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To characterize complex and heterogeneous side information in recommender systems, heterogeneous information network

(HIN) has shown superior performance and attracted much research attention. In HIN, the rich entities, relations and paths

can be utilized to model the correlations of users and items, such a task setting is often called HIN-based recommendation.

Although HIN provides a general approach to modeling rich side information, it lacks special consideration on the goal of the

recommendation task. The aggregated context from the heterogeneous graph is likely to incorporate irrelevant information,

and the learned representations are not speciically optimized according to the recommendation task. Therefore, there is a

need to rethink how to leverage the useful information from HIN to accomplish the recommendation task.

To address the above issues, we propose a Curriculum pre-training based HEterogeneous Subgraph Transformer (called

CHEST ) with new data characterization, representation model and learning algorithm. Speciically, we consider extracting

useful information from HIN to compose the interaction-speciic heterogeneous subgraph, containing highly relevant context

information for recommendation. Then, we capture the rich semantics (e.g., graph structure and path semantics) within the

subgraph via a heterogeneous subgraph Transformer, where we encode the subgraph into multi-slot sequence representations.

Besides, we design a curriculum pre-training strategy to provide an elementary-to-advanced learning process. The elementary

course focuses on capturing local context information within the subgraph, and the advanced course aims to learn global

context information. In this way, we gradually capture useful semantic information from HIN for modeling user-item

interactions. Extensive experiments conducted on four real-world datasets demonstrate the superiority of our proposed

method over a number of competitive baselines, especially when only limited training data is available.
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1 INTRODUCTION

Online consumption (e.g., purchasing goods and watching movies) has become increasingly popular with the
rapid development of Internet services, and users repeatedly encounter the resource selection problem because of
information overload [19]. To address such problems, recommender systems (RS) have become an important tool
in online platforms [54], which model users’ preferences on items based on their past interactions. Due to the
complexity of user behavior, recent works utilize various kinds of auxiliary data to improve recommender systems,
such as item attributes and user proiles. These auxiliary data can be considered as important context to understand
user-item interaction, hence it is essential to efectively utilize such context data to improve the recommendation
performance [18, 36, 40]. As a promising approach, heterogeneous information network (HIN) [6, 53], consisting of
multiple types of nodes and edges, has been widely applied to model the rich context information in recommender
systems [45, 55]. The recommendation task framed in the HIN setting is usually referred to as HIN-based
recommendation [13, 14, 20].

For HIN-based recommendation, the most essential problem is how to efectively leverage the rich information
in HIN for recommendation task. A variety of approaches have been proposed to solve this problem, which
roughly falls into two categories, namely path-based methods and graph representation learning methods. Since
users and items are connected by paths in HIN, path-based approaches [14, 27] mainly focus on sampling
paths from HIN and modeling path-level semantics to characterize the user-item interaction relation. As a
widely-used schema, meta-path [45] has been used to extract features for depicting the user-item association. By
modeling path-based features via similarity factorization [58] or co-attention model [14], it is able to improve the
recommendation performance. On the other hand, graph representation learning methods [15, 22, 47] consider
aggregating features from neighbor nodes in the HIN, and leverage the graph structure information to learn the
data representations [50, 57]. These methods focus on learning the structural information (e.g., edges) in the
graph without considering the downstream tasks, and the user-item association is typically predicted using the
representations of the user and the item.
Although existing methods have shown efective to some extent, there are two major challenges that have

not been well addressed in HIN-based recommendation. First, HIN characterizes complex, heterogeneous data
relations, hence it is diicult to extract suicient contextual semantics and meanwhile avoid incorporating task-
irrelevant information from HIN. Existing approaches either select limited context information from specially
designed strategies (e.g., path-based methods) [14, 27], or consider the global view that may incorporate noisy
information from task-irrelevant nodes and edges (e.g., graph representation learning methods) [17]. There is a
need to consider both relevance and suiciency in leveraging HIN information for recommendation. Second, HIN
is in essence a general data characterization way, and it is diicult to design suitable learning strategies to derive
task-speciic data representations for HIN. Existing methods either fully rely on the downstream recommendation
task (easy to overit on training data) [13, 14], or employ task-insensitive pre-training strategies (unaware of the
inal task goal) [7]. There is a need for a more principled learning algorithm that can more efectively control the
learning process with the guidance of the task goal.

To solve the aforementioned issues, we concentrate on user-item interaction to design a systematic approach for
HIN-based recommendation. Firstly, we design a more suitable data characterization by introducing interaction-

speciic heterogeneous subgraph, with both suicient and relevant context information for recommendation. Then,
we further develop a heterogeneous subgraph Transformer that captures rich semantics from interaction-speciic
subgraphs for the recommendation task. Furthermore, we propose a curriculum pre-training strategy consisting of
elementary and advanced courses (i.e., pre-training tasks) to gradually learn from both local and global contexts
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in the subgraph tailored to the recommendation task. The above three aspects jointly ensure that our approach
can leverage HIN information for recommendation more efectively.

To this end, in this paper, we propose a Curriculum pre-training HEterogeneous Subgraph Transformer (called
CHEST ) for HIN-based recommendation. First, we construct the interaction-speciic heterogeneous subgraph
consisting of high-quality paths (derived from meta-paths) that connect a user-item pair, which are extracted
from HIN but speciically for recommendation task. Then, we propose a heterogeneous subgraph Transformer to
encode the subgraphs with multi-slot sequence representations. It consists of a composite embedding layer to
map useful contextual information of nodes (i.e., node ID, node type, position in sampled paths, and precursors
in the subgraph) into dense embedding vectors and a self-attention layer to aggregate node and subgraph
representations. Finally, we devise the curriculum pre-training algorithm with both elementary and advanced
courses to gradually learn useful information from the interaction subgraph. The elementary course consists of
three pre-training tasks related to node, edge and meta-path, focusing on local context information within the
subgraph. The advanced course is a subgraph contrastive learning task, focusing on global context information
at the subgraph level for user-item interaction.
To demonstrate the efectiveness of our approach, we conduct extensive experiments on four real-world

datasets. It shows that our model is able to outperform all baseline models, including path-based methods and
graph representation learning methods. In addition, we perform a series of detailed analyses. We ind that our
model is robust to the data sparsity problem to some extent, and the learned embeddings obtained by curriculum
learning can form meaningful and coherent clusters in the representation space.

Our main contributions are summarized as follows.

• We construct the interaction-speciic heterogeneous subgraph to extract useful semantics from HIN related
to the correlations between users and items and design the heterogeneous subgraph Transformer to capture
useful contextual information from the subgraphs for recommendation task.
• We devise the curriculum pre-training strategy to learn local and global context information within
the interaction-speciic heterogeneous subgraph, which gradually learns useful evidence for user-item
interaction to improve the recommendation task.
• Extensive experiments conducted on four real-world datasets demonstrate the efectiveness of our proposed
approach against a number of competitive baselines, especially when only limited training data is available.

We organize the following content as follows: Section 2 discusses the related work of HIN-based recommenda-
tion, graph pre-training and curriculum learning. Section 3 and Section 4 introduce the preliminaries and the
proposed approach, respectively. We present the experiments in Section 5. Section 6 concludes this research.

2 RELATED WORK

Our work is closely related to the studies on HIN-based recommendation, graph pre-training and curriculum
learning.

2.1 HIN-based Recommendation

In the literature on recommender systems, early works mainly adopt collaborative iltering (CF) methods to
utilize historical interactions for recommendation [11, 24], where matrix factorization approach [25] and factor-
ization machine [40] have shown efectiveness and eiciency in many applications. Since these methods usually
sufer from the cold start problem, many works [63, 64] attempt to leverage additional information to improve
recommendation performance, including social relation [33], item reviews [28] and knowledge graph [36, 49].
To efectively utilize the additional information, some works focus on using heterogeneous information

network (HIN) [14, 37, 44] in recommender systems. In this way, objects are of diferent types and edges
among objects represent diferent relations, which naturally characterize complex objects and rich relations.
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A mainstream approach is the path-based methods [13, 14, 27], where the semantic associations between two
nodes are relected by the paths that connect them. Various methods are proposed to characterize path-level
semantics for recommendation [55]. Early works [45] propose several path-based similarity measures to evaluate
the similarity of objects in heterogeneous information networks, which can also be applied in recommendation
task. Furthermore, the concept of meta-path is introduced into hybrid recommender systems [56]. Luo et al. [32]
propose a collaborative iltering-based social recommendation method using heterogeneous relations. Hu et
al. [14] leverage the path-based contextual information to capture user-item correlations.
In recent years, graph representation learning [50, 57] has been introduced to model HINs for improving

various downstream applications, including the recommendation task. Typical works adopt graph neural network
(GNN) to aggregate the heterogeneous information from adjacent nodes and utilize objectives of general purpose
to learn node or graph representations [59]. Zhang et al. [57] propose heterogeneous graph neural network
to aggregate feature information of sampled neighboring nodes, and leverage graph context loss to train the
model. Wang et al. [50] utilize graph attention network to aggregate features from meta-path based neighbors in
a hierarchical manner, which mainly focuses on the node classiication task. Wang et al. [52] learn disentangled
user/item representations from diferent aspects in a HIN, which leverages meta relations to decompose high-order
connectivity between node pairs. Compared with these studies, our approach combines the merits of path-based
methods and graph representation learning methods to learn recommendation-speciic data representations.

2.2 Graph Pre-training

Inspired by the success of pre-training methods in computer vision (CV) [42] and natural language processing
(NLP) [4], the pre-training technique has been recently applied to graph datasets for improving GNNs [16, 31].
The purpose of pre-training graph neural networks is to learn the parameters of the model for producing general
graph representations, which can be further ine-tuned on diferent downstream tasks. It has been shown that
pre-training methods have the potential to address scarce labeled data [12] and out-of-distribution prediction [15].

As an efective unsupervised pre-training strategy, mutual information maximization [23] has been utilized to
capture the correlations within the graph (e.g., nodes, edges and subgraphs) [48]. Velickovic et al. [48] propose a
graph information maximization method to learn node representations, which can better capture global structural
properties of the graph. Ren et al. [39] explore mutual information maximization for heterogeneous graph
representation learning, which focuses on learning high-level representations based on meta-path. Hu et al. [15]
pre-train an expressive GNN at the level of individual nodes as well as the entire graph, so that the GNN can learn
useful local and global representations simultaneously. Lu et al. [31] further attempt to learn how to ine-tune
models during the pre-training stage, and design a dual adaptation mechanism to encode both local and global
information as the transferable prior knowledge.

Besides, contrastive learning and graph generation strategies are also utilized to pre-train GNNs. Qiu et al. [38]
utilize contrastive learning to capture the universal network topological properties across multiple graphs, which
empowers graph neural networks to learn the intrinsic and transferable structural representations. Zhu et al. [65]
develop a framework for unsupervised graph representation learning by leveraging contrastive learning with
augmentations, which can produce graph representations of better generalizability, transferability and robustness.
Hu et al. [16] introduce a self-supervised attributed graph generation task to pre-train the GNN so that it can
capture the structural and semantic properties of the graph.
Generally, most of these methods aim to learn general node representations based on the whole graph. As a

comparison, we propose a curriculum pre-training strategy to learn recommendation-speciic representations,
which is able to gradually extract useful information from HIN for recommendation task.
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2.3 Curriculum Learning

Inspired by the human learning process, curriculum learning [1] is proposed as a learning paradigm that starts
from simple patterns and gradually increases to more complex patterns. Several studies [9, 29] have shown that
this training approach results in better generalization and speeds up the convergence.

Most of the works [3, 9, 29] on curriculum learning focus on feeding training instances to the model from easy
to hard. Guo et al. [9] utilize curriculum learning in the image classiication task and show its efectiveness. Liu
et al. [29] employ two practical measurements to automatically measure the diiculty of question-answer pairs
and improve the performance of question answering. Chu et al. [3] combine curriculum learning and contrastive
learning to pre-train graph-level representations, which samples negatives from easier to harder for contrastive
learning. Recently, some studies [30, 43] also explore the curriculum learning strategies at the task level, and show
that a group of well-designed curriculums are helpful to improve the generalization capacity and convergence
rate of various models. Guo et al. [8] train the model with sequentially increased degrees of parallelism to train
the model from easy to hard, which achieves signiicant accuracy improvements over previous non-autoregressive
neural machine translation methods. Saraianos et al. [43] group individual tasks into hierarchical clusters based
on their correlation and utilize curriculum learning to transmit the acquired knowledge between clusters.
In this work, we design a curriculum pre-training strategy to gradually learn both local and global contexts

from the subgraph, which helps our model to leverage HIN information for recommendation more efectively.

3 PROBLEM FORMULATION

A heterogeneous information network (HIN) is a special kind of information network, which contains multiple
types of objects and multiple types of edges. In this work, we consider the recommendation task in the setting of
heterogeneous information network.
Deinition 1. Heterogeneous Information Network (HIN). A HIN [6, 53] is deined as a graph G = (V, E),

in which V and E are the sets of nodes and edges, respectively. Each node v and edge e are associated with
their type mapping functions ϕ : V −→ A and φ : E −→ R, respectively, where A and R denote the sets of
pre-deined node and edge types, where |A| + |R | > 2.
Recently, HIN has become a mainstream approach to modeling various complex interaction systems [62].

Especially, it has been adopted in recommender systems for characterizing complex and heterogeneous recom-
mendation settings. Based on the above preliminaries, we deine our task as follows.
Deinition 2. HIN-based Recommendation. In a recommender system, various kinds of information can be

modeled by a HIN G = (V, E). On recommendation-oriented HINs, two kinds of entities (i.e., users and items)
together with the relations between them (i.e., rating relation) are our focus. LetU ⊂ V and I ⊂ V denote the
sets of users and items respectively, for each user u ∈ U , our task is to recommend a ranked list of items that are
of interest to u based on her/his historical record Iu , where Iu ⊂ I denotes the set of items that u has interacted
with before.

In HIN, two objects can be connected via diferent semantic patterns, which are deined as meta-paths [45].

Deinition 3.Meta-path. A meta-path is deined as a path in the form of o1
r1−→ o2

r2−→ . . .
rl−→ ol+1 (abbreviated as

o1o2 . . . ol+1), which describes a composite relation r1 ◦ r2 ◦ · · · ◦ rl between object o1 and ol+1, where ł◦ž denotes
the composition operator on relations.

For a meta-path ρ, there exist multiple speciic paths following the meta-path, which are called path instances

denoted by p. For example, in Figure 1, useru1 can be connected to item i1 through the pathsu1-i2-u2-i1,u1-i3-a1-i1
and u1-i3-a2-i1, which correspond to meta-paths łU IU Iž or łU IAIž. These paths relect potential associations
between two nodes in HIN. In our task, we mainly focus on the meta-paths starting with a user node and ending
with an item node.
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Table 1. Notations and explanations

Notation Explanation

G heterogeneous information network
Gu,i a heterogeneous subgraph connecting user-item pair ⟨u, i⟩
V the set of nodes
E the set of edges
A the set of pre-deined entity types
R the set of pre-deined edge types
U the set of users
I the set of items
Iu the set of items that u has interacted with before
S the set of slots
P the set of meta-paths

u a user
r a relation
o an object
a an attribute
ρ a meta-path
p a path instance
i an item

i
′

a random sampled negative item
v a node
Cvt the surrounding context for vt in a heterogeneous subgraph

Pr(ρ |u, i ) the preference score of user u and item i

σ the sigmoid function

MV ,MA,MS ,MP the embedding matrices of node ID, node type, slot and precursor
EV , EA, ES , EP the embedding matrices of node ID, node type, slot and precursor

for a heterogeneous subgraph
E the composite embedding matrix of a heterogeneous subgraph

W O ,W
Q
i ,W K

i ,W V
i learnable parameter matrices in multi-head self-attention layer

W1,W2 learnable parameter matrices in point-wise feed-forward network
WN ,WE learnable parameter matrices for masked node/edge prediction task
b1, b2 learnable parameter vectors

F l the input of the l-th layer
F Lu , F

L
i the representations of user u and item i from the last self-attention

layer
ev the node ID embedding of node v
zG the subgraph representation

headi the output of the i-th head of self-attention layer

d the embedding dimension
L the number of layers in the Transformer model
n the number of nodes in the subgraph
h the number of heads in the multi-head self-attention layer
τ the hyper-parameter for softmax temperature

ACM Trans. Inf. Syst.
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u1 i1u2i2

u1 i1a1i3

u1 i1a2i3

Metapath: UIUI

Metapath: UIAI u1

u2

a1

i2

i3
a2

i1

Path Sampling Subgraph

Fig. 1. The illustration of the interaction-specific heterogeneous subgraph. The subgraph is constructed by path instances
based on meta-paths.

Next, we will present a new curriculum pre-training based heterogeneous subgraph Transformer for this task,
which is able to efectively leverage the information relected in HINs. The notations that we will use throughout
the article are summarized in Table 1.

4 APPROACH

In this paper, we propose a novel Curriculum pre-training based HEterogeneous Subgraph Transformer (called
as CHEST ) to efectively utilize HIN information for improving the recommendation performance. Tailored to
the recommendation task, we irst construct an interaction-speciic heterogeneous subgraph to extract useful
contextual information fromHIN for the user-item pair, and then design a heterogeneous subgraph Transformer to
encode this subgraph. Finally, we introduce a curriculum pre-training strategy to learn recommendation-speciic
representations. Figure 2 presents the overall illustration of the proposed CHEST approach. Next, we describe
each part in detail.

4.1 Constructing Interaction-Specific Heterogeneous Subgraph

In our task, it is essential to leverage useful semantics from HIN to capture the connections between users and
items for efective recommendation. Diferent from prior studies [44, 50], we collect the most relevant paths that
connect the two nodes. Then, these paths (including nodes and edges) compose a heterogeneous subgraph for
the user-item pair ⟨u, i⟩, denoted by Gu,i . We expect such a subgraph to contain most of the relevant context
information for a speciic user-item interaction.
To derive relevant and reliable paths between two nodes, following existing works [14, 27], we pre-deine

multiple meta-paths to guide the selection of paths. Speciically, we irst use metapath2vec [5] to learn the
latent vectors for all nodes. Then, given the user-item pair, we start from the user node to ind the path instance
connecting them. At each step, we obtain the łpriorityž scores by computing the embedding similarity between
the current node and its neighbors, and then sample the next-hop node from the neighboring nodes according to
the łpriorityž score. For each meta-path, we sample 2 × K path instances as candidates. Finally, we rank these
candidate paths based on the average cosine similarity between the latent vectors of two consecutive nodes on
it, and only keep top-K path instances with the highest average similarities for each meta-path to compose the
interaction-speciic heterogeneous subgraph.

In Figure 1, we present an example for our interaction-speciic heterogeneous subgraph for user u1 and item i1,
where we consider two types of meta-paths łU IU Iž or łU IAIž. For each meta-path, we obtain the corresponding
path instances from the HIN by the łpriorityž-based sampling strategy. In detail, we acquire the paths u1-i2-u2-i1,
u1-i3-a1-i1 and u1-i3-a2-i1 connecting the user-item pair ⟨u1, i1⟩ according to meta-paths łU IU Iž and łU IAIž,

ACM Trans. Inf. Syst.
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Fig. 2. The overview of our proposed Transformer model and curriculum pre-training strategy. The elementary courses
consist of three pre-training tasks: (1) Masked Node Prediction (MNP), (2) Masked Edge Prediction (MEP) and (3) Meta-path
Type Prediction (MTP). And the advanced course is the Subgraph Contrastive Learning (SCL) task.

respectively. Finally, we re-connect all the nodes with the edges in these paths and produce the interaction-
speciic heterogeneous subgraph as the right part of Figure 1. With heterogeneous subgraphs, we can explicitly
keep the semantics of multiple meta-paths and model the correlations among nodes across diferent paths. It is
more eicient to aggregate neighboring node information within a compact, relevant subgraph than the entire
graph [17, 57], since most irrelevant nodes in HIN are excluded through the łpriorityž-based sampling strategy.

4.2 Heterogeneous Subgraph Transformer

Given the interaction-speciic heterogeneous subgraph for a special user-item pair, we design the heterogeneous
subgraph Transformer to capture useful semantics within it, which consists of an embedding layer and multiple
self-attention layers.

4.2.1 Embedding Layer. Unlike the embedding mechanism in BERT [4] for sequences, we need to efectively
model the nodes and edges in the subgraph. To preserve the rich structure semantics in subgraphs, a key point is
how to model the position information (i.e., location) of a node and its links with other nodes in the subgraph.
For this purpose, we irst assign a slot index to a node according to the relative position w.r.t. the target user node
in sampled paths. To be speciic, the slot index of the starting user node is assigned to zero, and the index of the
other node is set as its minimum distance with the starting node among multiple involved paths in a subgraph.
In this way, each node is placed according to its slot index and the original subgraph will be converted into a
multi-slot sequence. To model the edges in subgraphs, we further incorporate a precursor index to trace the
precursor in paths for a node. To facilitate the multi-slot sequence representation, we incorporate four types of
node embeddings to preserve the characteristics of the subgraph :
•Node ID Embedding: For each nodev in the heterogeneous subgraphGu,i , wemaintain an ID embeddingmatrix

MV ∈ R |V |×d , which projects the high-dimensional one-hot ID representation of a node into low-dimensional
dense representation.
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• Node Type Embedding: In HIN, each node is associated with a speciic node type. Therefore, we also maintain
a node type embedding matrix MA ∈ R |A |×d to project the one-hot node type representation into dense
representation.
• Slot Embedding: The interaction-speciic heterogeneous subgraph is composed of multiple paths that connect

the user (starting node) and the item node (ending node). In these paths, the distance between two nodes can
relect their semantic relationship. As to the starting user node, its distance with an other node (slot index) is
able to depict the user’s preference on it, which is beneicial for the personalized recommendation. Therefore,
we consider designing the slot embeddings to represent the above characteristics. Since we have assigned a slot
index for each node according to the relative position in the involved paths, we use a slot embedding matrix
MS ∈ R |S |×d to project the slot index of nodes into corresponding representations, where |S| is the number of
slots in the subgraph.
• Precursor Embedding: Although the slot embedding has modeled the relative distance from the starting user

node, the adjacent relations between two consecutive nodes in the subgraph have not been represented. Hence,
we further add precursor indices to record the preceding nodes for each node in the subgraph. We maintain a
precursor embedding matrix MP ∈ Rn×d to project the precursor indices of each node into embeddings, where n
is the maximum number of nodes in the subgraph. Since a node may have multiple precursors, we average the
embeddings of the precursor indices as a single vector.
Based on the above embeddings, we aggregate them together to produce the subgraph representation in a

multi-slot sequence form. Formally, the representation of nodes in the subgraph is a embedding matrix E ∈ R |N |×d ,
which is composed of four parts:

E = EV + EA + ES + EP , (1)

where the four matrices EV , EA, ES and EP denote the node ID embedding, node type embedding, slot embedding
and precursor embedding, respectively. These embeddings are obtained by the look-up operation from MV , MA,
MS andMP , respectively. It is worth noting that through the above representations, the heterogeneous (e.g., node
type), path-level (e.g., position in the path) and graph-structure (e.g., edges in the subgraph) information from
subgraph Gu,i have been encoded in the composite embedding matrix E.

4.2.2 Self-Atention Layer. Similar to the architecture of Transformer [46], based on the embedding layer, we
develop the subgraph encoder by stacking multiple self-attention layers. A self-attention layer generally consists
of two sub-layers, i.e., a multi-head self-attention layer and a point-wise feed-forward network. Speciically, the
multi-head self-attention is deined as:

MHAttn(Fl ) = [head1,head2, ...,headh]W
O , (2)

headi = Attention(FlW
Q
i , F

lWK
i , F

lWV
i ), (3)

where the Fl is the input for the l-th layer, when l = 0, we set F0 = E, and the projection matrixW
Q
i ∈ Rd×d/h ,

WK
i ∈ Rd×d/h , WV

i ∈ Rd×d/h and WO ∈ Rd×d are the corresponding learnable parameters for each attention
head. The attention function is implemented by scaled dot-product operation:

Attention(Q,K,V) = softmax(
QK⊤
√
d/h

)V, (4)

where Q = FlW
Q
i , K = FlWK

i , and V = FlWV
i are the linear transformations of the input embedding matrix, and√

d/h is the scale factor to avoid large values of the inner product.
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After the multi-head attention layer, we endow the non-linearity of the self-attention layer by applying a
point-wise feed-forward network. The computation is deined as:

Fl = [FFN(Fl1)
⊤; · · · ; FFN(Fln )⊤], (5)

FFN(x ) = (ReLU(xW1 + b1))W2 + b2, (6)

whereW1,b1,W2,b2 are trainable parameters.
Finally, we can compute the representation for the interaction-speciic heterogeneous subgraph Gu,i based on

the representations at the inal self-attention layer as:

zGu,i = MLP(FLu ⊕ FLi ), (7)

where ł⊕ž denotes the vector concatenation operation, FLu and FLi are the representations of user u and item i

from the last self-attention layer, which represent the starting user u and ending item i in the subgraph, and L is
the number of self-attention blocks.

4.3 Curriculum Pre-training

With the above model architecture, we focus on developing an efective representation learning approach that
is special for HIN-based recommendation. Considering that HIN encodes complex and heterogeneous data
relations, our idea is to gradually extract and learn useful information from local (e.g., node-level) to global

(i.e., subgraph-level) context from interaction-speciic heterogeneous subgraphs. Such an idea can be in essence
characterized by curriculum learning [1], which starts from simple tasks or instances and gradually transforms to
more complex ones [30, 43]. Based on this idea, we develop a novel curriculum pre-training strategy that designs
both elementary and advanced courses (i.e., pre-training tasks) with increasing diiculty levels.

4.3.1 Elementary Course. The elementary course aims to learn local context information from interaction-speciic
heterogeneous subgraphs. We propose to train the proposed heterogeneous subgraph Transformer model with
three new tasks, namely masked node prediction, masked edge prediction and meta-path type prediction. The
irst two tasks focus on enhancing the node-level representations, while the meta-path type prediction task is
designed for capturing path-level semantics for user-item interactions.
•Masked Node Prediction: This task is to infer amasked node based on its surrounding context in a heterogeneous

subgraph. Following the Cloze task in BERT [4], we randomly mask a proportion of nodes in a heterogeneous
subgraph and then predict the masked nodes based on the remaining contexts. As for the representation of the
masked node, similar to the mask operation in BERT, we only remove its node id embedding but keep other
embeddings. Besides, for all the nodes with the masked node as the precursor, we also remove the masked
node from their precursor embeddings. Such an operation is able to prevent the masked node from afecting
the representations of other nodes. Assume that we mask node vt in a multi-slot sequence {v1, · · · ,vt , · · · ,vn }.
We treat the rest sequence {v1, · · · ,mask, · · · ,vn } as the surrounding context for vt , denoted by Cvt . Given the
surrounding context Cvt and the masked node vt , we minimize the Masked Node Prediction (MNP) loss by:

LMNP (Cvt ,vt ) = − log
(

σ (F⊤t WN evt ) − σ (F⊤t WN eṽ )
)

, (8)

where ṽ denotes an irrelevant node, evt and eṽ denote the node ID embedding for vt and ṽ respectively,

WN ∈ Rd×d is a parameter matrix to learn and Ft is the learned representation for the t-th position using our
subgraph encoder as in Eq. 5.
•Masked Edge Prediction: The masked edge prediction task is to recover the masked edge of two adjacent nodes

based on the surrounding context. Similar to masked node prediction, we randomly mask a proportion of edges
in the input (i.e., removing the precursor index) and then predict the masked edges based on the surrounding
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contexts. In practice, if we mask the edge ⟨vj ,vk ⟩, we only need to remove vj from the precursors of vk . Formally,
the Masked Edge Prediction (MEP) loss for the edge ⟨vj ,vk ⟩ can be given as:

LMEP (vj ,vk ) = − log
(

σ (F⊤j WEFk ) − σ (F⊤j WEFk ′ )
)

, (9)

where vk ′ is a sampled node that is not adjacent to vj ,WE ∈ Rd×d is a parameter matrix to learn, Fj , Fk and Fk ′

are the learned representations for the corresponding positions obtained in the same way as Eq. 5.
•Meta-path Type Prediction: Since the user-item interaction subgraph is composed of multiple paths, path-level

semantics encode important evidence to explain the underlying reasons why a speciic user-item interaction
occurs [13, 14]. We would like to directly capture the semantics from meta-paths for improving the path semantic
information in representations. Speciically, we consider meta-path type prediction as a classiication task and
introduce the Meta-path Type Prediction (MTP) loss as:

LMTP (u, i ) = −
∑

ρ ∈P

(

yu,i,ρ · log Pr(ρ |u, i ) + (1 − yu,i,ρ ) · log(1 − Pr(ρ |u, i ))
)

, (10)

where yu,i,ρ is a binary label indicating whether there exists a path from the meta-path ρ between u and i , P
is the meta-path set, and Pr(ρ |u, i ) is the probability that the user and item are connected by the meta-path ρ,
which is deined as:

Pr(ρ |u, i ) = σ (MLP(FLu ⊕ FLi )), (11)

where MLP(·) is a multi-layer perceptron and σ is the sigmoid function.

4.3.2 Advanced Course. Although the above pre-training tasks have captured local context information (e.g., node,
edge and path) from the heterogenous subgraph, the global correlations at the subgraph level cannot be efectively
learned by the elementary course. To characterize the overall efect of global contexts on recommendation,
we devise an advanced course to train the heterogeneous subgraph Transformer with a Subgraph Contrastive

Learning (SCL) task. Based on the original subgraph, the core idea is to augment a number of interaction-speciic
subgraphs. Then, we apply contrastive learning [2, 10] to further capture subgraph-level evidence for modeling
user-item interaction. Here, we consider three path-based subgraph augmentation strategies:
• Path Removal: It augments new subgraphs by randomly removing a small portion of paths from the original

user-item interaction subgraph, which is expected to make the learned representations less sensitive to structural
perturbation and improve their robustness.
• Path Insertion: It introduces a small proportion of new paths into the original subgraph. In this way, the edges

in these new paths will be inserted into the subgraph, which can also improve the robustness of our model to
resist noisy graph structure information.
• Path Substitution: It can be considered as the combination of the path removal and path insertion strategies,

where we substitute a proportion of paths with new paths. In this way, we further enlarge the diference between
the augmented subgraphs and the original subgraph, and enforce the model to capture more fundamental
semantics for user-item interactions.
Given the target user-item subgraph Gu,i (focusing on user u and i), we irst augment a new subgraph with

the above subgraph augmentation strategies, and consider them as positive subgraph, denoted by G+u,i . While,
we consider the subgraphs connecting the same user u with other items as negative subgraphs, denoted by
{G−u,i }. Following a standard constative learning approach [2], we maximize the diference of augmented positive
subgraph and negative subgraphs, w.r.t. the original subgraph:

LSCL (G,G+, {G−}) = − log
exp
(

sim(zG, zG+ )/τ
)

exp
(

sim(zG, zG+ )/τ
)

+

∑

G− exp
(

sim(zG, zG− )/τ
) , (12)

ACM Trans. Inf. Syst.



12 • Wang and Zhou, et al.

where zG , zG+ and zG− are the produced subgraph representations from the heterogeneous subgraph Trans-
former (Eq. 7) for the original subgraph, augmented positive subgraph and augmented negative subgraph (we
omit u and i in subscripts for simplicity), respectively, sim(x, y) denotes the cosine similarity function, and τ is a
hyper-parameter for softmax temperature.
This constative learning loss enforces the model to learn subgraph-level semantics for user-item interaction.

By combining with the elementary course, both local and global context information can be captured in inal
learned representations. In particular, we schedule the pre-training tasks from two courses in an łeasy-to-diicultž
order, which is necessary to model complex data relations in HIN.

4.4 Learning and Discussion

In this part, we present the learning and related discussions of our approach for HIN-based recommendation.

4.4.1 Learning. The entire procedure of our approach consists of two major stages, namely curriculum pre-
training and ine-tuning stages. At the curriculum pre-training stage, we irst pre-train our model on the
elementary course, consisting of three pre-training objectives to learn local context information in the subgraph,
then pre-train on the advanced course to learn global context information from HIN. At the ine-tuning stage, we
utilize the pre-trained parameters to initialize the parameters, and then adopt the recommendation task to train
our model. Given user u and item i , the preference score is calculated by:

Pr(u, i ) = σ (zGu,i ), (13)

where σ (.) is the sigmoid function and zGu,i is the representation for Gu,i deined in Eq. 7. We adopt the binary
cross-entropy loss as the inal objective:

Lr ec (u, i ) = − log Pr(u, i ) − log(1 − Pr(u, i ′)), (14)

where we pair each ground-truth item i with one (or several) negative item i ′ that is randomly sampled. The
detailed learning process is shown in Algorithm 1.

4.4.2 Time complexity. In recommender systems, the online service time is more important to consider than
oline training time. Once our model has been learned (after pre-training and ine-tuning), online service time
mainly includes the cost of evaluating all the candidate items according to Eq. 13 and the cost of selecting top items,
which is similar to previous neural collaborative iltering methods [11]. A major preprocessing cost lies in the
construction of heterogeneous subgraphs for possible user-item pairs. As discussed before, we can pre-compute
the priority scores of neighbors for all the nodes. Based on priority scores, we can sample a high-quality path
instance in a time roughly as O (L̄) using pre-built eicient data structures such as alias table [26] (taking time
O (1) to sample from categorical distributions), where L̄ is the average path length. In practice, the number of
meta-paths and the number of paths in a subgraph are usually set to small values, so that the number of nodes in
a subgraph can be bounded below a reasonable value (e.g., 50). In this way, our pre-training and ine-tuning costs
are similar to train/pre-train Transformer architecture [4, 46] over sequence data, which can be eicient if we use
very few self-attention layers or parallelize the computation.

4.4.3 Discussion. Compared with existing work for HIN-based recommendation, our approach has two major
diferences. In our approach, data characterization, representation model and learning algorithm are specially
designed for user-item interaction based on HIN. As for data characterization, we introduce interaction-speciic
heterogeneous subgraph to reduce the incorporation of irrelevant information. Based on such a subgraph structure,
we further propose a novel heterogeneous subgraph Transformer as the representation model, which can efectively
model the subgraph semantics. Furthermore, we propose a novel learning algorithm by designing a curriculum
pre-training approach, in which elementary and advanced courses are organized to gradually extract local and
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Algorithm 1: The overall training process for the CHEST model.

Input: The heterogeneous information network G = (V, E), pre-deined meta-paths P, the user setU , the item set I,
the user-item historical records D = ⟨u, i⟩

Output: The learned node embedding matrix E, the learned parameters of the self-attention layer Θ

1 Use metapath2vec to learn latent vectors of all the nodes in G.
2 for j = 1→ |U| do
3 for k = 1→ |I| do
4 for l = 1→ |P| do
5 Collect the top-K path instances with the highest average similarities corresponding to the meta-path ρl

that connect the user node uj and item nodes ik .

6 end

7 Merge the collected path instances into a subgraph Guj ,ik .
8 end

9 end

10 Randomly initialize E and Θ.

11 // Pre-training parameters on the elementary course.

12 for j = 1→ |U| do
13 for k = 1→ |I| do
14 Transform the subgraph Guj ,ik for the user-item pair into multi-slot sequence.

15 Acquire ID embeddings EV , node type embeddings EA, slot embeddings ES and precursor embeddings EP for

the nodes in the subgraph Guj ,ik .
16 Acquire the composite embedding matrix E using Eq. 1.

17 Acquire the subgraph representations FL by multiple self-attention layers using Eq. 2, Eq. 3, Eq. 5, Eq. 6 and Eq. 7.

18 Pre-train the parameters E and Θ using Eq. 8, Eq. 9 and Eq. 10.

19 end

20 end

21 // Pre-training parameters on the advanced course.

22 for j = 1→ |U| do
23 for k = 1→ |I| do
24 Randomly select a subgraph augmentation strategy from the three path-based subgraph augmentation strategies

(Path Removal, Path Insertion and Path Substitution).

25 Augment a new positive subgraph G+u,i for each subgraph Gu,i .
26 Generate the representations of the subgraphs using the operations from line 14 to line 17.

27 Pre-train the parameters E and Θ using Eq. 12.

28 end

29 end

30 // Fine-tuning parameters on the recommendation task.

31 for t = 1→ |D| do
32 Encode the subgraph Guj ,ik using the operations from line 14 to line 17.

33 Compute Pr(u, i ) using Eq. 13.

34 Fine-tune the parameters E and Θ using Eq. 14.

35 end

36 return E and Θ.

global context information from HIN to recommendation task. The three aspects jointly ensure that our approach
can better extract and leverage relevant contextual information from HIN for modeling user-item interaction.
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Our work is related to two categories of models, namely path-based methods [14, 20, 27] and graph represen-
tation learning methods [17, 50, 57]. The former category separately models the sampled paths, so that graph
structure or cross-path node correlation can not be explicitly captured. Besides, these path-based methods rely on
the recommendation task to learn the representations, which may sufer from data sparsity problem and cause
overitting. As a comparison, our approach constructs an interaction-speciic heterogeneous subgraph based
on high-quality paths, which is able to capture richer semantics from the subgraph structure. In addition, we
propose an elementary-to-advanced curriculum pre-training strategy to gradually learn from both local and global
contexts in the subgraph, which is able to learn more efective representations. Graph representation learning
methods aggregate information from neighboring nodes in the entire HIN and then learn the representations via
task-insensitive objectives. In this way, noisy or irrelevant information is likely to be incorporated into the learned
representations, without consider the goal of the recommendation task. In our approach, the interaction-speciic
heterogeneous subgraph is utilized to characterize high-quality context information, which efectively reduces
the inluence of irrelevant nodes and edges. Then, we design a curriculum pre-training strategy based on the
heterogeneous subgraph to learn the user-item association, which is more suitable for the recommendation task.

5 EXPERIMENT

In this section, we irst set up the experiments, and then present the results and detailed analyses.

5.1 Experimental Setup

5.1.1 Datasets. We conduct experiments on four widely-used datasets from diferent domains, namely Movielens,
Douban, Yelp and AMiner (a sub-dataset of collaboration network), where movies, movies, businesses and papers
are considered as items for recommendation, respectively. For reproducible comparison, we reuse the preprocessed
results and the selected meta-paths released in [13, 20]1. We treat a rating as an interaction record, indicating
whether a user has rated an item or not. The detailed statistics of these datasets after preprocessing are summarized
in Table 2, where we report the statistics by diferent edge relations. The irst row of each dataset corresponds to
the number of users, items and interactions, while the other rows correspond to the statistics of other relations.
The selected meta-paths for each dataset are in the last column.

5.1.2 Evaluation Metrics. We use three commonly used metrics to evaluate the performance of our proposed
model.
• Hit Rate: Hit rate (HR) measures the percentage that recommended items contain at least one correct item

interacted by the user, which does not consider the actual rank of the items and has been widely used in previous
works and is deined as:

HR@k =
1

|U |
∑

u ∈U
I( |Îu,k ∩ Iu | > 0), (15)

where Îu,k denotes the set of top-k recommended items for user u and Iu is the set of testing items for user u,
and I(·) is an indicator function.
• Normalized Discounted Cumulative Gain: Normalized Discounted Cumulative Gain (NDCG) takes the

positions of correct recommended items into consideration, which is important in settings where the order of

1https://github.com/librahu/HIN-Datasets-for-Recommendation-and-Network-Embedding
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Table 2. Basic statistics of the four datasets.

Datasets Relations #Type A #Type B #A-B Meta-path

Movielens

User-Movie 943 1,682 100,000 UMUM
Movie-Movie 1,682 1,682 82,798 UMMM
User-Occupation 943 21 943 UOUM
Movie-Genre 1,682 18 2,861 UMGM

Douban

User-Movie 13,367 12,677 1,068,378 UMUM
Movie-Actor 12,677 6,311 33,572 MAMA
Movie-Director 12,677 2,449 11,276 MDMD
Movie-Type 12,677 38 27,668 MTMT

Yelp

User-Business 16,239 14,284 198,397 UBUB
User-User 16,239 16,239 158,590 UUUB
Business-City 14,284 47 14,267 UBCiB
Business-Category 14,284 511 40,009 UBCaB

AMiner

Author-Paper 31,664 103,470 196,170 APAP

Paper-Conference 103,470 101 103,470 APCP
Paper-Label 103,470 10 103,190 APLP
Paper-Year 103,470 46 103,470 APYP

recommendations matters and is deined as:

NDCG@k =
DCG@k

iDCG
,

DCG@k =
1

|U |
∑

u ∈U

k
∑

j=1

I(Îu, j ∈ Iu )
log2 (j + 1)

(16)

where Îu, j denotes the j-th recommended item for the user u, and IDCG denots the ideal discounted cumulative
gain, which is a normalization constant and is the maximum possible value of DCG@k .
•Mean Reciprocal Rank: Mean Reciprocal Rank (MRR) is associated with rank models where the user only

wishes to see one relevant item, which is deined as:

MRR =
1

|U |
∑

u ∈U
(
1

ru
), (17)

where ru denotes the position of the highest-ranked relevant item for the user u.
We report results on HR@{5, 10, 20}, NDCG@{5, 10, 20} and MRR. Following [60, 61, 63], we apply the leave-

one-out strategy for evaluation. To avoid data leakage, for each user, we sort his/her interaction records by the
interaction timestamps ascendingly. Besides, we hold out the last interaction as the test set, the interaction before
the last one is used as the validation data, and the remaining data is used for training. Since it is time-consuming
to rank all items for every user during evaluation, we pair the ground-truth item with 1000 randomly sampled
negative items that the user has not interacted with. We calculate all metrics according to the ranking of the
items and report the average score over all test users.

5.1.3 Baselines. We consider the following baselines:
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• BPR [41] is a classic personalized ranking algorithm that optimizes the latent factor model with the pairwise
ranking loss function via stochastic gradient descent.
• UltraGCN [35] is the state-of-the-art collaborative iltering model based on graph neural network, which
simpliies the formulation of GCNs and skips ininite layers of message passing for more concise eicient
recommendation
• DGCF [51] pays attention to modeling the iner granularity of user intents, which disentangle diferent
intents from the single user-item interaction graph and yield disentangled representations for user and
item.
• PF-HIN [7] designs a ranking-based breadth-irst search strategy to generate node sequence and utilizes
masked node prediction to pre-train the nodes’ representations.
• GCC [38] is a recently proposed pre-training method for homogeneous graphs via contrastive learning. We
ine-tune the pre-trained model released by the authors on our datasets.
• HAN [50] treats meta-paths as virtual edges to connect nodes and utilizes a hierarchical attentionmechanism
to capture both node-level and semantic-level information.
• HGT [17] introduces node- and edge-type dependent attention mechanism to model heterogeneous graph,
which assigns diferent weights on neighbors during aggregation to capture the interactions among diferent
types of nodes.
• MCRec [14] utilizes convolutional neural network to construct meta-path embeddings and further leverages
the co-attention mechanism to model interactions among users, items and meta-paths.
• MTRec [27] introduces a multi-task learning framework for HIN-based recommender systems. It utilizes
link prediction as an auxiliary task to improve the recommendation performance.
• HINGE [20] captures and aggregates the interactive patterns under diferent meta-paths between each pair
of user and item nodes. It formulates the interaction modules via a convolutional framework and eiciently
learns the parameters with fast Fourier transform.

Our baselines can be roughly categorized into four groups: (1) BPR, UltraGCN and DGCF are classic or neural
collaborative iltering methods, (2) PF-HIN and GCC are pre-training methods that utilize supervised signals
to pre-train graph encoders for heterogeneous and homogeneous graphs respectively, (3) HGT and HAN are
specially designed graph neural networks for modeling HIN, (4) MCRec, MTRec and HINGE are state-of-the-art
HIN-based recommenders, which extract path instances based on meta-paths from HIN and then model the paths
using neural networks.

5.1.4 Implementation Details. For all the baselines, we either adopt the original source code or implement the
model by PyTorch. Speciically, in Table 3, models with ł♢ž are implemented by provided source code while those
with ł♡ž are implemented by ourselves. For our model, we implement it by PyTorch. For all methods that use
meta-paths, we use the same meta-paths as shown in the last column of Table 2 and sample ive path instances
for each meta-path. For MCRec, we also pre-learned the latent vectors for nodes to initialize parameters as the
authors suggested.

In our model, we use two self-attention blocks each with two attention heads and set the embedding size as 64.
We utilize the learned parameters at the pre-training stage to initialize the model parameters at the ine-tuning
stage. In the pre-training stage, the mask proportions of nodes and edges are set as 0.3 and 0.2, and the weights
for the three pre-training losses in the elementary course (i.e.,MNP, MEP and MTP) are set as 0.5, 1.0, and 0.2,
and the softmax temperature in the advanced course is set to 0.1. We use the Adam optimizer [21] with learning
rates of 0.001 and 0.0001 for pre-training and ine-tuning stages, respectively. For the baselines, all the models
have some parameters to tune. We either follow the reported optimal parameter settings or optimize each model
separately using the validation set.
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Table 3. Performance comparison of diferent methods on HIN-based recommendation. The best and second best results are
in bold and underlined fonts respectively. ł†ž indicates the statistical significance for p < 0.01 compared to the best baseline.

Datasets Mothods HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20 MRR

Movielens

BPR♡ 0.0806 0.1474 0.2280 0.0519 0.0734 0.0929 0.0674

UltraGCN♢ 0.0764 0.1209 0.1792 0.0506 0.0650 0.0797 0.0599

DGCF ♢ 0.0891 0.1410 0.2153 0.0577 0.0745 0.0939 0.0697

PF-HIN♡ 0.0721 0.1249 0.1983 0.0508 0.0672 0.0854 0.0608

GCC♢ 0.0859 0.1304 0.2015 0.0580 0.0726 0.0904 0.0701

HAN♢ 0.0723 0.1256 0.2004 0.0495 0.0655 0.0843 0.0622

HGT♢ 0.0774 0.1389 0.2195 0.0482 0.0679 0.0882 0.0627

MCRec♢ 0.0712 0.1209 0.1875 0.0504 0.0632 0.0723 0.0597

MTRec♡ 0.0734 0.1251 0.1983 0.0512 0.0650 0.0833 0.0608

HINGE♢ 0.0901 0.1485 0.2344 0.0541 0.0708 0.0924 0.0628

CHEST 0.0933† 0.1616† 0.2524† 0.0611† 0.0802† 0.1073† 0.0759†

Douban

BPR♡ 0.0944 0.1571 0.2371 0.0578 0.0779 0.0981 0.0672

UltraGCN♢ 0.1075 0.1668 0.3029 0.0743 0.0931 0.1273 0.0875

DGCF ♢ 0.1155 0.1739 0.2683 0.0803 0.0990 0.1225 0.0921

PF-HIN♡ 0.0967 0.1538 0.2440 0.0676 0.0845 0.1036 0.0721

GCC♢ 0.0989 0.1886 0.2624 0.0910 0.1071 0.1208 0.0849

HAN♢ 0.0789 0.1634 0.2438 0.0559 0.0795 0.1005 0.0687

HGT♢ 0.0875 0.1692 0.2623 0.0542 0.0804 0.1039 0.0711

MCRec♢ 0.0900 0.1386 0.2467 0.0524 0.0623 0.1010 0.0597

MTRec♡ 0.1138 0.1421 0.2685 0.0538 0.0644 0.0960 0.0607

HINGE♢ 0.1380 0.2221 0.3441 0.0882 0.1139 0.1362 0.0961

CHEST 0.1460 † 0.2378† 0.3821† 0.0974† 0.1266† 0.1631† 0.1175†

Yelp

BPR♡ 0.0517 0.0858 0.1394 0.0335 0.0444 0.0579 0.0421

UltraGCN♢ 0.0597 0.0879 0.1353 0.0391 0.0482 0.0600 0.0447

DGCF ♢ 0.0757 0.1190 0.1860 0.0510 0.0649 0.0817 0.0611

PF-HIN♡ 0.0615 0.0785 0.1478 0.0512 0.0576 0.0623 0.0459

GCC♢ 0.0806 0.0886 0.1363 0.0572 0.0597 0.0641 0.0551

HAN♢ 0.0675 0.0873 0.1683 0.0410 0.0510 0.0613 0.0420

HGT♢ 0.0810 0.1274 0.1922 0.0504 0.0685 0.0898 0.0626

MCRec♢ 0.0726 0.1186 0.1823 0.0498 0.0657 0.0745 0.0487

MTRec♡ 0.0834 0.1206 0.1875 0.0514 0.0698 0.0875 0.0594

HINGE♢ 0.0888 0.1416 0.2160 0.0593 0.0763 0.0949 0.0703

CHEST 0.1154† 0.1655† 0.2446† 0.0826† 0.0986† 0.1185† 0.0924†

AMiner

BPR♡ 0.1001 0.1395 0.1834 0.0734 0.1064 0.1300 0.0865

UltraGCN♢ 0.1125 0.1469 0.1987 0.0892 0.1151 0.1521 0.0986

DGCF ♢ 0.1187 0.1495 0.1855 0.0945 0.1281 0.1557 0.1017

PF-HIN♡ 0.1223 0.1654 0.1840 0.0956 0.1378 0.1467 0.1132

GCC♢ 0.1234 0.1674 0.1807 0.0925 0.1416 0.1549 0.1141

HAN♢ 0.1189 0.1598 0.1778 0.0938 0.1342 0.1521 0.1152

HGT♢ 0.1201 0.1637 0.1807 0.0967 0.1313 0.1406 0.1224

MCRec♢ 0.1265 0.1731 0.1854 0.1028 0.1323 0.1532 0.1276

MTRec♡ 0.1363 0.1872 0.1976 0.1068 0.1338 0.1665 0.1391

HINGE♢ 0.1429 0.2106 0.2389 0.1209 0.1575 0.1771 0.1528

CHEST 0.1586† 0.2538† 0.3474† 0.1467† 0.1963† 0.2199† 0.1830†

ACM Trans. Inf. Syst.



18 • Wang and Zhou, et al.

HR@1 HR@3 HR@5 HR@10 HR@15 HR@20
0.03

0.12

0.21

0.30

0.39 UltraGCN
DGCF

GCC
MTRec

HINGE
CHEST

(a) Douban

HR@1 HR@3 HR@5 HR@10 HR@15 HR@20
0.02

0.08

0.14

0.20

0.26 UltraGCN
DGCF

GCC
MTRec

HINGE
CHEST

(b) Yelp

Fig. 3. Performance comparison w.r.t. diferent evaluation metrics on Douban and Yelp dataset.

5.2 Performance Comparison

Table 3 presents the performance comparison of diferent methods on the recommendation task.
As we can see, for three classic recommendation baselines, the following performance order is consistent

across all datasets: DGCF>UltraGCN>BPR. A possible reason is that DGCF can capture diverse relationships
in the interaction graph and disentangle user intents from single user-item interaction into diferent aspects.
Besides, they all perform worse on the more sparse datasets (i.e., Yelp and AMiner), because they are trained with
limited user-item interactions and are likely to sufer from data sparsity problem.
Second, we observe that GCC performs better than PF-HIN. A major reason is that GCC is pre-trained on

large-scale homogeneous graphs from various ields and has encoded transferable graph structure knowledge,
which is useful for improving the recommendation task.

Third, HGT performs better than HAN in most cases. One possible reason is that HGT designs node- and
edge-type dependent parameters to characterize the heterogeneous attention over each edge, which can capture
dedicated representations for diferent types of nodes and edges. However, the two methods are general GNN em-
bedding methods, which may not be aware of the recommendation goal and cannot perform better than UltraGCN
and DGCF in some cases. For path-based baselines, the performance order is as follows: HINGE>MTRec>MCRec.
MCRec and MTRec sample path instances through łpriorityž-based walking strategy. Besides, MTRec utilizes
the self-attention mechanism to learn the semantics of meta-paths in HIN and designs a special auxiliary link
prediction task for improving the recommendation performance. While, GCC and PF-HIN perform slightly worse
than MTRec, which shows that task-agnostic graph pre-training methods cannot yield best performance for
HIN-based recommendation.

Furthermore, in order to compare the performance of our method and some competitive baseline methods in
more detail, we report more metrics (i.e., HR@1, HR@3, HR@5, HR@10, HR@15, HR@20) on Douban and Yelp
datasets in Figure 3.
As seen in Table 3 and Figure 3, our model CHEST performs consistently better than all the baselines by a

large margin on four datasets. Diferent from these baselines, our heterogeneous subgraphs are specially sampled
for user-item interaction, which is tailored to the recommendation task. Besides, our proposed heterogeneous
subgraph Transformer is able to preserve graph structure and path-level semantics within the subgraph via
special composite node embeddings. We further propose the curriculum pre-training strategy to learn efective
representations for utilizing useful information in HIN for recommendation task. Comparing our approach with
all the baseline models, it can be observed that the above strategies are very useful to improve the recommendation
performance.
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Table 4. Ablation study of our approach on composite node embeddings.

Datasets Mothods HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20 MRR

Douban

CHEST 0.1460 0.2378 0.3821 0.0974 0.1266 0.1631 0.1175

w/o Node Type 0.1423 0.2145 0.3512 0.0945 0.1213 0.1543 0.1122

w/o Slot 0.1410 0.2098 0.3496 0.0924 0.1172 0.1510 0.1098

w/o Precursor 0.1387 0.2035 0.3453 0.0886 0.1078 0.1452 0.1070

Yelp

CHEST 0.1154 0.1655 0.2446 0.0826 0.0986 0.1185 0.0924

w/o Node Type 0.1123 0.1566 0.2334 0.0769 0.0906 0.1106 0.0848

w/o Slot 0.1087 0.1553 0.2271 0.0774 0.0873 0.1087 0.0798

w/o Precursor 0.1014 0.1547 0.2342 0.0735 0.0865 0.1054 0.0786

Table 5. Ablation study of our approach on pre-training tasks (P) and other curriculum setings (C).

Datasets Method HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20 MRR

Douban

CHEST 0.1460 0.2378 0.3821 0.0974 0.1266 0.1631 0.1175

(P)

w/o MTP 0.1389 0.2134 0.3512 0.0967 0.1209 0.1552 0.1108

w/o MEP 0.1437 0.2186 0.3486 0.0945 0.1242 0.1569 0.1137

w/o MNP 0.1322 0.2047 0.3435 0.0859 0.1092 0.1440 0.0990

w/o SCL 0.1381 0.2112 0.3345 0.0934 0.1169 0.1476 0.1063

(C)
Multi-task 0.1356 0.2062 0.3420 0.0910 0.1136 0.1474 0.1045

Reverse courses 0.1299 0.2037 0.3238 0.0871 0.1107 0.1407 0.1008

Yelp

CHEST 0.1154 0.1655 0.2446 0.0826 0.0986 0.1185 0.0924

(P)

w/o MTP 0.1131 0.1637 0.2394 0.0794 0.0956 0.1145 0.0884

w/o MEP 0.1116 0.1616 0.2316 0.0803 0.0964 0.1139 0.0895

w/o MNP 0.1032 0.1525 0.2203 0.0725 0.0883 0.1053 0.0818

w/o SCL 0.1076 0.1604 0.2307 0.0739 0.0909 0.1086 0.0827

(C)
Multi-task 0.1120 0.1544 0.2312 0.0784 0.0905 0.1098 0.0844

Reverse courses 0.1078 0.1536 0.2213 0.0739 0.0881 0.1060 0.0814

5.3 Detailed Analysis

In this section, we perform a series of detailed analyses on the performance of our model.

5.3.1 Ablation Study. In our proposed CHEST, we have incorporated four types of node embeddings and designed
a curriculum pre-training strategy for HIN-based recommendation. In this part, we conduct comprehensive
ablation studies on Douban and Yelp datasets to examine the efectiveness of these proposed components and
techniques on the model performance.
We irst analyze the contribution of the composite embeddings. Besides node ID embeddings, we introduce

node type embedding, slot embedding and precursor embedding to preserve the semantics of interaction-speciic
heterogeneous subgraphs inmulti-slot sequence representations. The results of embedding ablation (ID embedding
is reserved in all cases) are shown in Table 4. As we can see, all the embeddings are useful to improve the model
performance. Especially, the precursor embedding seems more important than the other two embeddings, since
it can preserve the graph structure semantics within the subgraph.

Next, we continue to conduct the ablation study to analyze the contribution of each pre-training task and other
curriculum settings. As can be seen in Table 5, the performance drops when we remove one of the pre-training
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Fig. 4. Performance (HR@20) comparison w.r.t. diferent #path K on Douban and Yelp dataset.
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Fig. 5. Performance (HR@20) comparison w.r.t. diferent meta-paths types on Douban and Yelp dataset.

tasks, which shows that the above tasks are all beneicial to our model. Among them, the MNP (Masked Node
Prediction) is more important than other pre-training tasks. One possible reason is that the correlations between
the node and its surrounding context are important for recommendation task. Under the łMulti-taskž setting,
we pre-train the model on four pre-training tasks via multi-task learning, and the performance drops compared
to the curriculum learning paradigm. The łReverse coursesž setting means reversing the learning order of the
elementary course and the advanced course, which decreases the recommendation performance. These indings
verify the rationality of our elementary-to-advanced curriculum learning setting.

5.3.2 Subgraph Construction. To construct the interaction-speciic heterogeneous subgraph, we keep top-K path
instances with the highest average similarities for each meta-path. We study the efectiveness of diferentK on the
model performance. As we can see in Figure 4, CHEST could achieve good results using only two path instances
for each meta-path, which indicates that łpriorityž-based walking strategy is able to sample high-quality path
instances. But when the K is too large, the results drop a bit. One possible reason is that we introduce some noisy
paths into the subgraph.
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Fig. 6. Performance (HR@20) tuning w.r.t. diferent number of Transformer layers on Douban and Yelp dataset.
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Fig. 7. Performance comparison w.r.t. diferent edge dropping rates on Douban and Yelp datasets.

We also investigate the inluence of diferent meta-paths on the recommendation performance by gradually
incorporating meta-paths into the subgraph. As shown in Figure 5, the performance of CHEST consistently
improves with the incorporation of more meta-paths. The reason is that diferent meta-paths can introduce
diferent aspects of information for modeling user-item interaction.

5.3.3 Hyperparameter Tuning. Our model consists of a composite embeddings layer and several Transformer
layers. Here, we report the tuning results (HR@20) of diferent numbers of Transformer layers on Douban and
Yelp datasets. The cases on other datasets or metrics are similar and omitted.

As shown in Figure 6, stacking Transformer layers can boost recommendation performance which veriies that
deep self-attention architecture could help learn more complex node interactions within the subgraph. CHEST
achieves the best performance when the layer number is set to 2, which indicates that CHEST can eiciently learn
efective information from HIN for recommendation with two Transformer layers. The decline in performance
when stacking more layers is largely due to the overitting problem.
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Fig. 8. Performance comparison w.r.t. diferent sparsity levels of training data on Douban and Yelp dataset.

5.3.4 Model Robustness on Incomplete HIN. Most of existing HIN-based recommenders usually assume that
the original heterogeneous graph is reliable and complete. However, in real-world datasets, the constructed
heterogeneous graphs are usually noisy or incomplete. To evaluate the robustness of our methods, we randomly
drop diferent proportions of edges to construct incomplete heterogeneous graphs.

As shown in Figure 7, CHEST is consistently better than the best baseline method, especially at an extremely
incomplete level (80%).It is because that we utilize three strategies to augment interaction-speciic subgraph in
the advanced course for pre-training, which enables CHEST to achieve good performance when dealing with
incomplete heterogeneous graphs.

5.3.5 Model Robustness with Sparse Training Data. Recommender systems usually require a considerable amount
of training data, thus they are likely to sufer from data sparsity problem in practice. This issue can be alleviated
by our method because the proposed curriculum pre-training strategy can leverage intrinsic data correlations
from input as auxiliary supervision signals. We simulate the data sparsity scenarios by using diferent proportions
of the full training dataset, i.e., 20%, 40%, 60%, 80%, and 100%.

Figure 8 shows the results of data sparsity analysis on Douban and Yelp datasets. As we can see, the performance
substantially drops when less training data is used. While, CHEST achieves the best performance CHEST among
all methods in diferent data sparsity scenarios. It is because CHEST utilizes an elementary-to-advanced training
process to extract efective representations from HIN tailored to user-item interactions.

5.3.6 The Trade-of between Eficiency and Efectiveness. Besides recommendation performance, eiciency is
also an important factor to consider in practical systems. Here, we analyze the trade-of between efectiveness
and eiciency for diferent comparison methods. In particular, we conduct the analysis of the recommendation
performance and inference time on Yelp dataset. For recommendation performance, we select HR@20 as the
evaluation metric. For inference time, we report the total time cost of all users in the test set, where we perform
the experiment for ive times and report the average time. The experiments are executed on a Ubuntu 20.04
machine with Intel (R) Xeon (R) Platinum 8160 CPU and up to eight NVIDIA GeForce RTX 3090 GPUs. The rest
experimental settings are similar to those in Section 5.1.

The results are shown in Figure 9. First, we can see that path-based baselines (e.g., MCRec and MTRec) mostly
perform better than other methods (e.g., BPR, DGCF and HGT), while requiring longer inference time. The reason
is that the path-based methods rely on capturing path-level ine-grained characteristics for recommendation,
which is efective but time-consuming to compute. Besides, among the path-based baselines, HINGE captures user-
speciic paths for recommendation. Due to the rich contextual information, HINGE achieves the best performance
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Fig. 10. Visualization of the learned user embeddings w.r.t. diferent phrases on Movielens dataset. Diferent colors correspond
to the diferent occupations of the users.

but is the most time-consuming model. Finally, our CHEST method locates at the right and bottom part of the
Figure 9. Compared with other methods, CHEST is able to achieve the best performance and meanwhile does not
cause a higher cost of inference time. Since our CHEST only needs to model the interaction-speciic subgraph
consisting of several high-quality paths, it can efectively balance the two factors of efectiveness and eiciency.

5.4 ualitative Analysis

The above results have shown the efectiveness of our curriculum pre-training strategy for the recommendation
task. In this section, we present some qualitative analyses to understand why our approach works. Specially, we
present two examples to qualitatively illustrate how the elementary-to-advanced training process improves the
learning of data representations. We visualize the two-dimensional projections of learned user embeddings and
subgraph representations on Movielens dataset using t-SNE algorithm [34].
As shown in Figure 10, various colors represent diferent occupations of users in Movielens dataset. Before

pre-training, the representations of users with the same occupations are distributed randomly. However, after
pre-training on the elementary course, our approach derives more coherent clusters corresponding to diferent
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Fig. 11. Visualization of the learned subgraph representations w.r.t. diferent phrases on Movielens dataset. Positive samples
and negative samples of the same interaction-specific subgraph are in red and blue respectively.

occupations. After the advanced course, we can see that the produced clusters of user representations are still
separated clearly.
In the meantime, Figure 11 presents the distribution of positive samples (i.e., augmented subgraphs) and

negative samples of the original interaction-speciic subgraph. As we can see, after training on the elementary
course, the subgraph representations have not been aggregated into coherent clusters. One possible reason is
that the elementary course only focuses on the local context information (e.g., node, edge and path) by which our
model is still unaware of the global information of the whole subgraph. While these subgraph representations
are clearly separated into two clusters (ı.e positive samples and negative samples) after the advanced course. This
phenomenon veriies that the advanced course captures global context information of the subgraph.

The above indings indicate that our curriculum pre-training strategy is able to learn local and global semantics
underlying HIN, which can enhance the modeling for user-item interaction.

6 CONCLUSION

In this paper, we proposed a curriculum pre-training based heterogeneous subgraph Transformer (CHEST) for
HIN-based recommendation task. First, we proposed to use the interaction-speciic heterogeneous subgraph
to extract suicient and relevant context information from HIN for each user-item pair. Then we designed the
heterogeneous subgraph Transformer to model the subgraph, in which we incorporated a special composite
embedding layer to capture graph structure and path-level semantics and a self-attentive layer to aggregate
the representation for the user-item interaction subgraph. Furthermore, we designed a curriculum pre-training
strategy to gradually learn from both local and global contexts in the subgraph tailored to the recommendation
task, in which we devised an elementary-to-advanced learning process to learn efective representations with
increasing diiculty levels. Extensive experiments conducted on three real-world datasets demonstrated the
efectiveness of our proposed approach against a number of competitive baselines, especially when only limited
training data is available.
Currently, we have shown that it is promising to utilize curriculum pre-training techniques for HIN-based

recommendation. In future work, we plan to design a more general and efective pre-training strategy for
improving more complex recommendation tasks, such as multimedia recommendation and conversational
recommendation.
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