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ABSTRACT
In recent years, automatic computational systems based on deep
learning are widely used in medical fields, such as automatic diag-
nosing and disease prediction. Most of these systems are designed
for data sufficient scenarios. However, due to the disease rarity or
privacy, the medical data are always insufficient. When applying
these data-hungry deep learning models with insufficient data, it is
likely to lead to issues of over-fitting and cause serious performance
problems. Many data augmentation methods have been proposed
to solve the data insufficiency problem, such as using GAN (Gen-
erative Adversarial Networks) to generate training data. However,
the augmented data usually contains lots of noise. Directly using
them to train sensitive medical models is very difficult to achieve
satisfactory results.

To overcome this problem, we propose a novel deep model learn-
ing method for insufficient EHR (Electronic Health Record) data
modeling, namely GRACE, which stands GeneRative Adversarial
networks enhanCed prE-training. In the method, we propose an
item-relation-aware GAN to capture changing trends and correla-
tions among data for generating high-quality EHR records. Further-
more, we design a pre-training mechanism consisting of a masked
records prediction task and a real-fake contrastive learning task to
learn representations for EHR data using both generated and real
data. After the pre-training, only the representations of real data is
used to train the final prediction model. In this way, we can fully
exploit useful information in generated data through pre-training,
and also avoid the problems caused by directly using noisy gener-
ated data to train the final prediction model. The effectiveness of
the proposed method is evaluated using extensive experiments on
three healthcare-related real-world datasets. We also deploy our
method in a maternal and child health care hospital for the online
test. Both offline and online experimental results demonstrate the
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effectiveness of the proposed method. We believe doctors and pa-
tients can benefit from our effective learning method in various
healthcare-related applications.
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1 INTRODUCTION
Nowadays, Electronic Health Records (EHRs) are widely available
from Hospital Information Systems (HIS). Many computational
systems have been developed to leverage EHR data for important
medical applications, such as automatic disease prediction. As a
typical approach, these EHR-based computational systems take
as input the historical EHR data of a patient and then predict the
target output, e.g., probability of suffering some disease [7, 22] or
physical features in a near future [25], which can help doctors to
identify the potential health risk at the early stage and provide
better treatments.

As EHR data are usually represented in a sequence form, most of
disease prediction systems are developed based on sequence neural
networks, such as recurrent neural networks (RNNs) [3, 7, 22] and
Transformers [21, 28]. In the literature, existing methods mainly
focus on devising suitable architecture of sequence neural networks
to handle some unique characteristics of EHR data, e.g., irregular
time intervals [3, 21] and incompleteness [28, 33]. Most of these
works rely on relatively sufficient training datasets to learn their
model parameters. However, EHR data is very different from or-
dinary sequence data. Due to the disease rarity or privacy, the
number of available samples is insufficient [4, 40]. When applying
these data-hungry models, i.e., deep learning models, in an insuf-
ficient data setting, it is likely to lead to the over-fitting problem.
To overcome the insufficient data problem, some methods propose
to employ meta-learning [40] or knowledge graph [6, 35]. While,
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these methods still require auxiliary information to resist the data
sparsity, and such auxiliary information is not always accessible.

As a promising approach, generative adversarial networks (GANs)
[12] have been demonstrated as an effective data augmentation ap-
proach to solving the insufficient data problem for deep learning
model training. For example, RTSGAN [25] proposed to generate
time series data via GANs and further utilize the generated data to
train the sequence prediction models. However, it is still with some
challenges when we directly use GAN-based data augmentation
methods to solve the data insufficiency problem in EHR applica-
tions, i.e., directly using generated EHR data to train EHR prediction
models. Firstly, EHR data is more complicated in essence than other
types of sequence data, e.g., containing temporal dependency and
correlation among physiological indices. It is difficult to synthesize
reasonable data with insufficient real data using a commonly used
GANmodel. Secondly, the real EHR data is very delicate, i.e., a small
change in a record can reflect a large change in a patient’s physi-
cal condition. Augmented data generated by GAN models always
contain some noises, which may mislead diagnostic models if we
directly use the generated EHR data to train prediction models.

Inspired by recent advances of pre-training methods [26, 28],
we propose to leverage the pre-training technique to better use
GAN-generated data in EHR-based prediction models. Specifically,
we propose a novel method which combines GAN and pre-training
to model insufficient EHR data, namely GRACE, which stands
GeneRative Adversarial networks enhanCed prE-training. Our ap-
proach contains two major components: 1) A item-relation-aware
GAN architecturewhich canmodel the relations among data records
for generating reasonable high-quality EHR data; and 2) A pre-
training based representation learning mechanism consists of a
masked records prediction task and a real-fake contrastive learning
task. In the representation learning mechanism, the augmented
data generated by the item-relation-aware GAN are only used to
pre-train the representations of EHR, while only the representa-
tions of real data are used to train the final prediction models. In
this way, we can effectively solve the issues of over-fitting to noise
in the generated EHR data for the final prediction model.

The contribution of the paper can be summarized as follows:

• To the best of our knowledge, it is the first work that combines
GAN and pre-training in representation learning of EHR data.
The proposed method can fully exploit useful information in
generated data through pre-training, and avoid the problems
caused by directly using noisy generated data to train the final
prediction model. We believe this method can be applied in
applications which suffer from the insufficient data problem.

• We designed a novel item-relation-aware GAN architecture
that can generate reasonable EHR data. This architecture can be
applied to other healthcare-related data generation applications,
such as medical education.

• We designed elaborate pre-training tasks, especially the real-
fake contrastive learning task, to exploit self-supervised infor-
mation in generated EHR data. This method is instructive for
self-supervising applications on EHR data.

• We construct extensive experiments on three healthcare datasets
and experimental results show the effectiveness of the proposed
learning paradigm. Moreover, we also deploy our method in the
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Figure 1: Overview of the GRACE method.

HIS of a maternal and child health care hospital for gestational
diabetes prediction. Both offline and online experiments proved
that GRACE can greatly improve the utilization efficiency of
limited EHR data. We believe doctors and patients can benefit
from our method in various EHR-based healthcare applications.

2 OVERVIEW
In this section, we formally define the dataset, the problem and
introduce our framework.

2.1 EHR Data and Problem Definition

EHR Examination Records. During disease progression, pa-
tients need to visit the hospital multiple times for examination.
For each visit, a patient underwent a number of physical exam-
inations. We denote the examination record for the 𝑡-th visit as
𝒗𝑡 =

(
𝑒
(1)
𝑡 , 𝑒

(2)
𝑡 , . . . , 𝑒

(𝑁𝑒 )
𝑡

)
, where the item 𝑒

(𝑖)
𝑡 is the 𝑖-th examina-

tion item of the examination record 𝒗𝑡 (i.e., diastolic pressure), and
𝑁𝑒 denotes the number of examination item of the each visit.

Visit Sequences in EHR. We represent the examination records
for a patient during his disease progression as a visit sequence
of chronologically ordered events. For the 𝑖-th patient, his visit
sequence is denoted as 𝑽 (𝑖) , where 𝑽 (𝑖 ) =

(
𝒗 (𝑖 )
1 , 𝒗 (𝑖 )

2 , . . . , 𝒗 (𝑖 )
𝑇𝑖

)
is the

visit sequence of the 𝑖-th patient.

Problem Definition. The tasks in this paper aim to predict the
probability of a patient suffering from a certain disease. Given the
visit sequence 𝑽 (𝑖) of a patients, we define the model as a prediction
function that is with 𝑽 (𝑖)

𝑡 as inputs and gives the output as

�̂� (𝑖 ) = 𝑓

(
𝑽 (𝑖 )

)
, (1)

where 𝑦 (𝑖)𝑡 ∈ {0, 1} is a binary diagnosis label indicating whether
the patient will suffer from a disease.

2.2 Framework
In this part, we present our framework. Our core idea is to use
GAN (Generative Adversarial Network) to generate fake data to
alleviate the insufficiency of EHR data. Similar ideas have been
used to solve the data insufficiency problem of time series classifi-
cation [25, 38], which directly uses fake data generated by GAN to
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train classification models. However, due to the characteristics of
EHR data, we can’t follow the same way to solve the insufficiency
problem in automated disease diagnosis. First, EHR contains rich
semantic information, it is challenging work for a general GAN
model to generate semantically sound fake data, so we need to
design specialized mechanisms to ensure that the generated data
has satisfactory semantics. Second, due to insufficient data and
containing rich semantics, no matter what GAN model we design,
it is still very hard to generate perfect fake EHR data. The fake EHR
generated by GAN always contains many noises, which is very
easy to mislead models if we directly use them to train our model.

As shown in Figure 1, to overcome above problems, the proposed
GRACE model adopts an item-relation-aware GAN to generate the
highest quality fake data possible, and then indirectly exploits in-
formation of the fake data through a pre-training approach. Specif-
ically, the model uses the fake data to pre-train a representation
learning model for EHR representation generating, and then, uses
the EHR representations of real data to fine-tune the final diag-
nostic models. In this way, the proposed GRACE model avoids the
defect of directly using fake data to train the diagnostic model,
and meanwhile, fully exploits the valuable information in the fake
data through pre-training the representation learning model, which
solves the data insufficiency problem of EHR.

3 METHODS
In this section, we present details of the proposed GRACE model,
which includes an item-relation-aware GAN component and a rep-
resentation pre-training component. The overall architecture for
the proposed GRACE is illustrated in Figure 1.

3.1 Item-relation-aware GAN
As shown in Figure 1, the proposed item-relation-aware GAN con-
sists of a generator and a discriminator.

3.1.1 EHR Generator. The generator aims to generate fake visit
sequences from random vectors. Since the target are visit sequences,
our model first generates a hidden state vector 𝒔𝜏 from a random
vector 𝒛 as

𝒔𝜏 =𝑾𝑧 × 𝒛 + 𝒃𝑧 , 𝒛 ∼ 𝑝 (𝒛), (2)
where 𝑾𝑧 ∈ Rℎ×ℎ and 𝒃𝑧 ∈ Rℎ are learnable parameters, 𝑝 (𝒛)
denotes a random distribution (i.e., Gaussian distribution). Then,
the GAN model uses a Transformer decoder to decode the hidden
state vector as a visit sequences, i.e.,

(�̃�1, �̃�2, . . . , ˜𝒗𝑇 ) = TransformerDecoder (𝒔𝜏 ) . (3)

When generating fake visit sequences, we cannot know the
target length of the generated sequence. We use a simple method
to define the stop signal. We find that when the length of generated
sequence saturates, the timestamp tends to be convergence. Then,
we stop the generating process when the time interval between the
two successive visits is less than the threshold, which is defined as
the smallest time interval in real visit sequences.

In Eq. (3), the Transformer decoder is responsible for converting
a dense hidden state to an EHR visit sequence. Since the EHR
data is very complicated and contains rich semantic information,
if we direct use random parameters to initialize the Transformer
decoder, it is very hard to accomplish the sequence generation task.

To overcome this issue, we design an AutoEncoder initialization
mechanism to set the parameter of the Transformer decoder in
Eq. (3).

The AutoEncoder contains an encoder and a decoder. The en-
coder is responsible for encoding a real visit sequence data as a
dense vector. Given a real visit sequence 𝑽 (𝑖) , we add a virtual
visit 𝒗𝜏 to the sequence, i.e., letting 𝑽 (𝑖) =

(
𝒗 (𝑖)1 , . . . , 𝒗 (𝑖)

𝑇𝑖
, 𝒗 (𝑖)𝜏

)
. For

each visit vector 𝒗𝑡 in 𝑽 (𝑖) , the encoder convert it as a dense vector
𝒙𝑡 ∈ Rℎ using a fully connected layer as

𝒙𝑡 =𝑾𝑣 × 𝒗𝑡 + 𝒃𝑣, (4)

where 𝑾𝑣 ∈ Rℎ×𝑁𝑒 and 𝒃𝑣 ∈ Rℎ are learnable parameters and ℎ

are a hyper-parameter. Next, the encoder adopts a Transformer to
convert the dense vector sequence, i.e., (𝒙1, . . . , 𝒙𝑇 , 𝒙𝜏 ), as a hidden
state vector sequence:

(𝒔1, . . . , 𝒔𝑇 , 𝒔𝜏 ) = TransformerEncoder (𝒙1, . . . , 𝒙𝑇 , 𝒙𝜏 ) . (5)

Here, the vector 𝒔𝜏 is a representation of the whole visit sequence
𝑽 (𝑖) .

In the decoder, we adopt a Transformer to decode the represen-
tation vector 𝑽 (𝑖) as the other dense vector sequence, i.e.,

(𝒐1, . . . , 𝒐𝑡 ) = TransformerDecoder(𝒔𝜏 ) . (6)

Next, the decoder a multilayer perceptron (MLP) to convert each
dense vector 𝒐𝑡 as a corresponding reconstructed EHR visit, i.e.,

𝒗𝑡 = MLP(𝒐𝑡 ) . (7)

To train the AutoEncoder, we employ a mean square error (MSE)
an objective function as

L𝑎 =
1
𝑁

𝑁∑︁
𝑖=0

∑︁
𝑡<𝑇𝑖

������𝒗 (𝑖)𝑡 − 𝒗 (𝑖)𝑡

������2
2
, (8)

where 𝑁 denotes the number of samples and 𝑇𝑖 denotes the length
of the 𝑖-th visit sequence. When training the AutoEncoder, we use
the teacher-forcing policy [30], i.e., always using ground truth data
𝒗𝑡 as the next-step input.

Once the AutoEncoder has been trained, we initialize the Tans-
formerDecoder in Eq. (3) with the TansformerDecoder of the Au-
toEncoder (in Eq. (6)). In this way, the data characteristics of the
real visit sequence are memorized by the TansformerDecoder, and
therefore it can be used to generate higher quality fake data.

3.1.2 Item-relation-aware Discriminator. The discriminator aims
to distinguish the real data and the generated fake data. A high-
performance discriminator can push the generator to produce better
fake data. To improve the performance of our discriminator, we
design a hierarchical item-relation aware mechanism to capture
characteristics of EHR visit sequences. The item-relation aware
mechanism contains an item-trend-aware transformer to model the
changing trend for each item, and an item-correlation-aware trans-
former to model correlations among items. The two transformers
hierarchically stack as a whole.

Item-trend-aware Transformer. During the disease progression,
each examination item has a changing trend. For example, blood
pressure is growing gradually during the full disease progression
for patients that suffer from hypertension. We hope the discrim-
inator can model the changing trend to encourage the generator
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to produce data with the changing trends. Based on this idea, we
employ a Transformer to model each item along the time axis.
Specifically, for the 𝑗-th item at the 𝑡-th visit, i.e., 𝑒 ( 𝑗)𝑡 , we covert it
as a representation vector through

𝒑 ( 𝑗)
𝑡 =𝑾 ( 𝑗)

𝑒 × 𝑒
( 𝑗)
𝑡 + 𝒃 ( 𝑗)𝑒 , (9)

where𝑾 ( 𝑗)
𝑒 ∈ Rℎ×1 and 𝒃 ( 𝑗)𝑒 ∈ Rℎ are learnable parameters. Next,

a Transformer encodes the sequence of 𝒑 ( 𝑗)
𝑡 as(

𝒒 ( 𝑗 )
0 , . . . , 𝒒 ( 𝑗 )

𝑇

)
= Transformer

(
𝒑 ( 𝑗 )
0 , . . . , 𝒑 ( 𝑗 )

𝑇

)
,

𝒒 ( 𝑗 ) = Average Pooling
(
𝒒 ( 𝑗 )
0 , . . . , 𝒒 ( 𝑗 )

𝑇

)
,

(10)

We use 𝒒 ( 𝑗) to represent the changing trend of the 𝑗-th item.

Item-correlation-aware Transformer. During the disease pro-
gression, different EHR items have some correlations with each
other. For example, when diastolic pressure grows, systolic pressure
usually grows too. We also hope the discriminator can model the
correlations among items to further improve the quality of gen-
erated fake data. Therefore, we employ another Transformer to
model correlation among different items. Specifically, given the
representations 𝒒 ( 𝑗) of each item, we model them as(

𝒖 (1) , . . . , 𝒖 (𝑁𝑒 )
)
= Transformer

(
𝒒 (1) , . . . , 𝒒 (𝑁𝑒 )

)
,

𝒖 = Average Pooling
(
𝒖 (1) , . . . , 𝒖 (𝑁𝑒 )

)
,

(11)

where 𝑁𝑒 denotes the number of examination items.
Then we use the final representation 𝒖 of a visit sequence to

classify whether the input data is real as

𝑟 =𝑾𝑢 × 𝒖 + 𝒃𝑢 , (12)

where𝑾𝑢 ∈ R1×ℎ and 𝒃𝑢 ∈ R1 are learnable parameters, 𝑟 denotes
the score of the input visit sequence. The larger the value, the higher
the probability that inputs are real data.

3.1.3 Training. We employ the WGAN [14] method to train the
generator and discriminator. The generator in WGAN aims to mini-
mize the 1-Wasserstein distance between real data distribution and
fake data distribution, which is easier to convergence in training.
The optimization objective is defined as

min
𝐺𝑒𝑛

max
𝐷𝑖𝑠
E𝑽∼𝑝 (𝑽 ) [𝐷𝑖𝑠 (𝑽 ) ] − E𝒛∼𝑝 (𝒛) [𝐷𝑖𝑠 (𝐺𝑒𝑛 (𝒛)) ], (13)

where “Dis” denotes the 1-Lipschitz discriminator and “Gen” de-
notes the Generator.

In the whole item-relation-aware GAN training, we first train
the AutoEncoder with Eq. (8) until it convergence. Then, we jointly
train the decoder, the generator, and the discriminator with Eq. (13).

3.2 Pre-training for Representation Learning
In this section, we propose a pre-training mechanism to learn rep-
resentations of EHR visit sequences using both real data and fake
sequences generated by the item-relation-aware GAN.

Deep Model for EHR data. The function of the model is to gener-
ate representation vectors of EHR visit sequences. The input of the
representation learning model is a visit sequence of a patient, and
the output is another representation vector sequence, i.e.,

(𝒍1, 𝒍2, . . . , 𝒍𝑇 , 𝒍𝜏 ) = Model (𝒗1, 𝒗2, . . . , 𝒗𝑇 , 𝒗𝜏 ) , (14)

where (𝒍1, 𝒍2, . . . , 𝒍𝑇 ) is the representation vector sequence, and 𝒍𝜏 is
a vector that can represent the whole visit sequence. The𝑀𝑜𝑑𝑒𝑙 (·)
function denotes a sequence-to-sequence model. We use different
models (e.g., Transformer) in experiments to evaluate the proposed
representation learning framework.

To train the representation learning model using both real and
fake data, we design two pre-training tasks. One for exploiting
inner sequence correlations using the masked records prediction,
and the other for exploiting cross sequence correlation using the
real-fake data contrastive learning.

Pre-training task #1: Masked Records Prediction. In natural
language processing, the masked language model (MLM) [9] task
achieved great success in pre-training, which can mine correlations
between words effectively. In the EHR sequence, the correlation
between visit records also has close correlations. To model corre-
lation among examination records, we propose a masked records
prediction pre-training task.

Given a visit sequence 𝑽 , we randomly mask some visits using a
virtual visit 𝒗𝜏 (in practice, we set a masked ration 𝛿 , e.g., 0.15, i.e.,
randomly select 𝛿 visits to mask), and use the corresponding repre-
sentation vector to predict the masked visit records. We denote 𝒗 ′
as a masked visit, and 𝒍 ′ denotes the corresponding representation
vector. A multilayer perceptron (MLP) is employed to predict the
masked visit records as

𝒗 ′ = MLP
(
𝒍 ′
)
. (15)

We employ mean squared error (MSE) as the optimized objective
of the masked records prediction task, i.e.,

L𝑚 =
1

|𝑽 ′ |
∑︁

𝒗′∈𝑽 ′

(
𝑟 ′𝑣 + 𝛽 × (1 − 𝑟 ′𝑣)

)
× | |�̂�′ − 𝒗′ | |22, (16)

where 𝑽 ′ is the set that consists of all masked visits, |𝑽 ′ | denotes
the size of 𝑽 ′, 𝑟 ′𝑣 indicates whether 𝒗 ′ is from real data (𝑟 ′𝑣 = 1when
𝒗 ′ is from real data, otherwise 𝑟 ′𝑣 = 0), and 𝛽 is a hyper-parameter.
Here, we incorporate the weight 𝛽 to adjust the weight of real and
generated samples. The basic idea is that the confidence of the
generated data is less than the real data, so 𝛽 < 1.

Pre-training task #2: Real-Fake Contrastive Learning. Al-
though the item-relation-aware GAN can effectively capture the
characteristics of EHR data and generate reasonable data, there is
also a gap between the fake data and the real data. We believe a
representation that can distinguish real and fake samples is more
effective for real data modeling. Based on this insight, we design
a real-fake contrastive task to train the representation learning
model.

Specifically, for a fake sample in a mini-batch, we use the rep-
resentations of sequences from the fake data as positive samples
and the rest representations as negative samples. We employ a
contrastive loss function, called InfoNCE [31], to classify positive
and negative samples. When we use the representation 𝒍 ( 𝑗) of a
sample, i.e., the corresponding representation vector of the virtual
visit 𝒗 ( 𝑗)𝜏 , from the fake data as the anchor sample, the InfoNCE
loss function is defined as

L ( 𝑗 )
𝑟 = − log

∑
𝒍′∈B𝑓 𝑎𝑘𝑒

exp
(
𝑓

(
𝒍 ( 𝑗 ) , 𝒍′

))
∑

𝒍′∈B exp
(
𝑓
(
𝒍 ( 𝑗 ) , 𝒍′

) ) , (17)
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where 𝑗 denotes the 𝑗-th sample in the mini-batch, B is the set that
consists of the representations of samples in the mini-batch, B𝑓 𝑎𝑘𝑒

is the set that consists of the representations of fake samples in the
mini-batch, and 𝑓 (·, ·) is a similarity function. We simply use dot-
product to measure the similarity, i.e., 𝑓 (𝒙,𝒚) = 𝒙 · 𝒚, which cares
both angle and magnitude. Similarly, if we use representation of a
sample from real data as the anchor sample, we just need to replace
B𝑓 𝑎𝑘𝑒 with B𝑟𝑒𝑎𝑙 that is the set consisting of the representations
of real samples in the mini-batch.

The loss of a mini-batch is the average of loss when we use all
samples as the anchor sample, i.e.,

L𝑟 =
1
|B |

|B|∑︁
𝑗=1

L ( 𝑗 )
𝑐 , (18)

where |B| denotes the size of the mini-batch.

Pre-training Loss.When we pre-train the whole representation
model, we combine the pre-training loss functions with a balance
hyper-parameter 𝛼 as

L𝑝 = 𝛼 × L𝑚 + (1 − 𝛼) × L𝑟 , (19)

where L𝑚 (Eq. (16)) is the pre-training loss of the masked records
prediction task and L𝑟 (Eq. (18)) is the pre-training loss of the
real-fake contrastive learning task.

3.3 Diagnosis Model and Discussion
When we got the pre-trained representation learning model, we
apply its generated representations to various downstream diagno-
sis applications. For example, for a binary diagnosis classification
task, e.g., hypertension prediction, we input the representation vec-
tor generated by Eq. (14) to a fully connected layer with Sigmoid
classifier as

�̂�𝑖 = Sigmoid
(
𝑾𝑦 × 𝒍 (𝑖 )𝜏 + 𝒃𝑦

)
, (20)

where 𝑾𝑦 ∈ R1×ℎ and 𝒃𝑦 ∈ R1 are learnable parameters, 𝒍 (𝑖)𝜏

are the corresponding representation vector which represents a
visit sequence. Let 𝑦 denote ground truth labels, then we use the
cross-entropy loss to fine tune the model as

L = − 1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 log (�̂�𝑖 ) + (1 − 𝑦𝑖 ) log (1 − �̂�𝑖 )) . (21)

For training with the whole GRACE model, we first train the
AutoEncoder with Eq. (8) until it convergence. Then, we only keep
the decoder of the AutoEncoder, and jointly train the decoder, gen-
erator, and discriminator, i.e.,, the Item-relation-aware GAN, with
Eq. (13). After that, we use the trained item-relation-aware GAN
to generate 𝑁𝐺 fake samples. Finally, we use both real and gener-
ated fake data to pre-train the representation learning model with
Eq. (19).

Compared with existing studies on insufficient EHR data [4,
6, 40], the proposed GRACE has the following merits. First, our
method can effectively improve the performance of models but
does not need any additional information. Most previous methods
need additional information which is hard to access in rare diseases,
e.g., GRAM [6] needs relations among events to build the tree and
MetaPred [40] needs additional datasets to perform meta-learning.
Second, our method avoids directly training the predictive model
using noisy fake data which may mislead the model fitting. Finally,

Table 1: Datasets statistics.

Dataset Diabetes Hypertension Mortality

# of samples 48,586 48,586 20,378
# of positive 10,290 3,583 2,610
# of negative 38,296 45,003 17,768
# of visits 316,398 316,398 1,549,300
Avg. # of visits 6.51 6.51 76.03

our method takes full advantage of the fake data, i.e., we encourage
the model to capture the gap between the real and fake data using
a real-fake contrastive learning pre-training task. Note that the
previous methods usually treat both the real and fake data equally
and they ignore the gap between the real and fake data.

Comparedwith previous studies on pre-training for EHR data [19,
20, 26, 27], the proposed GRACE has the following merits. On the
one hand, our method can perform pre-training on insufficient data,
but previousmethods such as RAPT [28] need a huge amount of data
to perform pre-training. On the other hand, in addition to capturing
the characteristics of EHR data, our method can further effectively
model the real EHR data by the proposed real-fake contrastive
learning pre-training task.

4 EXPERIMENTS
In this section, we construct experiments to demonstrate the effec-
tiveness of our methods.

4.1 Experimental Setup
4.1.1 Construction of the Datasets. The pregnant dataset was col-
lected from the prenatal care examination records of a hospital in
Beijing spanning from 2008 to 2018, which contains 48,586 sam-
ples. All user identity information was removed for anonymization.
All experiments were carried out within the hospital with strict
regularizations on privacy protection. For this dataset, we select
five items as input features of our model, namely gestational week,
diastolic pressure, systolic pressure, fundal height, and weight.

The in-hospital mortality dataset is collected from Medical Infor-
mation Mart for Intensive Care (MIMIC) database [17], which is a
large (with 20,378 samples), single-center database comprising infor-
mation relating to patients admitted to critical care units at a large
tertiary care hospital1. We follow the MIMIC-based benchmark [15]
proposed by Harutyunyan et al. to construct the in-hospital mor-
tality prediction dataset2. For this data, we use 15 numerical items
as input features.

We summarized the detailed dataset statistics in Table 1.

4.1.2 Evaluated Tasks. We use three healthcare-related tasks to
test the effectiveness of our methods.

Diabetes Prediction. The task aims to diagnose gestational dia-
betes. Both baselines and our method take prenatal care examina-
tion records before 30 weeks as inputs and generate the probability
of suffering gestational diabetes.

1https://mimic.mit.edu
2https://github.com/YerevaNN/mimic3-benchmarks
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Table 2: Experiments results in percent for three tasks. The best results except for the last group are in bold. We repeat the
dataset splitting process by five times and report the result as average performance (standard deviation).

Task Diabetes Prediction Hypertension Prediction Mortality Prediction
AVG

Metric F1 AUC-PR AUC-ROC F1 AUC-PR AUC-ROC F1 AUC-PR AUC-ROC

Vanilla
Training

LSTM 36.5 (0.7) 29.2 (1.0) 60.5 (1.0) 31.0 (1.7) 25.4 (2.2) 76.6 (1.2) 31.4 (0.4) 26.4 (1.0) 69.1 (1.0) 42.9 (0.6)
GRU 36.1 (0.5) 28.5 (0.6) 59.7 (0.7) 32.3 (0.6) 25.9 (0.7) 77.0 (0.3) 32.4 (1.1) 27.8 (0.8) 70.6 (1.1) 43.4 (0.6)
Dipole 40.2 (2.8) 33.3 (4.1) 65.4 (2.9) 32.0 (1.6) 25.0 (2.4) 76.9 (1.1) 32.7 (1.0) 27.2 (1.3) 67.7 (1.1) 44.7 (0.6)
RETAIN 44.3 (1.5) 39.9 (2.1) 70.1 (1.9) 32.0 (2.1) 27.2 (0.9) 77.5 (0.4) 32.2 (0.9) 26.2 (1.0) 69.1 (0.7) 46.6 (0.5)
RAPT 49.4 (8.0) 47.0 (12.2) 75.5 (9.5) 29.5 (7.7) 25.7 (3.8) 76.7 (2.8) 34.9 (1.6) 31.3 (1.9) 73.2 (1.1) 49.3 (2.5)
Trans. 49.1 (7.9) 44.6 (12.2) 74.1 (9.5) 31.9 (1.9) 26.4 (1.5) 77.5 (0.7) 36.2 (0.8) 31.6 (1.2) 73.3 (0.7) 49.4 (2.9)

HiTANet 49.4 (7.5) 48.0 (11.0) 75.1 (7.1) 33.3 (1.1) 26.9 (1.5) 78.2 (0.7) 34.0 (2.0) 29.1 (1.6) 70.9 (1.2) 49.4 (3.0)
T-LSTM 49.3 (2.1) 47.8 (3.1) 76.6 (1.7) 34.3 (0.7) 29.4 (1.3) 78.3 (0.4) 35.3 (0.7) 30.0 (0.7) 72.8 (0.4) 50.4 (0.6)

w/ GRACE Trans. 61.0 (0.8) 63.9 (1.0) 84.5 (0.3) 35.0 (1.4) 30.1 (0.9) 79.5 (0.4) 37.6 (1.8) 32.6 (1.6) 75.1 (1.8) 55.5 (1.0)
RAPT 62.7 (2.3) 65.0 (1.8) 84.6 (1.0) 35.4 (1.0) 31.0 (1.5) 79.5 (0.3) 36.8 (1.9) 33.0 (1.3) 74.6 (1.8) 55.9 (0.6)

w/ All Data Trans. 59.6 (1.1) 61.6 (1.2) 83.7 (0.5) 33.1 (4.4) 29.3 (1.1) 79.5 (0.4) 38.1 (1.8) 33.9 (2.3) 75.3 (1.7) 54.9 (1.1)
RAPT 62.6 (1.1) 64.3 (1.7) 84.4 (0.8) 36.3 (1.1) 33.2 (0.7) 80.1 (0.3) 39.2 (1.1) 35.3 (1.5) 75.5 (1.4) 56.8 (0.6)

Hypertension Prediction. The task aims to diagnose gestational
hypertension. Similar to diabetes prediction, both baselines and
our method take examination records before 30 weeks as input and
generate the probability of suffering gestational hypertension.

In-hospital Mortality Prediction. The task aims to predict in-
hospital mortality. Both baselines and our method take examination
records of the first 48 hours of an ICU stay as input and generate
the probability of in-hospital mortality.

4.1.3 Comparison Methods. We consider the following methods
as baselines for comparison:
• LSTM [16]. This is the original long short-term memory neural
network with visit sequences as inputs.

• GRU [5]. This is a gating mechanism in the recurrent neural
networks, which has fewer parameters than LSTM.

• Transformer [32]. This uses an attention mechanism to model
sequence data, which deals with long-term dependencies.

• RETAIN [7]. This is the REverse Time AttentIoN model, em-
ploying two RNNs to generate attention weights.

• T-LSTM [3]. This is the time-aware LSTM, which adopts a
decaying function to handle irregular time between visits.

• Dipole [22]. This is a sequence neural network that is specifi-
cally designed for medical visit sequence data. Dipole adopts
three attention mechanisms to handle long-term medical code
dependencies and provide interpretability.

• HiTANet [21]. This is a hierarchical attention-based model that
generates visit representations with local time and proposes a
novel attention mechanism to associate timestamps with visits.

• RAPT [28]. This is a pre-training method for EHR data, which
proposed a time-aware transformer and three pre-training tasks.
In our experiments, we only use the time-aware transformer.

• GRACE. This is our method. Because our method is model-
agnostic, we use Transformer and RAPT as the representation
learning model, i.e., the𝑀𝑜𝑑𝑒𝑙 (·) function in Eq. (14).

4.1.4 Evaluation Metrics. For the tasks, we use Area Under Receiver
Operating Characteristic Curve (AUC-ROC), Area Under Precision-
Recall Curve (AUC-PR) and F1-score (F1) as the evaluation metrics.

We split all datasets into three parts, namely the training set,
the validation set, and the test set. For evaluating the performance
of our method on insufficient datasets, we randomly extract 3,000
samples as the training set, 1,000 samples as the validation set, and
use the rest samples as the test set. We trained the model with the
training set, tuned the hyper-parameters with the validation set,
and then computed the performance on the test set. In addition,
we repeat the above dataset splitting process by five times and
report the average performance and the standard deviation for both
baselines and our method.

4.1.5 Implementation Details. Our software environment contains
ubuntu 20.04, PyTorch v1.7.0, and python 3.8.8. All of the exper-
iments are conducted on a machine with four GPUs (NVIDIA
GeForce GTX 2080 Ti) and 64GB memory.

For training models, we used RMsprop [13] with a batch size
of 64 in the GAN training stage, and Adam [18] with a batch size
of 64 in the pre-training stage and the fine-tuning stage. For the
learning rate, we set it as 5e-4 in the pre-training stage and 1e-
4 in other stages. In the GAN training process, we set the clip
weight as [−0.01, 0.01] for the 1-Lipschitz discriminator. For the
experiments, we set the hidden state dimension as ℎ = 128 for
both baselines and our approach. We set masked ratio 𝛿 = 0.3,
𝛽 = 0.2 (Eq. (16)), 𝛼 = 0.1 (Eq. (19)), and the number of gener-
ated data 𝑁𝐺 = 10, 000. Finally, we employed dropout [29] with
dropout rate=0.5 for the classification layer of all models on classi-
fication tasks. These hyper-parameters were selected based on the
performance on the validation set.

4.2 Result and Analysis
Table 2 shows the result on three tasks. The first group is the models
without any pre-training, i.e., initialize with random parameters.
The second group is the models pre-trained with our method. The
third group is the models pre-trained over the whole dataset using
the masked records prediction task, which is used as a reference to
compare our model with large size dataset pre-training (our model
was pre-trained over a small size dataset with only 3,000 samples).
From the results, we have the following findings.
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1) Comparing the performance of models in the first group, we
can find that LSTM and GRU perform worse among all the base-
lines. Because they do not consider any characteristics of EHR data.
Dipole and RETAIN perform a few better than LSTM and GRU but
perform worse than other models, due to that they mainly intro-
duced attention to model correlation among items in a sequence.
Besides, the models which consider irregular time intervals per-
form better, such as RAPT, HiTANet, and T-LSTM. This shows that
modeling time information is helpful for EHR modeling. The per-
formance of T-LSTM is better than two Transformer-based models.
A possible reason is that Transformer-based models suffer from
over-fitting problems for the limited size of the training set. Con-
sidering RAPT has more parameters than Transformer, that is also
the reason why RAPT performs worse than Transformer.

2) Comparing the first group and the second group, we can
find that the models pre-trained with our method are better than
all baselines with a large margin in all cases. That demonstrates
that the proposed pre-training method can effectively improve the
performance of models on insufficient data. Here, the pre-trained
RAPT performs better than the pre-trained Transformer. This shows
our method can effective training models with more parameters.

3) Comparing the second group and the third group, we can find
that the performance of models pre-trained with our methods is
closed to the performance of the models pre-trained with all data.
On some tasks, our methods even surpass the performance of the
models pre-trained with all data, e.g., Transformer and RAPT on
diabetes prediction task. That indicates that our methods can help
the models with insufficient data achieve comparable performance
to the model trained over a huge amount of data.

4.3 Method Analysis
4.3.1 Ablation Study. In our method, we have incorporated gener-
ated data, item-relation aware mechanisms in the GAN discrimi-
nator, and two pre-training tasks, i.e., masked records prediction,
and real-fake contrastive learning. Here, we determine how each
component contributes to the final performance. We compare four
variants of the proposed method: (1) NGwithout generated data, i.e.,
only using the real data in the masked records task over the training
set, (2) NC without the real-fake contrastive learning task, (3) NM
without the masked records prediction task, (4) NH without the
hierarchical item-relation aware mechanisms in the discriminator,
i.e., using vanilla Transformer as the discriminator. The results of
AUC-ROC and AUC-PR scores of the diabetes prediction task and
the mortality prediction task for the ablative models are reported.

Figure 2 presents all the comparison results of the four variants.
First, our method outperforms all variants. These results indicate
that all parts are essential to improve the performance of our model.
Second, NM performs better than NC. That indicates capturing the
gap between the real data and the fake data is more useful. Third, for
in-hospital mortality prediction task, NG performs better than NC
and NM, but for diabetes prediction tasks, NG performs worse than
NC and NM. A possible reason is that the in-hospital-mortality data
has many missing items, which results in the generated data being
noisier, which affects the quality of the generated data. Finally, our
method performs better than NH. That indicates the proposed item-
relation-aware discriminator can effectively handle the correlations

AUC-ROC AUC-PR
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(a) Diabetes prediction.
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(b) Mortality prediction.

Figure 2: Ablation study of our method on two datasets.

Table 3: Performance comparison with self-training [34]. All
results are based on Transformer.

Model
Diabetes Hypertension Mortality

PR ROC PR ROC PR ROC

Only real data 44.6 74.1 26.4 77.5 31.6 73.3
w/ Self-training 37.2 69.1 23.2 75.2 28.8 70.9
w/ Our Method 63.9 84.5 30.1 79.5 32.6 75.1

among EHR records and encourage the generator to generate more
reasonable data.

4.3.2 Effect of Pre-training. In this part, we compare our method
with the baseline of directly training on the generated data. The
experiment aims to demonstrate the effectiveness of our novel pre-
training-based generated data application mode. For the baseline,
we apply the self-training method in [34] to label the generated data.
The method first uses the real data to train a predictive model (e.g.,
Transformer), and use the trained model to label the generated data.
After that, it uses both real data and labeled generated data to train
a new predictive model.

We show the results in Table 3. As we can see, self-training
performs worse than our method and even perform worse than
training with only the source data. This indicates that, for EHR, the
generated data and the labels contain a lot of noise, which is not
suitable to train a predictive model directly. The proposed method
indirectly uses the generated data to pre-train data representations,
which avoids this shortage of the generated data.

4.3.3 Generated Samples Analysis. In this part, we qualitatively
analyze why the proposed item-relation-aware GAN is useful to
improve performance. As we mentioned above, each item has its
changing trend and different items have correlations with each
other. Here, we use the correlation coefficient of the changing rates
for different items to qualitatively analyze how realistic the gener-
ated data with different discriminators. Specifically, we calculate
the changing rate of each item as

𝜂
(𝑖)
𝑡 =

(
𝑒
(𝑖)
𝑡 − 𝑒

(𝑖)
𝑡−1

) / (
𝑒
(𝑖)
𝑡−1

)
,

where 𝑖 denotes the 𝑖-th item, and 𝑡 denotes the 𝑡-th visit. Based on
the changing rate, we calculate the correlation coefficient of 𝜂 (𝑖)𝑡

among all items.
The correlation coefficients of the changing rate for the items of

the diabetes dataset are shown in Figure 3. Here, Figure 3(a), Fig-
ure 3(b) and Figure 3(c) are the correlation coefficients for source
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DP SP FH W

DP 1.000 0.833 0.044 0.379

SP 0.833 1.000 0.038 0.435

FH 0.044 0.038 1.000 0.040

W 0.379 0.435 0.040 1.000

(a) Source.

DP SP FH W

DP 1.000 0.959 -0.003 0.927

SP 0.959 1.000 -0.001 0.883

FH -0.003 -0.001 1.000 -0.003

W 0.927 0.883 -0.003 1.000

(b) GRACE.

DP SP FH W

DP 1.000 0.982 -0.326 0.964

SP 0.982 1.000 -0.158 0.985

FH -0.326 -0.158 1.000 -0.151

W 0.964 0.985 -0.151 1.000

(c) Transformer.

Figure 3: The correlation coefficient of different data. Here,
“DP” denotes diastolic pressure, “SP” denotes systolic pres-
sure, “FH” denotes fundal height, and “W” denotes weight.

data, generated data with GRACE, and generated data with a vanilla
GAN, respectively. We calculate the distance between the two gen-
erated data to the source data, which are 0.155 for GRACE and
0.256 for the vanilla GAN. The distance of the source data to the
data generated by GRACE is more close to the generated by the
vanilla GAN. The results indicate that the proposed GRACE can
effectively capture the characteristics of EHR data and generate
more reasonable data.

4.4 Real World Deployment and Online Tests
In this part, we deploy the proposed GRACE in a maternal and child
health care institution which is one of the largest maternal and child
health care hospital in Beijing, and test its online performance for
gestational diabetes diagnosis. Specifically, for each patient, once
new examination records are obtained, we input the whole visit
sequence into the model and get the output of the model. Once the
model output “diseased” (i.e., 𝑦 = 1), we stop the process and output
the diagnosis to a doctor. We counted two metrics: accuracy and
average diagnosis time. The diagnosis time is the time to output
“diseased”. Here we incorporate the Transformer and RAPT without
pre-training and the best baseline T-LSTM for comparison.

As shown in Table 4, models trained with the proposed GRACE
are consistently better than baselines. In addition, we extensively
refer to the literature of medical study and find that gestational
diabetes mainly occurs in 24-28 weeks of pregnancy [1]. As we can
see, the diagnosis times of GRACE are more reasonable. Based on
this online test performance, we believe doctors and patients can
benefit from GRACE in various healthcare-related tasks.

5 RELATEDWORK

Deep Learning on EHR Data. Since healthcare became an im-
portant research domain, various deep learning models have been
proposed for modeling EHR data. Usually, the EHR data can be
formed as sequences, so sequential deep learning models, such as
Recurrent neural network (RNN) based models [2, 3, 7, 11, 22], and
Transformer based models [21, 28, 37, 39], are widely used to model
EHR data. These models were proposed to handle some character-
istics of EHR-based applications, such as interpretability [7, 22, 39],
irregular time intervals [3, 21, 28], incompleteness [28, 33], insuf-
ficiency [6, 35, 40], medical knowledge [23, 36], and so on. Our
methods focus on the insufficiency of EHR data, existing methods
usually leverage additional information to enhance the model. For

Table 4: Performance comparison of online applications
on diabetes prediction task. Here, “ACC” denotes accuracy,
“ADT” denotes average diagnosis time.

Model ACC ADT

w/o
Pre-training

T-LSTM 21.2 15.3
Transformer 21.6 15.3

RAPT 24.4 16.6

w/ GRACE Transformer 73.7 24.5
RAPT 76.1 26.3

example, GRAM [6] employed medical knowledge using graph-
based attention, MetaPred [40] introduced meta-learning, and Med-
Path [35] employed knowledge graph. Oppositely our method does
not require this additional information.

With the development of pre-training in natural language pro-
cessing [9], many works try to migrate this technology to the med-
ical field. For model architecture, some works [19, 20, 26, 27] pro-
posed to modify the BERT architecture for EHR data. For example,
Med-BERT [20] extended the architecture to create generalized
embedding with a large vocabulary, and RareBERT [26] presented a
novel architecture for learning robust representation on a highly im-
balanced dataset. For pre-training tasks, RAPT [28] proposed three
pre-training tasks which are suitable for EHR data. Our method is
model-agnostic. It can adopt these existing model architectures in
Eq. (14) to implement the representation learning model.

GAN-based Model for Sequential Data. For insufficient data
applications, many studies propose on generate sequential data
via GAN-based models as data augmentation [4, 8, 25]. In the
early stage, GAN models were migrated to generate time series
data [10, 24]. They used RNNs as both the generator and discrim-
inator to generate data from random vector sequences. However,
these methods are not sufficient for time series data, because they
directly generated the data by random sequence vector and neglect
the temporal dependencies.

Then, many works leveraged AutoEncoder to enhance the GANs
model. These models can be divided into two main categories: gen-
erating in latent space [4, 25, 38] and generating in feature space [8].
For methods that generate in latent space, EHRGAN [4] generates
fake representations by simply mixing real data representations
and random noise vector by a random binary mask vector, and
RTSGAN [25] synthesized fake representations in the latent space
by MLP layer. Then, they use the decoder to output the sequence
data in the feature space. For methods that generate in feature
space, MedGAN [8] first trained an AutoEncoder, and then jointly
fine-tuned the decoder with the generator. The GRACE model also
adopts an AutoEncoder architecture to generate fake data from
latent space. Compared with the existing methods, our method
contains specialized mechanisms for EHR characteristic modeling,
and therefore is more suitable for medical applications.

6 CONCLUSION
In this paper, we propose a novel deep learning model training
method, namely GRACE, to solve the data insufficiency problem in
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EHR-based applications. In GRACE, we proposed an item-relation-
aware GAN to generate high-quality fake data through capturing
characteristics of EHR sequences using a real-data autoencoder
initialized generator and a hierarchical item-relation aware discrim-
inator. We further use the GAN-generated data to pre-train an EHR
representation learning model through a masked records predic-
tion task and a real-fake contrastive learning task. Finally, we use
the EHR representations of real data produced by the pre-training
model to fine train the final prediction model. The proposed method
can generate high-quality augment data to solve the data insuffi-
ciency problem of EHR, and can also avoid introducing noises of
fake data into the final prediction model. Extensive experiments
on three healthcare-related real-world datasets demonstrated the
effectiveness of our method. We also deployed our method in a
maternal and child health care hospital for the online test, which
further evaluated the performance of the proposed method.

As future work, we will test our approach on more kinds of EHR
data, and enhance the generalizability of our approach. We also con-
sider to apply the proposed framework over other applications that
suffer the similar data insufficiency problem as EHR applications.
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