝑜 ∈ Rℎ×𝑛ℎ are learnable pa-

rameters and 𝑛 denotes the numbers of heads. Then, we employ a

sequence model to capture the trends of symptom-aware represen-

tations. The basic idea is that if the case suffer from the disease, the

symptom would become clear with time. Here, we employ LSTM

to capture the trend, i.e.,

𝒓 (𝑖 )
𝑡 = LSTM(𝒈 (𝑖 )

1
, . . . ,𝒈 (𝑖 )

𝑡 ), (17)

where 𝒓 (𝑖)𝑡 is the last hidden state and we employ a fully-connected

neural network to learn the stochastic policy as

𝒑 (𝑖 )
𝑡 =

(
1 − 𝑐 (𝑖 )𝑡 , 𝑐

(𝑖 )
𝑡

)
= Softmax

(
MLP

(
𝒓 (𝑖 )
𝑡

))
, (18)
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Table 1: Rewards of the control module.

Action

Reward Prediction

Right Wrong

Alert 𝜌 ·
(
1 − 𝜏𝑡

𝜏max

)
−

(
1 − 𝜏𝑡

𝜏max

)
Observation −𝛾 × 𝜏𝑡

𝜏max

𝛾 × 𝜏𝑡
𝜏max

where 𝑐
(𝑖)
𝑡 is the confidence score of the diagnosis results (i.e., the

diseased outcome) by our model based on 𝒔 (𝑖)𝑡 .

Reward. As shown in Table 1, we consider four cases to set the

reward based on the adopted action and the correctness of diagnosis

prediction, where 𝜏𝑡 is the timestamp of the 𝑡-th visit of the 𝑖-th

patient, 𝜏max is set as the maximum timestamp, and 𝛾 is a positive

scaling coefficient.

We can observe that the two cases in the diagonal line receive

non-negative rewards, while the rest two anti-diagonal cases receive

negative rewards. This setting encourages the control module to

alert patients if predictions are correct, while suggest the control

module to collect more information if the predictions are wrong.

Note that the rewards of the four cases involve a factor of
𝜏𝑡
𝜏max

,

which means that time directly affects the reward setting. If the

agent made a right or wrong alert at an earlier stage, it would

receive a more positive or negative reward with the absolute value

of (1− 𝜏𝑡
𝜏max

) (with a small 𝜏𝑡 ). Contrastively, if the agent missed the

diagnosing chance or avoided false alert at a later stage, it would

receive a reward with a larger absolute value of 𝛾 × 𝜏𝑡
𝜏max

. These

settings confirm to previous discussions and our intuition.

In practice, we find it is better to use a small 𝜌 (e.g., 𝜌 ≤ 0.1),

which makes it less aggressive to adopt the action of Alert in a

very early stage. A major reason is that early diagnosis of diseases is

difficult, and the model should be able to collect sufficient evidence

before making the diagnosis. Our reward setting largely follows

the suggestions of experienced doctors, and we also extensively

refer to the literature of medical study.

3.2.2 Training. Given a set of training data, the expected reward

of all examination records for the 𝑖-th patient is expressed as

J(𝜃𝐶 ) = E
[
𝑟
(𝑖 )
𝑡

]
, (19)

where 𝑟
(𝑖)
𝑡 is the reward received by the 𝑖-th sample at the 𝑡-th visit,

and 𝜃𝐶 is the parameter of the control module. We can maximize

this term by directly applying gradient based optimization methods.

The gradient of J is given by

▽𝜃𝐶 J(𝜃𝐶 ) = E
[
▽𝜃𝐶 log𝑃

(
𝑎
(𝑖 )
𝑡 | 𝒔 (𝑖 )𝑡

)
𝑟
(𝑖 )
𝑡

]
, (20)

where 𝑃 (𝑎 (𝑖)𝑡 | 𝒔 (𝑖)𝑡 ) is the action probability controlled by the

policy:

𝑃 (𝑎 (𝑖 )𝑡 | 𝒔 (𝑖 )𝑡 ) =
{
1 − 𝑐 (𝑖 )𝑡 if 𝑎

(𝑖 )
𝑡 = Observation,

𝑐
(𝑖 )
𝑡 if 𝑎

(𝑖 )
𝑡 = Alert.

(21)

Algorithm 1 The training algorithm for the RSD model.

Input: An electronic health dataset 𝑿 .

Output: Model parameters 𝜃𝐷 (Diagnosis module), 𝜃𝐶 (Control module).

1: Randomly initialize 𝜃𝐷 , 𝜃𝐶 .

2: for episode = 1 to epoch do
3: Calculate state of visit sequence 𝒔 (𝑖 )𝑡 by Eq. (2).

4: Calculate loss of diagnosis prediction by Eq. (13).

5: Perform stochastic gradient descent on Eq. (13) w.r.t. 𝜃𝐷 .

6: end for
7: for episode = 1 to epoch do
8: Generate state by Eq. (2) and Policy by Eq. (18).

9: Sample action from policy and calculate the reward.

10: Calculate gradient of control module by Eq. (22).

11: Perform stochastic gradient ascent on Eq. (22) w.r.t. 𝜃𝐶 .

12: end for
13: return 𝜃𝐷 , 𝜃𝐶 .

We calculate ▽𝜃𝐶 𝐽 (𝜃𝐶 ) by REINFORCE [46] algorithm as

▽𝜃𝐶 J(𝜃𝐶 ) = 1

𝐾

𝑁∑︁
𝑖=1

𝑇𝑖∑︁
𝑡=1

▽𝜃𝐶 log𝑃

(
𝑎
(𝑖 )
𝑡 | 𝒔 (𝑖 )𝑡

) (
𝑟
(𝑖 )
𝑡 − 𝑏

)
, (22)

where 𝑏 = E
[
𝑟
(𝑖)
𝑡

]
is a reward baseline.

3.3 Learning and Discussion
Model Training. To optimize the entire approach, we need to

first learn the loss of L𝐷 in Eq. (13) for the diagnosis module (Sec-

tion 3.1). Once the parameters 𝜃𝐷 for the diagnosis module have

been optimized, we can optimize the control module (Section 3.2)

by maximizing the reward function in Eq. (19) through a mini-batch

gradient ascent method. We present the entire learning algorithm

for our approach in Algorithm 1. Intuitively, we can also train the

two parts in an alternative way. However, the performance of the

control module depends on the accuracy of the diagnosis module. It

will incur performance loss with unconverged diagnosis module. As

a result, we first train the diagnosis module, then fix the parameters

of the diagnosis module and train the control module.

Difference. To our knowledge, there are very few studies on the

automatic diagnosis of diseases. Although the discussed studies

are closely related to our work, they do not fully consider the

three challenges raised in Section 1. Our work makes an important

technical contribution with respect to the three challenges. First,

we propose the Siamese network to handle the data insufficiency

problem. Second, we propose domain knowledge regularization to

improve the training of the diagnosis module. As a comparison,

most existing studies [1, 2, 28] require graph-structured domain

knowledge, which is difficult to obtain in practice. Finally, we design

the model architecture, rewards and policies in the reinforcement

learning framework. In the literature, there are seldom studies that

consider both earliness and accuracy for the diagnosis of diseases.

4 EXPERIMENTS
In this section, we construct the experiments to verify the effec-

tiveness of our model. We first evaluate the performance of our

improved strategies by constructing experiments of diagnosis pre-

diction, where part (or all) of a visit sequence is given for prediction.

Then, we evaluate the early diagnosis performance of our approach,
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Table 2: Statistics of three datasets.

Dataset Diabetes Hypertension Mortality

# of healthy case 3,663 1,201 2,717

# of diseased case 16,177 18,639 17,819

Avg. # of visits 11.86 11.86 20.16

# of feature 5 5 15

which integrates the diagnosis module with the control module.

In this task, the data can be assumed to come in a stream, where

the model needs to determine when to stop for the disease alert.

Finally, we construct the ablation study and performance tuning

to test how each part actually contributes to the final performance

and how the parameters influence the final performance.

4.1 Datasets
In the experiments, we first evaluate the performance of the pro-

posed model for diagnosing two types of pregnancy complications,

namely gestational hypertension and gestational diabetes. Our data

was collected from the prenatal care examination records of a hos-

pital in Beijing spanning from 2016 to 2018. Each visit of a patient

has five numeric examination records, e.g., systolic pressure. All the
identity information about users has been removed or anonymized.

In addition, we collect the in-hospital mortality dataset from Med-

ical Information Mart for Intensive Care (MIMIC) database [22],

which is a large (with 20,536 samples) database comprising infor-

mation relating to patients admitted to critical care units at a large

tertiary care hospital. We follow the benchmark [15] proposed by

Harutyunyan et al. to construct the in-hospital mortality prediction

dataset which has a similar format to the pregnancy complications

dataset. We summarize the detailed dataset statistics in Table 2.

To evaluate the performance ofmodels, we split the three datasets

into three parts with a ratio of 7:1:2 (by visit sequences rather than

visits), namely the training set, the validation set and the test set. To

carry out our experiments, we train the model with the training set,

tune the parameters with the validation set, and then compute the

performance on the test set. In addition, we employ five-fold cross-

validation to evaluate the performance of models and report the

average performance and the standard deviation for both baselines

and our model. In the real-world applications, the positive samples

and negative samples are imbalance. Learning with imbalanced

data is a long-standing issue in machine learning, which is beyond

our focus in this work. Currently, to deal with this issue, we adopt

a widely-used strategy for balancing the data distribution of the

training set, i.e., undersampling. In order to make the experiment

results more convincing, we recover the original data distribution

(more negative samples) for positive and negative samples in the

validation and the test sets.

Next, we conduct the evaluation experiments with the above

datasets on two kinds of tasks, namely diagnosis prediction and early
diagnosis. The major difference is as follows: diagnosis prediction

aims to make the diagnosis based on all the available examination

records, while early diagnosis needs to dynamically monitor the

visit sequence and determines to alert the patient (followed by a

halting of the monitor) when confident diagnosis can be drawn.

𝑥𝑥1 𝑥𝑥𝑡𝑡 𝑥𝑥𝑇𝑇

By Case

By Visit

Figure 2: Illustration for the “ByVisit” setup and “ByCase”
setup for diagnosis prediction.

4.2 Evaluation on Diagnosis Prediction
We first evaluate the performance of diagnosis prediction, where

part (or all) of a visit sequence is given for prediction.

4.2.1 Comparison Methods. We compare the diagnosis prediction

module with LSTM [19], RETAIN [7], Dipole [29], T-LSTM [2],

Transformer [45], HiTANet [28]. Among these models, LSTM and

Transformer are representatives of the widely used sequential deep

learning models. RETAIN, T-LSTM, Dipole, and HiTANet are rep-

resentatives of the sequential deep learning models designed for

EHR data. Some traditional machine learning methods such as Ran-

dom Forest [27] cannot be integrated with our improved training

strategies, our method is not directly comparable.

To compare other training methods with our improved training

strategies, given all the comparison methods, we feed the feature

vectors extracted by different neural networks into a Sigmoid func-

tion, which classifies the input visit sequences as healthy or diseased

outcomes. The method optimizes models with the cross-entropy

loss function. Note that in this task we only utilize the diagnosis

module of our approach for comparison, since the task is to make

the diagnosis based on the available data.

4.2.2 Parameter Setting. Our software environment contains Py-

torch v1.7.0 and python 3.8.8. All of the experiments are conducted

on a machine with one RTX 2080 Ti. For training models, we use

Adam [23] optimizer. In the experiments, we set the hidden state

dimension as ℎ = 128 for all baseline and our approach. We set the

threshold Δ = 40, and set the hyper-parameter 𝛼 = 0.3 in Eq. (13).

These hyper-parameters are selected based on the performance of

the comparison methods on the validation set.

4.2.3 Evaluation Metrics. Since the task is a classification problem,

we use Area Under Receiver Operating Characteristic Curve (AUC-
ROC) as the evaluation metrics. The definition of the evaluation

metric is the area under the ROC Curve (AUC-ROC), where the area
is spanned by taking 𝐹𝑃𝑅 and 𝑇𝑃𝑅 as 𝑋 and 𝑌 axes, respectively.

Here, we have 𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 and 𝐹𝑃𝑅 = 𝐹𝑃

𝑇𝑁+𝐹𝑃 .

4.2.4 Experimental Results. Table 3 presents the performance com-

parison of our diagnosis prediction module and the baselines. We

consider two kinds of setups in the experiments. In the first setup,

we consider each visit to the hospital as a check-point to be diag-

nosed: the examination data from the first visit to the checked visit

is available as input, i.e., all 𝑿 (𝑖)
𝑡 are used as test samples. For this

setup, if an entire sequence contains 𝑛 visits, we will generate 𝑛

samples. We name this experiment setup as “ByVisit”. In the second

setup, we directly use the entire visit sequence of a patient, i.e.,
𝑿 (𝑖)
𝑇𝑖

, as a test sample. We name this setup as “ByCase”. We present

an illustration for the two kinds of setups in Fig. 2. In addition, we
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Table 3: Performance comparison for diagnosis prediction task on the three datasets. ∗ denotes that the proposed model
significantly outperforms the same model trained with cross-entropy loss at the level of 0.01.

Methods

Diabetes Dataset Hypertension Dataset Mortality Dataset

Cross-Entropy Improved Strategies Cross-Entropy Improved Strategies Cross-Entropy Improved Strategies

ByVisit

LSTM 0.626 ± 0.013 0.684 ± 0.029∗ 0.679 ± 0.014 0.745 ± 0.010∗ 0.681 ± 0.016 0.694 ± 0.016∗

Transformer 0.678 ± 0.010 0.706 ± 0.008∗ 0.680 ± 0.006 0.714 ± 0.014∗ 0.686 ± 0.015 0.701 ± 0.017∗

RETAIN 0.652 ± 0.011 0.692 ± 0.009∗ 0.701 ± 0.010 0.726 ± 0.024∗ 0.648 ± 0.019 0.675 ± 0.019∗

TLSTM 0.669 ± 0.011 0.762 ± 0.021∗ 0.716 ± 0.023 0.750 ± 0.014∗ 0.674 ± 0.016 0.688 ± 0.014∗

Dipole 0.647 ± 0.012 0.683 ± 0.006∗ 0.684 ± 0.010 0.709 ± 0.015∗ 0.688 ± 0.024 0.676 ± 0.017

HiTANet 0.683 ± 0.023 0.749 ± 0.016∗ 0.727 ± 0.008 0.754 ± 0.012∗ 0.678 ± 0.020 0.684 ± 0.022∗

ByCase

LSTM 0.648 ± 0.013 0.735 ± 0.036∗ 0.791 ± 0.018 0.811 ± 0.020∗ 0.710 ± 0.013 0.728 ± 0.020∗

Transformer 0.724 ± 0.012 0.772 ± 0.009∗ 0.776 ± 0.012 0.792 ± 0.013∗ 0.708 ± 0.011 0.731 ± 0.016∗

RETAIN 0.685 ± 0.013 0.748 ± 0.011∗ 0.782 ± 0.016 0.803 ± 0.017∗ 0.670 ± 0.015 0.709 ± 0.017∗

TLSTM 0.726 ± 0.016 0.855 ± 0.014∗ 0.800 ± 0.019 0.812 ± 0.020∗ 0.704 ± 0.014 0.723 ± 0.014∗

Dipole 0.673 ± 0.015 0.739 ± 0.009∗ 0.793 ± 0.015 0.795 ± 0.018∗ 0.722 ± 0.017 0.725 ± 0.016∗

HiTANet 0.737 ± 0.029 0.834 ± 0.023∗ 0.797 ± 0.012 0.805 ± 0.018∗ 0.696 ± 0.022 0.716 ± 0.025∗

conduct the paired t-test[20] between our method and baseline on

the performance to test the significance of improvement.

In Table 3, we present the diagnosis prediction results. Com-

pared the performance of the cross-entropy baseline and our im-

proved strategies, we can observe the effectiveness of our improved

strategies. We can see that in almost all the settings, the improved

strategies achieve better performance and significantly outperform

cross-entropy. Our method incorporates two special techniques to

improve the training, namely Siamese network training and domain

knowledge guidance and we will further examine the effect of the

two techniques in Section 4.4.

4.3 Evaluation on Early Diagnosis
Next, we evaluate the early diagnosis performance of our approach,

which integrates the diagnosis module with the control module. In

this task, the data can be assumed to come in a stream, where the

model needs to determine when to stop for the disease alert.

4.3.1 Baselines. We consider the following comparison methods

of early prediction for comparison: (1) CWRO [16]. It is an ensemble

model consisting of a set of classifiers. It uses the “agreement” of

the set to decide whether to alert or observe. (2) TEASER [40]. It

uses another classifier to analyze the output of probabilistic main

classifier and decide whether to alert or observe. (3) E2EEC [39].

It is a deep learning based early classification model, and uses a

supervised learning method to train a control module by designing

a novel loss function that optimizes for both diagnosis prediction

task and early classification. (4) EARLIEST [14]. It is an adaptive

model for early classification. EARLIEST directly models the multi-

ple objectives of early classification (namely accuracy and earliness),

and enables the joint optimization despite conflicting tendencies. It

employs the cross-entropy loss to training the classification module

and Reinforcement Learning (RL) approach to training the control

module, respectively. Among these baselines, CWRO is a rule-based

baseline, that define some rules to perform early classification based

on pre-trained classification models. TEASER and E2EEC are two

model-based baselines, they define a controller architecture to out-

put the probability of Alert action. And EARLIEST is a recently

proposed reinforcement learning based method. For fairness, when

comparing our methods with these methods, we use LSTM as the

EHR Encoder for all methods.

4.3.2 Experiment Results. Following prior studies [14], we consider
early diagnosis as early classification of time series for evaluation.

Since there is a trade-off between earliness and accuracy, we should

compare the overall performance of different methods on varying

advance rates. For each early classification method, we can adjust

their related hyper-parameters to control the average advance rate

over the test set. For example, the hyper-parameter for our model

is 𝛾 of rewards in Table 1. We tune the parameter 𝛾 in the value sets

of {0.7, 0.75, 0.8, 0.85}, {0.3, 0.35, 0.4, 0.45} and {2.1, 2.2, 2.3, 2.4}, re-
spectively. A larger value of 𝛾 leads to a larger advance rate. For

other baselines, there are also similar hyper-parameters to be tuned

for deriving different advance rates. We consider only the first visit

and full visits as the first and last check-points for comparison. For

each method, we further generate four intermediate check-points

by tuning the hyper-parameters. Then we plot the performance

curve under different advance rates. Note that the advance rates

for different methods might be different, since they are controlled

by hyper-parameters and actually depend on both model and data.

Therefore, to compare the performance of the two methods, we

mainly focus on whether a curve is above the other one spanned

by these check-points.

Figure 3 (a) (c) (e) presents the results of early diagnosis for the

comparison methods. From the figure, we can make the follow-

ing observations: First, TEASER performs worse than CWRO on

hypertension dataset but better on the other two datasets. A pos-

sible reason is that TEASER is designed for multi-class tasks but

diagnosis is a binary classification task. So, the inputs information

of TEASER is limited and its performance is inconsistent. Second,

E2EEC, EARLIEST and our model outperform rule-based methods.

A major reason that the three methods have involved explicit su-

pervision information or reward to guide the learning of model

parameters, so that their performance can be optimized in a more

effective way. Third, The reinforcement learning based methods,

i.e., EARLIEST and our model, outperform the supervised learning
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(c) Hypertension dataset.
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(d) Hypertension dataset.
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(e) Mortality dataset.
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(f) Mortality dataset.

Figure 3: Performance comparison for early diagnosis task.
(a) (c) (e) are performance comparison among different meth-
ods with LSTM as EHR Encoder. (b) (d) (f) are performance
comparison among different EHR Encoder with our method.

based methods. Reinforcement learning can utilize rewards to in-

form the control modules about the earliness that it should advance

to, e.g., a larger reward for an earlier diagnosis. Therefore, the rein-

forcement learning methods have an advantage over the supervised

learning methods by adaptively learning to control the earliness.

Finally, the proposed RSD model achieves the best performance

among all the compared methods, i.e., having a performance curve

above all the other curves. It indicates that our approach is effective

for early diagnosis of diseases.

Furthermore, we evaluate our methods on all EHR encoders and

present the result in Figure 3 (b) (d) (f). As we can see, the perfor-

mances of all models have the same varying trend with decreasing

advance rate. It further verifies the robustness of our approach.

4.4 Methods Analysis
Diagnosis module. In our approach, the diagnosis prediction mod-

ule consists of two parts: Siamese network and domain knowledge

regularization. Here, we check how each part actually contributes

to the final performance. We construct the ablation study experi-

ment based on the LSTM model on the three experiment datasets.

Table 4: Ablation study of the diagnosis module.

Methods

Diabetes Hypertension Mortality

Visit Case Visit Case Visit Case

Complete 0.684 0.735 0.745 0.811 0.694 0.728
¬𝐷𝐾 0.664 0.711 0.745 0.808 0.694 0.726

¬𝑆𝑁 0.627 0.652 0.680 0.792 0.683 0.710

¬𝐷𝐾 + 𝑆𝑁 0.626 0.648 0.679 0.791 0.681 0.710
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Figure 4: Ablation study of the control module.
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Figure 5: Performance tuning on diabetes dataset.

We compare three variants of the proposed RSD model: ¬𝐷𝐾 re-

moving the domain knowledge regularization; ¬𝑆𝑁 removing the

Siamese Network; ¬𝐷𝐾 + 𝑆𝑁 removing both the two parts, which

degenerates to the standard LSTM model. Table 4 presents the di-

agnosis prediction performance of the complete model and three

variants. As we can see, the performance order of the four meth-

ods is as follows: ¬𝐷𝐾 + 𝑆𝑁 < ¬𝑆𝑁 < ¬𝐷𝐾 < Complete. These
results indicate that the two components are essential to improve

the performance of our approach. Comparing the performance of

¬𝐷𝐾 , ¬𝑆𝑁 , we can find that the Siamese network is more useful

for the final performance. A possible reason is that the effect of the

Siamese network seems to be more significant on small datasets.

Control module. In addition, there are three parts that influence

the control module: Siamese network, domain knowledge and the

proposed STAN network. Here, we check how each part actually

contributes to the final performance. We construct the ablation

study experiment based on the LSTM model on the two experiment

datasets. We compare three variants of the proposed RSD model:

¬𝐷𝐾 removing the domain knowledge regularization; ¬𝑆𝑁 remov-

ing the Siamese Network and replacing the proposed STAN with a

fully connected layer that takes the state as input.¬𝑆𝑇𝐴𝑁 replacing
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Table 5: Online test on hypertension prediction task.

Methods False Positive False Negative Diagnosis time

EARLIEST 0.238 0.652 26.1

RSD 0.213 0.406 25.4

the proposed STAN with a fully connected layer that takes the state

and the mean encodings of health and diseased samples as input.

Figure 4 presents the early diagnosis performance of the complete

model and three variants. As we can see, the performance of the

proposed RSD is better than ¬𝐷𝐾 , ¬𝑆𝑁 and ¬𝑆𝑇𝐴𝑁 . These results

indicate that the three components are essential to improve the

performance of our approach.

Performance Tuning. In addition to the model components, there

are several parameters to tune in our model. Here, we incorporate

the LSTM trainedwith cross-entropy loss for comparison.We report

the tuning results with AUC-ROC score of “ByCase” on the diabetes

dataset. We tune the parameters of Siamese network (Δ in Eq. (7))

and diagnoses loss (𝛼 in Eq. (13)), respectively. We vary the thresh-

old (Δ) of Siamese network in the set {10, 20, 30, 40, 50}, and the bal-
ancing parameter (𝛼) of diagnosis loss in the set {0.1, 0.2, 0.3, 0.4, 0.5}.
Figure 5 presents the performance of varying parameters the on

diabetes dataset. As we can see, Δ = 40 and 𝛼 = 0.3 lead to the

optimal performance for the three datasets. Overall, our model is

relatively stable when varying the two parameters, consistently

better than LSTM trained with cross-entropy loss. These results

have verified the robustness of our approach in our task.

Real World Deployment and Online Test. In this part, we de-

ploy the proposed RSD in a hospital which is one of the largest

maternal and child healthcare hospital in Beijing and test its online

performance for gestational hypertension diagnosis which has a

lower incidence rate. Specifically, for each patient, once new exami-

nation records are obtained, we input the whole visit sequence into

the model. Once the model output Alert, we give the diagnosis

results to the doctor. We calculate three metrics: false positive rate,

false negative rate and average diagnosis time. And we incorpo-

rate the best baseline EARLIEST for comparison. Here, we collect

671 samples for test. Table 5 present the comparison between our

method and EARLIEST. As we can see, our method is consistently

better than EARLIEST. That indicates that the proposed RSD can

accurately and early make Alert for the case that suffers from the

disease. Based on this online test performance, we believe doctors

and patients can benefit from RSD in various tasks.

5 RELATEDWORK
Deep Learning for Diagnosis Prediction. Traditional machine

learningmodels used in diagnoses prediction includemachine learn-

ing techniques [12, 41], Convolutional Neural Networks (CNNs) [5]

and Recurrent Neural Networks (RNNs) are widely adopted in di-

agnosis prediction applications, since most of electronic medical

record data can be formed as a sequence of examination records of a

patient at multiple visits to hospital. Dipole [29] employed the atten-

tion mechanism to capture the temporal dependencies. T-LSTM [2]

and HiTANet [28] dealt with irregular times between the successive

elements of sequential data. For interpretability, RETAIN [7] to re-

tain the prediction accuracy of the RNN with better interpretation.

And RetainVis [24] improved the RETAIN model by employing a

bidirectional structure considering time decays. To address the data

insufficiency problem, previous studies [6, 31] leveraged medical

knowledge using graph-based attentions, MetaPred [50] employed

meta-learning, and PRIME [30] leveraged prior medical knowledge.

Furthermore, some studies [26, 36–38] proposed to use pre-training

to help learn effective repesentations.

Early Classification. Our task can be considered as a special appli-

cation in early classification of time series. The early classification

is usually implemented through three approaches: MPL based ap-

proaches, shapelet based approaches, and model based approaches.

MPL based approaches [47, 48] usually learned a Minimum Pre-

diction Length (MPL). These methods classified the testing cases

when they were confident about the results of MPL. In addition,

some researchers use posterior probabilities [34] to generate dis-

criminative MPL for each label. Shapelet based approaches [10, 49]

selected a set of shapelets by evaluating the quality of all cases in

training dataset, and developed a distance threshold for sequence

matching. They classified the testing cases when the matching

degree between the testing sequence and the shapelet is above

a preset threshold. Model based approaches generate a score ac-

cording to different models for each subsequence to determine

whether to make the classification. These approaches include joint-

optimized methods and reinforcement learning methods. Joint-

optimized methods [33, 39, 40] usually designed suitable loss func-

tions to optimize earliness. As a comparison, reinforcement learning

approaches [14, 32] automatically learned such a decision process,

which are more inconsistent with real-world scenarios.

6 CONCLUSION
In this paper, we presented a reinforced Siamese network for early

diagnosis of diseases, called RSD. We designed a diagnosis agent

consisting of a diagnosis module and a control module. For the di-

agnosis module, we designed two improvement techniques, namely

Siamese network training and domain knowledge guidance. For the

control module, we implemented it under the reinforcement learn-

ing framework with carefully designed architecture, rewards and

policies. By combining the two modules, our approach presents an

effective solution to early diagnosis of diseases, which fully consid-

ers the challenges including insufficient training data, dynamic and

complex signs of complications, and trade-off between earliness

and accuracy. The experimental results on three real-world datasets

have shown the superiority of our approach on early diagnosis of

diseases against a number of competitive baselines. As future work,

we will consider extending our approach to the diagnosis of other

diseases. We believe the proposed solutions can be generalized or

applied to more kinds of diagnosis tasks.
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