
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3068479, IEEE
Transactions on Knowledge and Data Engineering

1

Personalized Route Recommendation with
Neural Network Enhanced A∗ Search Algorithm

Jingyuan Wang, Ning Wu, and Wayne Xin Zhao

Abstract—In this work, we study an important task in location-based services, namely Personalized Route Recommendation (PRR).
Given a road network, the PRR task aims to generate user-specific route suggestions for replying to users’ route queries. A classic
approach is to adapt search algorithms to construct pathfinding-like solutions. These methods typically focus on reducing search space
with suitable heuristic strategies. For these search algorithms, heuristic strategies are often handcrafted, which are not flexible to work
in complicated task settings. In addition, it is difficult to utilize useful context information in the search procedure. To develop a more
principled solution to the PRR task, we propose to improve search algorithms with neural networks for solving the PRR task based on
the widely used A∗ algorithm. The main idea of our solution is to automatically learn the cost functions in A∗ algorithms, which is the
key of heuristic search algorithms. Our model consists of two main components. First, we employ attention-based Recurrent Neural
Networks (RNN) to model the cost from the source to the candidate location by incorporating useful context information. Instead of
learning a single cost value, the RNN component is able to learn a time-varying vectorized representation for the moving state of a
user. Second, we propose to use an estimation network for predicting the cost from a candidate location to the destination. For
capturing structural characteristics, the estimation network is built on top of position-aware graph attention networks. The two
components are integrated in a principled way for deriving a more accurate cost of a candidate location for the A∗ algorithm. Extensive
experiment results on three real-world datasets have shown the effectiveness and robustness of the proposed model.

Index Terms—Route Recommendation, A? Search, Graph Neural Networks, Attention, Deep Learning.

F

1 INTRODUCTION

NOWADAYS, GPS-enabled mobile devices have been
widely used by a large number of users, and their tra-

jectory data has been accumulated in a dramatic rate [1], [2],
[3], [4]. In the literature, various studies have been proposed
to utilize large-volume trajectory data for improving real-
world applications. As one of the important applications,
Personalized Route Recommendation (PRR) plays a key role
in many online location-based services (e.g., online map),
which aims to generate user-specific route suggestions on
instant queries about the path planing from a source to a
destination on a road network [5], [6].

Given a large and complex road network, PRR can be
considered as a challenging pathfinding task. Early studies
mainly focus on how to extend existing heuristic search
algorithms (e.g., Dijkstra shortest path algorithms and A∗

search algorithm) [7], [8] for the PRR task. Relying on suit-
able heuristics, they aim to obtain high-quality responses by
effectively reducing the search space. For heuristic search
algorithms, it is key to develop an effective cost function. A
common way adopted by previous studies is to heuristically
set the cost function according to empirical experiences
and human knowledge. However, it is difficult to utilize
various kinds of context information in the search process.

• J. Wang and N. Wu are with the School of Computer Science and
Engineering, Beihang University, the State Key Laboratory of Software
Development Environment, and Beijing Advanced Innovation Center for
Big Data and Brain Computing, China.
E-mail: {jywang,wuning}@buaa.edu.cn

• W.X. Zhao (corresponding author) is with Gaoling School of Artificial
Intelligence, Renmin University of China, and Beijing Key Laboratory of
Big Data Management and Analysis Methods.
E-mail: batmanfly@gmail.com.

Manuscript revised xxx.

For accurate route recommendation, an effective approach
should be able to model various influencing factors and
rich context information, including personalized preference,
spatial-temporal influence and road network constraint. To
develop more flexible solutions, machine learning methods
have been applied to solve the PRR task [9], [10]. They are
able to characterize the location dependencies or spatial-
temporal information in a principled way. With the revival
of deep learning, neural networks have provided more
powerful technical solutions to the PRR task. For example,
sequential neural models, i.e., Recurrent Neural Networks
(RNN), have been widely used for modeling sequential
trajectory data [11], [12], [13], [14].

For the PRR task, the aforementioned two kinds of
approaches have their own merits. On one hand, heuristic
search algorithms are specially suitable for the PRR task
since it essentially solves a pathfinding problem on graphs
given the source and destination. With elaborate heuristics,
it can generate high-quality approximate solutions in an
efficient way. On the other hand, deep learning methods
are powerful to capture the complex data characteristics
using learnable neural networks [15], [16]. They are able
to learn effective mapping mechanisms from input to out-
put or expressive feature representations from raw data in
an automatic way. Based on these discussions, this work
aims to combine the merits of both kinds of approaches
in a principled manner. Our solution is inspired by recent
progress of deep learning in strategy-based games (e.g., Go
and Atari) [17], which incorporate learnable components in
the heuristic search algorithms.

To this end, we propose to improve search algorithms
with neural networks for solving the PRR task based on
the widely used A∗ algorithm [18]. The main idea of our

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3068479, IEEE
Transactions on Knowledge and Data Engineering

2

solution is to automatically learn the cost functions in A∗

algorithms, which is the key of heuristic search algorithms.
For this purpose, we mainly consider addressing three im-
portant issues. First, we need to define a suitable form for
the cost in the PRR task. Different from traditional graph
search problems, a simple heuristic cost cannot directly
optimize the goal of our task [7]. For example, the identified
route based on the shortest distance may not meet the
personalized needs of a specific user. Second, we need to
design effective models for implementing the cost function
which instructs the search process, which is a key step in
our work. Third, we need to utilize rich context or constraint
information for improving the task performance, including
spatial-temporal influence and user preference.

To define a suitable form for the search cost, we first
formulate the PRR task as a conditional probability ranking
problem by computing the sum for the negative log of con-
ditional probabilities for each point in a candidate trajectory.
We use this form of cost to instruct the learning of the two
cost functions inA∗ algorithm, namelyG(·) andH(·), which
measure the current and future cost respectively.

For G(·) function, an observable trajectory is given as in-
put, i.e., a subsequence of locations from the source location
to the candidate location. We aim to compute the likelihood
for this observable trajectory as the current cost. For this
purpose, we propose to use attention-based RNNs to model
the observable trajectory. Compared with heuristic search
algorithm [18], our G(·) function has two major advantages.
First, we can incorporate useful context information to better
capture sequential trajectory behaviors, including spatial-
temporal information, personalized preference and road
network constraint. Second, instead of simply computing a
single cost, our model also learns a time-varying vectorized
representation for the moving state of a user, which can be
subsequently used in H(·) function.

For H(·) function, the current location, the destination
location and the road network are given as input. We
aim to estimate the future cost from the current location
to the destination location. This task is more challenging
than computing the observable cost, since the future trajec-
tory is unobserved. Our solution is based on graph neural
networks (GNN) [19], [20], [21]. By effectively learning
node representations, we can well capture road network
characteristics and make accurate prediction. However, a
major problem is that vanilla GNN (e.g., GCN [21] and
GAT [20]) is not suitable to directly model road networks.
A major reason is that road networks typically have a large
graph diameter, where some nodes are distant from each
other. In order to increase the receptive field, vanilla GNN
needs stack multiple layers, which tends to cause the over-
smoothing issue [22]. Besides, existing GNN architectures
have limited power in capturing the position information of
a given node with respect to all other nodes of the graph.
Considering these difficulties, we propose to adopt position-
aware GNN [19] for better learning node representations
over road networks, where important locations are selected
as anchor points and message passing is conducted between
anchor points and common points. In this way, our ap-
proach can better capture the overall characteristics of road
networks by learning more effective node embeddings. We
further design two kinds of network architectures based on

either geographical distance or user preference. Finally, a re-
inforcement learning based approach is adopted to estimate
the future cost based on the learned node representations.

Combining the above two parts, our approach is able to
automatically learn the cost functions without handcrafting
heuristics, which is the major contribution of this work. It
is able to effectively utilize context information and char-
acterize complex trajectory characteristics, which elegantly
combines the merits of A∗ search algorithms and deep
learning. Extensive results on the three datasets have shown
the effectiveness and robustness of the proposed model.

2 RELATED WORK
Our work is related to the following research directions.

Route Recommendation Algorithms. With the availability
of user-generated trajectory information, route recommen-
dation has received much attention from the research com-
munity [3], [5], [6], [23], [24], which aims to generate reach-
able paths between the source and destination locations. The
task can be defined as either personalized [5], [6], [25] or non-
personalized [8], [10], [23], [26], and constructed based on
different types of trajectory data, e.g., GPS data [26], [27]
or POI check-in data [28], [29]. In the literature, various
algorithms have been developed for route recommendation.
Wei et al. [7] utilized graph search algorithms for identifying
the path over the road network; Chen et al. [29] proposed
probabilistic POI transition/ranking models are employed
to recommend probable routes; Yuan et al. [26] proposed
to mine diver-direction from the historical GPS trajectories
of a large number of taxis. Overall, these studies focus on
search algorithms or probabilistic models by considering
additional constraints, e.g., road networks or time. Our work
is built on top of search based solutions, and the novelty lies
in the automatic learning of the cost functions using neural
networks. Our model is flexible to incorporate rich context
or constraint information.

Trajectory Data Mining with Deep Learning. Recent years
have witnessed the success of deep learning in modeling
complex data relations or characteristics. As early studies,
location/trajectory embedding method are applied to to
solve trajectory-related tasks [30]. More recently, Recurrent
Neural Network (RNN) together with its variant Long
Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU) have been widely used for modeling sequential
trajectory data. Zhou et al. [31] proposed topic-enhanced
memory networks for POI recommendation problem; Zhen
et al. [32] utilized hierarchical RNN to capture high-level
information in trajectories; Gao et al. [33] proposed varia-
tional RNN to model the latent variable of trajectories data;
Wu et al. [34] took road network constraints into consid-
eration when designing recurrent neural network; Feng et
al. [35] proposed a multi-modal embedding RNN with at-
tention mechanism to predict human mobility; Liu et al. [36]
proposed spatial-temporal RNN to model spatial-temporal
context information; Ai et al. [11] proposed a Space time
feature-based RNN to model spatial-temporal information.
These studies mainly focus on short-term trajectory behav-
iors, e.g., one-step location recommendation [36], which are
not suitable for solving the current task.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3068479, IEEE
Transactions on Knowledge and Data Engineering

3

Start Location

End Location

Road Segment

Road Network

Route

Fig. 1. Illustration of the notations in this work.

Learning-enhanced Heuristic Search. These studies in this
direction aim to automatically improve or optimize the
search algorithms with machine learning methods. Early
works include the use of machine learning in creating effec-
tive, likely-admissible or improved heuristics [37], [38], [39].
Lelis et al. [37] proposed to predicts the optimal solution cost
of a problem instance without finding the actual solution;
Ernandes et al. [38] introduced the related concept of likely-
admissible heuristics where admissibility requirement is
relaxed in a probabilistic sense; Samadi et al. [39] proposed
an artificial neural network to combine several features into
a single heuristic value. More recently, deep learning has
significantly pushed forward the research of this line. The
main idea is to leverage the powerful modeling capacity of
neural networks for improving the tasks that require com-
plicated solving strategies, including the Go game [17] and
route recommendation [25]. Our work is highly inspired by
these pioneering works, but have a quite different focus on
the studied task, i.e., personalized route recommendation.

Our current study significantly extends previous
work [25] in multiple aspects. First, we enhance the H(·)
function (the key of the A∗ search algorithm) for estimating
the future cost with a totally new position-aware GNN. We
design two variants of position-aware GNN to incorporate
distance and preference information into the estimation
network. Second, we add various kinds of content details,
including search algorithms, training details, and parameter
settings, and more discussions and explanations throughout
the paper.

3 PRELIMINARIES

In our task, we assume road network information is
available for the pathfinding task, which is the foundation
of urban transportation for users.
Definition 1. Road Network. A road network is a directed

graph G = (L, E), where L is a vertex set of locations and
E ⊂ L×L is an edge set of road segments. A vertex li ∈
L (i.e., a location) represents a road junction or a road
end. An edge eli,lj = 〈li, lj〉 ∈ E represents a directed
road segment from vertex li to vertex lj .

Definition 2. Route. A route (a.k.a., a path) p is an ordered
sequence of locations connecting the source location ls
with the destination location ld with m intermediate
locations, i.e., p : ls → l1 → ... → lm → ld, where

each pair of consecutive locations 〈li, li+1〉 corresponds
to a road segment eli,li+1

in the road network.

The moving trajectory of a user on the road network
can be recorded using GPS-enabled devices. Due to instru-
mental inaccuracies, the sampled trajectory points may not
be well aligned with the locations in L. Following [40],
we can preform the procedure of map matching for aligning
trajectory points with locations in L.
Definition 3. Trajectory. A trajectory t is a time-ordered

sequence of m locations (after map matching) generated
by a user, i.e., t : 〈l1, b1〉 → 〈l2, b2〉 → ... → 〈lm, bm〉,
where bi is the visit timestamp for location li.

A trajectory is a user-generated location sequence with
timestamps, while a route is pre-determined by the road
network. For a route, the start and end points are important
to consider, which correspond to the source and destination
of a travel. We present an illustrative example in Fig. 1.

In the task of PRR, a user can issue travel queries.
Definition 4. Query. A query q is a triple 〈ls, ld, b〉 consisting

of source location ls, destination location ld and depar-
ture time b.

With the above definitions, we now define the studied
task.
Definition 5. Personalized Route Recommendation (PRR).

Given a dataset D consisting of historical trajectories, for
a query q : 〈ls, ld, b〉 from user u ∈ U , we would like
to infer the most possible route p∗ from ls to ld made
by user u, formally defined as solving the optimal path
with the highest conditional probability:

p∗ = arg max
p

Pr(p|q, u,D). (1)

The PRR task is formulated as a conditional ranking
problem. For solving this task, we first present a traditional
A∗-based algorithm in Section 4, and then present our
proposed approach in Section 5.

4 A HEURISTIC A∗ SOLUTION FOR PRR

The task of PRR can be framed as a graph-based search
problem. In this setting, we view the road network as a
graph, and study how to find possible route(s) that start
from the source node and end at the destination node.

4.1 Review of A∗ Algorithm
In the literature [18], A∗ search algorithm is widely used

in pathfinding and graph traversal due to its performance
and accuracy. Starting from a source node of a graph, it aims
to find a path to the given destination node resulting in the
smallest cost. It maintains a tree of paths originating at the
source node and extending those paths one edge at a time
until its termination criterion is satisfied. At each extension,
A∗ evaluates a candidate node n based on a cost function
F (n):

F (n) = G(n) +H(n), (2)

where G(n) is the cost of the path from the source to n (we
call it observable cost since the path is observable), and H(n)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3068479, IEEE
Transactions on Knowledge and Data Engineering

4

is an estimate of the cost required to extend the future path
to the goal (we call it unobserved cost since the actual optimal
path is unknown). The key part of A∗ is the setting of the
heuristic function F (·), which has an important impact on
the final performance.

4.2 A Simple A∗-based Approach for PRR
Considering our task, the goal is to maximize the condi-

tional probability of Pr(p|q, u,D). We can equally minimize
its negative log: − log Pr(p|q, u,D). Given a possible path
p : ls → l1 → l2 · · · → lm → ld, consisting of m
intermediate locations, we can factorize the path to compute
its cost according to the chain rule in probability as

− log Pr (p|q, u,D) = −
m∑
i=0

log Pr (li+1|ls → li, q, u) , (3)

where l0 = ls and lm+1 = ld, and D is dropped for
simplifying notations. Here, we develop the probability
conditioned on user u. As will be explained later, we will
consider user preference and historical trajectories as con-
text. This formula motivates us to set the cost functions of
A∗ algorithm in a similar form. Assume a partial route has
been generated, i.e., p : ls → l1 · · · → li−1, we can compute
the observable cost of a candidate li for extension as

G (ls → li) = −
i−1∑
k=1

log Pr (lk+1|ls → lk, q, u) . (4)

To compute the conditional transition probabilities, the
first-order Markov assumption is usually adopted, so we
have Pr(lk+1|ls → lk, q, u) = Pr(lk+1|lk, q, u). Following [7],
[10], we can further use user-specific or overall transition
statistics to estimate the probabilities (with smoothing).
While, to compute the cost of H(li → ld) is more difficult,
since the optimal sub-route from li to ld is unknown. We
cannot directly apply the similar method in Eq. (4) for
H(·). In practice, we can use different heuristics to set H(·),
including the shortest spatial distance [18], [41] and the
historical likelihood [7].

4.3 Analysis
For our task, the A∗-based approach is more appealing

than a greedy best-first search algorithm. By decomposing
the entire cost into two parts, it leaves room on the elabo-
rated setting of G(·) and H(·) for different tasks. Although
it has been shown that A∗-like algorithms perform well in
the task of route recommendation [7], [41], [42], we see three
weak points for improvement.

First, A∗ algorithm is a general framework in which
cost functions have to be heuristically set. It is difficult to
incorporate varying context information, e.g., personalized
preference and spatial-temporal influence. Second, the cost
function usually relies on the heuristic computation or es-
timation, which is easy to suffer from data sparsity. For
example, the estimation of transition probabilities in Eq. (4)
may not be accurate when the historical transitions between
two locations are sparse. In this case, even the computa-
tion of observable cost G(·) is likely to be problematic.
Third, the PRR task is challenging, and a simple heuristic
search strategy may not be capable of performing effective

Observed Sub‐Trajectory Unobserved Sub‐TrajectoryNext Location

G
R
U

G
R
U

G
R
U

G
R
U

Intra-trajectory ATT

MLPInter-trajectory ATT

Current Sub-TrajectoryUser History Trajectories

Destination

…………

Inter context

……

……

…
…

Source

Road Network

𝒛𝒍𝒊
ሺ𝑷ሻ 𝒛𝒍𝒅

ሺ𝑷ሻ

M
L
P

Intra context 𝒛𝒍𝒊
ሺ𝑫ሻ 𝒛𝒍𝒅

ሺ𝑫ሻ

…

Preference-based
Anchor Sets

… …

Distance-based
Anchor Sets

… … …

𝒏𝒍𝒊 𝒏𝒍𝒅 𝒏𝒍𝒊 𝒏𝒍𝒅

Fig. 2. The overall architecture of the NASR+ model. G(·) learns the
cost from the source to a candidate location, called observable cost ;
H(·) predicts the unobserved cost from a candidate location to the
destination.

pathfinding in practice, e.g., the route that has the shortest
spatial distance may not be the final choice of a user [8], [10].

With these considerations, we next present our solution
for addressing the above difficulties of A∗ in PRR.

5 THE NASR+ MODEL

In the section, we present the proposed Neuralized A-Star
based personalized route Recommendation (NASR+) model1.

5.1 Model Overview
Our model is developed based on the general A∗ al-

gorithm framework. For node evaluation, we decompose
the entire cost function F (·) into two parts, namely ob-
servable cost and unobserved cost, which correspond to the
cost functions G(·) and H(·). Traditionally, both G(·) and
H(·) are heuristically computed or set. While, our idea is to
automatically learn the two functions with neural networks
instead of using heuristics. Specially, we use Recurrent
Neural Networks (RNN) to implement G(·) and another
estimation network to implement H(·). In our neural net-
work for function G(·), we not only compute a single
cost value, but also learn a time-varying moving state for a
specific user. The moving state encodes necessary trajectory
information of a user till the evaluation time, which will be
fed into the computation ofH(·). Once the two networks are
learned, we can compute the cost of a candidate location for
path extension. We present the overall architecture for the
proposed model in Fig. 2. We also present the used notations
and their explanations in Table 1.

5.2 Modeling the Observable Cost with RNN

This part studies the learning of function G(·) for ob-
servable cost. Given an observed sub-route ls → l1 →
l2 · · · → li, as shown in Eq. (4), the problem becomes how
to effectively learn the conditional transition probabilities
Pr(lk+1|ls → lk, q, u). Simple frequency-based estimation
method will suffer from data sparsity in large search space
even with first-order Markov assumption. In this case, the
computed observable cost will not be reliable to be used. In

1. We use the suffix of the plus symbol in naming our model for
discriminating this work from our KDD paper [25].

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3068479, IEEE
Transactions on Knowledge and Data Engineering

5

TABLE 1
Notations, explanations, and configurations in this work.

Group Notation Explanation Configuration

Input

vu ∈ RKU The embedding vector for user u. KU = 128

vl ∈ RKL The embedding vector for location l. KL = 512

vdi(b) ∈ RKD
The embedding vector of the weekday
index for a timestamp b. KD = 24

(Θ(I)) vhi(b) ∈ RKH
The embedding vector of the hour
index for a timestamp b. KH = 48

vxi
∈ RKX

The context vector concatenated by
vu, vli

, vdi(bi)
, and vhi(bi)

. KX = 712

G(·)

h
(p)
i ∈ RKR

The hidden vector of li in trajectory
p learned by the GRU network. KR = 512

h̃(p) ∈ RKR
The hidden vector of p produced by
the intra-trajectory attention. KR = 512

(Θ(G)) h(p) ∈ RKR
The hidden vector of p produced
by the inter-trajectory attention. KR = 512

w1

W1,W2
The attention parameters in Eq. (8). R256

R256×512

H(·)

nlk
∈ RKG

The representation of location lk
learned by graph neural network. KG = 512

Mli
∈ RKG×A The matrix of messages m

(a)
li

. A = 64

z
(D)
lk
∈ RKP

The representation of location lk
learned by Distance-based PA-GNN. KP = 64

(Θ(H)) z
(P)
lk
∈ RKP

The representation of location lk
learned by Preference-based PA-GNN. KP = 64

wout

W3

W4

The learnable parameters
in our PA-GNNs.

R512

R1024×512

R1536×512

A The number of anchor-sets. 64

addition, PRR is a user-centric task, and a single cost value
may not be enough to describe what has been observed.
Instead, the moving state of a user and useful context infor-
mation should be considered. To address these difficulties,
we propose to use Recurrent Neural Networks to implement
the cost function G(·).

5.2.1 Embedding Rich Context Information

As the prerequisite module, we embed rich context in-
formation into dense vectors, which will be subsequently
used by other components. First, we set up an embedding
vector vu ∈ RKU for user u, encoding necessary person-
alized user information. Then, for each location l ∈ L, we
set up a corresponding embedding vector vl ∈ RKL . For
trajectory behaviors, temporal information is also important
to consider. Following [35], for each visit timestamp b, we
use two embedding vectors vdi(b) ∈ RKD and vhi(b) ∈ RKH ,
where di(b) and hi(b) are functions transforming b into
corresponding weekday index (1 to 7) and hour index (1
to 24) respectively. At i-th time step, we concatenate the
above embedding vectors of user u’s location li into a single
embedding vector to form an enhanced representation of
contextual information as

vxi
= vu‖vli‖vdi(bi)‖vhi(bi), (5)

where “‖” is the concatenation operation. Here, the rep-
resentation vxi contains contextual information of user ID
(user preference), location ID (location characteristics) and
temporal information (periodical patterns). It will be flexible
to incorporate more kinds of context features. We can also
enhance the context representations with more complicated
networks, e.g., multi-layer perceptron.

5.2.2 Encoding the Observed Sub-Trajectory with RNN

For the PRR task, it is important to model the trajectory
characteristics of users’ moving behaviors, which can be
considered as a sequential process. We utilize RNNs to
model such sequential behaviors. Given an observed sub-
trajectory p : ls → l1 · · · → li generated by u, we employ
the widely used GRU network [43] to encode it into a vector

h
(p)
i = GRU(vxi

,h
(p)
i−1), (6)

where h
(p)
i ∈ RKR is the hidden vector produced by the

GRU network and vxi is the context vector defined in
Eq. (5), where vxi is taken as input to incorporate context
information at each step. The vector h(p)

i encodes the moving
state of a user at the i-th time step. Note that we use the
superscript to index the trajectory and the subscript to index
locations. Unlike traditional A∗ search algorithm, we learn
an informative state representation of a user at each step,
providing more information than a single cost value. The
learned moving state will be subsequently used by the H(·)
function.

5.2.3 Enhanced Moving States with Attention Mechanism

An observed sub-trajectory can be short and noisy. We
further propose to use two types of attention to improve the
learning of moving state by leveraging data dependence.

Intra-Trajectory Attention. We first apply the method [44]
to compute the attention between locations in the same
trajectory as

h̃
(p)
i =

i∑
k=1

att
(
h

(p)
i ,h

(p)
k

)
· h(p)

k , (7)

where h̃
(p)
i denotes the improved state representation with

intra-trajectory attention and att(·, ·) is an attention function
in the form of

att
(
h

(p)
i ,h

(p)
k

)
=

exp(αi,k)∑i
k′=1 exp(αi,k′)

, (8)

αi,k = w>1 · tanh
(
W1 · h(p)

k + W2 · h(p)
i

)
,

where w1, W1 and W2 are the parameter vector or matrices
to learn. With intra-trajectory attention, we can discover
more important characteristics by considering the entire
trajectory. After intra-trajectory attention, we use the state
representation of the last location for encoding the entire
sub-trajectory, i.e., h̃(p) = h̃

(p)
i .

Inter-Trajectory Attention. The information from a single
trajectory is usually limited. In order to capture overall
moving patterns for a specific user, we further consider
incorporating historical trajectories generated by the user.
Given the current trajectory p, we attend it to each of the
other historical trajectories, denoted as p′, as

h
(p)
i =

∑
p′∈Pu

att
(
h̃

(p)
i , h̃(p′)

)
· h̃(p′), (9)

where Pu denotes the set of historical trajectories generated
by u. The vector h̃(p′) is an representation vector of the

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3068479, IEEE
Transactions on Knowledge and Data Engineering

6

historical trajectory p′, which is generated by an attention
in the form of

h̃(p′) =
m∑

k=1

att
(
h(p′)
m ,h

(p′)
k

)
· h(p′)

k . (10)

att(·, ·) is the attention function which is similar to Eq. (8)
but with different learnable parameters.

5.2.4 Observable Cost Computation

Once we have learned the hidden state for the current
timestamp, we are able to compute the probability of the
next location using a softmax function with road network
constraint as

Pr(li|ls → li−1, q, u) =
exp

(
LT(pls→li)

)∑
l′∈Lli−1

exp (LT(pls→l′))
, (11)

where LT(p) = w>2 ·h
(p) is a linear transformation function

taking as input the hidden state learned for a trajectory p
in Eq. (9), and w2 is a parameter vector to learn. Here,
we compute the probability of a candidate location li by
normalizing over all the neighboring locations of li−1 in
the road network. After defining Pr(li|ls → li−1, q, u) in
Eq. (11), we sum the negative log probability of each location
in a trajectory ls → li as the value of G(·)

G(ls → li) = −
i∑

j=2

log Pr (lj |ls → lj−1, q, u) . (12)

Note that we do not set G(ls → li) using simple distance
functions, since we would like to learn more useful informa-
tion from the observed trajectories. Typically, a user would
select a route based on many factors. Our computation
form for G(·) naturally fits the defined goal of our task in
Eq. (1). To learn the neural network component, given G(·)
in Eq. (12), we set a loss for all the observed trajectories over
all users as

Loss1 =
∑
u∈U

∑
p∈Pu

G(p). (13)

5.3 Modeling the Unobserved Cost with Estimation
Networks

Besides the observable cost, we need to estimate the cost
from a candidate location to the destination. Specially, we
introduce an estimation network to implement H(·). This
part is more difficult to model since no explicit trajectory
information is observed. In order to better utilize the road
network information and user preference for estimation, we
build the estimation network on top of a position-aware
graph neural network.

5.3.1 PG-GNN for Modeling Road Networks

We consider using graph neural networks for learning
effective node representations for capturing graph charac-
teristics. Generally, the update of graph neural networks [20]
can be given as

N (z+1) = GNN
(
N (z)

)
(14)

where N (z) ∈ RKG×|L| denotes the matrix consisting of
node representations at the z-th iteration, and the lk-th col-
umn nlk ∈ RKG corresponds to the representation of node
lk, i.e., location lk ∈ L. For initialization, we set n(0)

lk
= vlk

with the learned location embeddings in Sec. 5.2.1.
However, vanilla GNN (e.g., GCN [21] and GAT [20]) are

not directly suitable to model road networks. With the same
scale of node number, road networks usually have a larger
graph diameter than “small-world networks” [45], which is
likely to cause the over-smoothing issue for multi-layered
GNNs. Inspired by recent work [19], our idea is to select
a small number of anchor points from the road network,
and the message passing in GNNs is conducted between
anchor points and locations. Such a kind of GNNs is called
position-aware graph neural networks (PA-GNNs). Overall,
the general PA-GNN contains two major parts:

Construction of Anchor Set. First, we introduce the concept
of anchor set. In order to generate position-aware node
embeddings, the perquisite step is to select several represen-
tative nodes as anchors. By calculating the relations between
anchor sets and target nodes, we could map target locations
into an embedding space by considering relative position
information w.r.t. anchor points. Following [19], we generate
A = λ × blog |L|c2 anchor-sets from using some selection
algorithm, denoted as Sa ⊂ L, where a = 1, ..., λ×blog |L|c2
and λ is a hyper-parameter. Following [19], we select the
centric point from an anchor set as the representative anchor
point in this set.

Learning Position-Aware Node Embeddings. PA-GNNs
consist of three learning steps to generate position-aware
embedding for the node li. In the first step, it constructs
a message passing function F(·, ·) to describe the position
relationship between li and a given location l′:

F (nli ,nl′) = Dist (li, l
′) · (nli‖nl′) ·W3, (15)

where W3 ∈ R2KG×KG is a learnable parameter matrix and
Dist(li, l

′
) is the distance function that can be implemented

in different ways. In the second step, the PA-GNN uses
the message passing function to generate representations
of li for each anchor-set. The representation vector for the
anchor-set Sa, the representation vector, denoted as m(a)

li
, is

calculated as

m
(a)
li
← AP ({F(nli ,nl′) | ∀l

′ ∈ Sa}) , (16)

where AP(·) is an average pooling function to combine
output vectors of F(nli ,nl′) for all l′ ∈ Sa as an single
representation vector. In the third step, PA-GNN further
combines m(a)

li
of all anchor-sets using average pooling as

nli ← AP({m(a)
li
| a = 1, . . . , A}). (17)

Plugging nli generated by Eq. (17) into Eq. (14), position
information expressed between li and the anchor points can
be involved in the update process of GNN.

Finally, the position-aware node embedding of li is cal-
culated as

zli = σ
(
M>

li ·wout

)
, (18)

where Mli ∈ RKG×A is a matrix that consists of m
(a)
li

(Eq. 16) as columns, wout ∈ RKG is a weight vector, and

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3068479, IEEE
Transactions on Knowledge and Data Engineering

7

σ(·) is a non-linear mapping function. In this way, the k-th
entry in zli measures the importance of the k-th anchor-set
for li.

5.3.2 Instantiation of PA-GNN for PRR
In our framework, we have two major parts to set,

namely the anchor-sets and the Dist() function. Here, we
present two variants for instantiating the above frame-
work, namely distance-based PA-GNN and preference-based
PA-GNN. The distance-based PA-GNN sets the two parts
with distance information, and the preference-based PA-
GNN utilizes user preference information to enhance the
performance.

Distance-based PA-GNN. In road networks, there are many
locations there are no trajectory passing through them. This
problem may cause these locations are very hard be selected
in route search. In order to alleviate this problem, we de-
signed as pure distance-based PA-GNN variant. In this vari-
ant, we apply the K-means algorithm to derive anchor-sets.
Specifically, the variant takes the latitude and longitude as
features of locations on a road network, and uses a standard
K-means algorithm to cluster the locations as a number of
sets, which are used as anchor-sets of the PA-GNN. It has
been shown that K-means algorithm is suitable to deal with
distance-based metrics [46]. In this way, the spatial distance
information is incorporated into the anchor-sets. Then, we
run the Dijkstra algorithm to derive the shortest distance
between an anchor location l′ and the candidate location
li. The shortest distance on the road network is used to set
Dist(li, l

′). In this way, the distance and spatial structure
information of the road network is incorporated into the PA-
GNN. The Dist() function of the distance-based PA-GNN
does not reply on user preference information (historical
trajectories), so it improves the robustness of our model over
the locations that are seldom visited.

Preference-based PA-GNN. In the second variant, we incor-
porate user preference information into anchor-sets and the
distance function. For constructing the anchor-sets, instead
of directly clustering locations, we cluster trajectory points
of users in the training set. The locations that correspond
to points in the same cluster constitute an anchor-set. Note
that different from the above distance-based method, a
location can appear multiple times in the clustering algo-
rithm here. In this way, a frequently visited location can
receive more attention in the clustering algorithm. We adopt
DBSCAN [47] as the clustering algorithm since it is able to
consider the density of data points to reflect the collective
preference of the crowd, and therefore is suitable for gener-
ating preference-based anchor-sets. Next, we study how to
incorporate personalized preference into the distance func-
tion. Recall that we can derive a moving state h(p) defined
in Eq. (9) summarizing the behavioural characteristics of a
user for an observed sub-trajectory p. In order to incorporate
h(p) into the distance, we implement the Dist() as a function
of nli ,nl′ ,h

(p) as

Dist(li, l
′) = σ

(
W>

4 · (nli‖nl′‖h
(p))
)
, (19)

where W4 is a learnable parameter matrix and σ() is a
non-linear mapping function. The moving state h(p) used

in Eq. (19) denotes the embedding of observed trajectory for
the start location to current search location, i.e., ls → li−1.
As shown in Eq. (5), the moving state h(p) also encodes
the user and context information, so that it can reflect the
user preference to some extent. Given the moving state,
the personal preference information has been modeled to
compute the distance between two locations. Moreover, the
embedding h(p) also plays an important role in providing
useful information through G network to H network, while
the two functions are usually isolated in previous studies.

Note that Eq. (19) can be also used in the distance-
based variant. However, for the distance-based approach,
we would like to develop a simple solution with a pure
distance measure (i.e., the shortest path on the graph) to
fully exploit the spatial information of the road network. It
helps alleviate the data sparsity problem for seldom visited
locations. If we introduce the user personalized information
into distance-based variant, the utility of spatial information
might be diluted.

According to the two variants, we can obtain two dif-
ferent node representations for a location by Eq. (18). We
use z

(D)
li

and z
(P)
li

to denote the representations learned
according to the distance-based and preference-based PA-
GNNs, respectively.

5.3.3 Unobservable Cost Estimation

After obtaining the node representations, we use a Multi-
Layer Perceptron component to infer the cost from the
candidate location li to the destination ld. Formally, we have

H (li → ld) = MLP
(
h

(p)
i , z

(D)
li

, z
(D)
ld

, z
(P)
li

, z
(P)
ld

)
, (20)

where the MLP component takes as input the moving state
h(p) and the two kinds of representations of the current and
destination locations li and ld. In Eq. (20), the vectors z

(D)
ld

,
z

(D)
li

respectively are representations of li and ld learned by
the distance-based PA-GNN, and z

(P)
ld

, z(P)
li

are learned by
the preference-based PA-GNN. We expect the two kinds of
representations can capture road network characteristics in
different views, so that we can obtain more comprehensive
information for making the estimation.

Next, we study how to define the loss of the entire
estimation network. The learning of H(li → ld) relies on the
optimal sub-route from li to ld. Our task aims to minimize
the future cost. When a location li is selected, an immediate
cost ci will be yielded according to

ci = − log Pr (li|ls → li−1, q, u) , (21)

where Pr(li|l1 → li−1, q, u) is the probability computed in
Eq. (11). In our model, the groundtruth cost is equal to
the step cost from the current location to the destination:
H(li → ld) =

∑T
j=i+1 cj , where T is the timestamp arriving

at ld. If we have the real route from the current location li to
destination ld, the prediction error of the estimation network
is calculated as

δli→ld =
∥∥∥H(li → ld)−

T∑
j=i+1

cj

∥∥∥2

, (22)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3068479, IEEE
Transactions on Knowledge and Data Engineering

8

Algorithm 1 The training algorithm for the NASR+ model.
Input: A trajectory dataset D.
Output: Model parameters Θ(G),Θ(H), and Θ(I).
Randomly initialize Θ(G), Θ(H) and Θ(I).
Pre-learn the Θ(I) and Θ(G) by minimizing the Loss1 in
Eq. (13).
for episode = 1 to |D| do

Acquire a random trajectory t from D.
Perform SGD on Eq. (13) w.r.t. Θ(G) and Θ(I).
for i = length(t) to 0 do

Acquire location li+1, ..., ld and corresponding time
from trajectory t.

Acquire observed cost ci+1, ..., cd using Eq. (21).
Compute yli→ld =

∑d
k=i+1 ck.

Perform SGD on
∥∥∥H(li → ld; Θ(H))− yli→ld

∥∥∥2 (Eq. 22)

w.r.t. Θ(H) and Θ(I).
end for

end for
return Θ(G),Θ(H), Θ(I).

To learn the estimation network component, we set a loss
for all the observed trajectories over all users as

Loss2 =
∑
u∈U

∑
p∈Pu

∑
li∈p

δli→ld . (23)

5.4 Learning and Analysis
In this part, we present the learning algorithm for opti-

mizing our approach, and given detailed analysis on model
merits and complexities.

5.4.1 Model Learning
It is not easy to directly optimize the entire approach,

which contains two different components for G and H
networks. Here, we follow the training practice in deep
learning [48] to pre-learn the two networks separately. ForG
network, we directly learn the RNN component according to
Eq. (13). To pre-learn H network, we first fix the parameters
in G network, and utilize it to learn the moving state h(p).
Furthermore, in training set, we can utilize the real optimal
path (i.e., the path adopted by a user) to derive the ground-
truth future cost. In this way, the loss Loss2 in Eq. (23) can
be directly optimized with ground-truth costs.

Next, we alternatively optimize the parameters in Θ(G)

and Θ(H). At each iteration, we first update Θ(G) and Θ(I).
Then, we take a supervised learning way. We construct
labels yli→ld by acquiring observed cost ci+1, ..., cd using
Eq. (21). When computing the observed cost, we use the
RNN component with current parameters of Θ(G), and Θ(I).
After obtaining the loss ‖H(li → ld; Θ(H)) −

∑d
j=i+1 cj‖2,

we perform stochastic gradient descent (SGD) to update the
parameters Θ(H) and Θ(I). The above iteration process is
repeated over all the trajectories in training dataset.

5.4.2 Model Analysis
Compared with traditional heuristic search algorithms,

NASR+ has the following merits. First, it does not require
to manually set functions with heuristics, but automatically
learns the functions from data. Second, it can utilize various
kinds of context information and capture more complicated
personalized trajectory characteristics. Third, it is able to

coordinate and integrate the two components by sharing
useful information or parameters in a principled way. Note
that traditional search algorithms neglect the importance of
G(·), which computes the cost of observed sub-trajectories.
In our model, the implementation of G(·) not only learns
the cost but also a vectorized user state representation,
i.e., the moving state of a user. This state vector is subse-
quently used for the learning of preference-based PA-GNN
by providing useful preference information for current user.
Besides, as we discussed in Sec. 4, not all the observable
cost can be directly computed, usually requiring estimation
or approximation. Neural networks are helpful to improve
the computation of G(·) by producing more robust results.

In some cases, there exist some unreachable route re-
quests from users. Hence, it needs to determine whether
a request can be satisfied as early as possible. Since our
algorithm is extended by A∗ search algorithm, it is able
to judge that the request is unreachable when the open set
is empty when searching a path towards the destination.
The reachability verification can be further accelerated with
other efficient graph search algorithms [49], [50].

Now we compare the time complexities between our
GNN and vanilla GNN. For GNNs, an important, common
measure in time complexity is the number of message
passing. In our approach, at each iteration, each node com-
municates with A anchor points, so that the total number
of message passing is A × |L|, where |L| is the number
of locations on a road network. As a comparison, vanilla
GNN (e.g., GCN [21]) requires a total number of |E|message
passings at each iteration, which can be rewritten as D̄×|L|,
where D̄ is the average degree of nodes in the road network.
In our work, we follow [19] to set A = log2 |L|, which is
around several hundreds for |L| ≈ 10000. To reduce the
number of message passing, we also remove weak links
between anchor points and locations, so that the overall
complexity can be in a reasonable range in practice.

6 EXPERIMENTS
In this section, we first set up the experiments, and then

present the performance comparison and result analysis.

6.1 Experimental Setup
6.1.1 Construction of the Datasets

To evaluate the performance of our proposed model,
we use three real-world trajectory datasets. The Beijing taxi
dataset is collected by more than 18,000 taxis in Beijing,
China from Nov. 1, 2011 to Nov. 30, 2011. A trajectory record
takes the form of 〈tid, te, longitude, latitude, state〉, where
tid is the unique ID of a taxi, and state informs whether
the taxi is carrying any passengers at time te. The state
information can be used to identify boundary marks for
trajectories, i.e., “No passengers” indicates the stop of a travel.
The Porto taxi dataset is a public trajectory dataset, released
by a Kaggle trajectory prediction competition 2. The dataset
contains a complete year (from July 1, 2013 to June 30, 2014)
of the trajectories for all the 442 taxis running in the city
of Porto, in Portugal. The dataset organizes one ride of a
taxi as a trajectory. In both the Beijing taxi and Porto taxi

2. https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3068479, IEEE
Transactions on Knowledge and Data Engineering

9

TABLE 2
Statistics of the three datasets after preprocessing.

Statistics Beijing taxi Porto taxi Beijing bicycle
#users 18,298 442 196,591

#trajectories 302,654 284,100 484,421
#records 16,040,662 8,523,000 6,442,890

#locations 15,208 8,224 15,500
#road segments 20,198 9,457 22,010

datasets, we use taxi IDs to group trajectories, and treat the
corresponding driver as the studied user. The Beijing bicycle
dataset is collected by the ofo bicycle sharing company 3

from July 1, 2017 to July 31, 2017. The dataset organizes one
ride of a user as a trajectory, which contains 484,421 trajecto-
ries from 196,591 users. We can identify a user with a unique
user ID in trajectory records. The Beijing taxi trajectory data
is sampled every minute, while the Beijing bicycle dataset is
sampled every 10 seconds. The Porto taxi dataset is with a
sampling period of 15 seconds. For the three datasets, we
collect corresponding road network information from Open
Street Map 4.

After obtaining the datasets, we adopt the open source
tool fmm 5 to match sampled trajectory points with locations
in the road network. In this way, the sequence of sampled
trajectory points are converted into a time-ordered location
sequence. Since the original sampling frequency is high, we
remove consecutive points on the same road segment and
replace the subsequence with the start and end points of
a road segment. In this way, we transform the trajectory
data into timestamped location sequences. We present the
statistics of the three datasets after preprocessing in Table 2.

6.1.2 Evaluation Metrics
For the PRR task, we adopt a variety of evaluation met-

rics widely used in previous works [5], [51]. Given an actual
route p, we predict a possible route p′ with the same source
and destination. Following [5], [51], we use Precision, Recall
and F1-score as evaluation metrics: Precision = |p∩p′|

|p′| ,

Recall = |p∩p′|
|p| and F1 = 2∗P∗R

P+R . Precision and Recall
compute the ratios of overlapping locations w.r.t. the actual
and predicted routes respectively. Besides, we use the Edit
distance as a fourth measure, which is the minimum num-
ber of edit operations required to transform the predicted
route into the actual route. Note the source and destination
locations are excluded in computing evaluation metrics.

6.1.3 Task and Experiment Setting
For each user, we divide her/his trajectories into three

parts with a ratio of 7 : 1 : 2, namely training set, validation
set and test set. We learn the model with training set, and
optimize the model with validation set. Instead of reporting
the overall performance on all test trajectories, we generate
three types of queries w.r.t. the number of locations in the
trajectories, namely short (10 to 20 locations), medium (20
to 30 locations) and long (more than 30 locations). In test

3. https://www.ofo.com/
4. https://www.openstreetmap.org/
5. https://www.github.com/cyang-kth/fmm

set, given a trajectory, the first and last locations are treated
as the source and destination respectively, and the rest
locations are hidden. Each method is required to recover
the missing route between the source and destination.

6.1.4 Methods to Compare
We consider the following methods for comparison:
• RICK [7]: It builds a routable graph from uncertain

trajectories, and then answers a user’s online query (a
sequence of point locations) by searching top-k routes on
the graph.
• MPR [10]: It discovers the most popular route from

a transfer network based on the popularity indicators in a
breadth-first manner.
• CTRR [5]: It proposes a collaborative travel route

recommendation algorithm by considering a user’s personal
travel preference. A road network graph is weighted based
on the log-inversed travel behaviour probability that is
transformed from the user historical trajectories. Finally, the
least weighted route is discovered with Dijkstra’s algorithm.
• STRNN [36]: Based on RNNs, it models local temporal

and spatial contexts in each layer with transition matri-
ces for different time intervals and geographical distances.
The original STRNN is used for next-location prediction.
We adapt it to our task in an auto-regressive way, i.e.,
a predicted location at the current step will be fed into
the network to produce the location at the next step. If a
predicted location is the destination, the algorithm will be
ended. Otherwise we will end it if the predicted route is 50%
longer than the real route.
• DeepMove (DM) [35]: It is a multi-modal embedding

RNN that can capture the complicated sequential transitions
by jointly embedding the multiple factors that govern the
human mobility. To adapt it to route recommendation, we
follow the similar method of STRNN to produce auto-
regressive prediction. A major advantage of DeepMove is
that it can leverage various kinds of context features in the
prediction model. For a fair comparison, we adopt the same
kinds of context features as in our approach (Eq. (5)).
• NASR [25]: it is a base version of our model, which

shares the same component for the G(·) function but adopts
a simpler implementation of the H(·) function without
considering position-aware node embeddings.
• NASR+: it is the current model.
Among these baselines, RICK and MPR are heuristic

search based methods, CTRR is a machine learning method,
and STRNN and DeepMove are deep learning methods. The
parameters in all the models have been optimized using the
validation set.

To reproduce our results, Table 1 lists the parameters and
their configurations in our model. We organize the notations
in three groups, namely the input, G(·) and H(·). The last
column reports the parameter configurations that are able to
reproduce the experimental results in our paper. We also set
up a GitHub project to share all the code for reproducibility
at the link: https://github.com/bigscity/NASR.

In the experiment, the parameters in GRU, GNN and
MLP in our model are initialized by a truncated normal
distribution with zero mean and 0.01 variance, and the
biases are initialized as zeros. We use the Adaptive Moment
Estimation (Adam) optimizer to train with a learning rate

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3068479, IEEE
Transactions on Knowledge and Data Engineering

10

of 0.0001. The batch size is set as 100 for the pre-training
of G(·), and is set as 50 for the joint training of G(·) and
H(·). The epoch number for the the pre-training is set as 50
and for the joint training is set as 20 until convergence. To
avoid overfitting, we apply dropout in both GRU and fully
connected layers, and the dropout rate is 0.5.

6.2 Result and Analysis

We present the results of all the comparison methods in
Table 3. From the table we can observe followings.

First, heuristic search methods, i.e., RICK and MPR,
perform well, especially the RICK method. RICK fully
characterizes the road network information and adopts the
informed A∗ algorithm. This result verified the effectiveness
of the A∗ algorithm in the PRR task. As a comparison, MPR
mainly considers the modeling of transfer network and uses
a relatively simple BFS search procedure.

Second, the matrix factorization based method CTRR
does not perform better than RICK and MPR. A possible
reason is that CTRR can not well utilize the road network
information. Besides, it has limited capacities in learning
complicated trajectory characteristics. In our experiments,
CTRR tends to generate short route recommendations, giv-
ing very bad recall results for medium and long queries.
Third, the deep learning method DeepMove performs very
well among all the baselines, while STRNN gives a worse
performance. Compared with STRNN, DeepMove consid-
ers more kinds of context information and designs more
advanced sequential neural networks.

Finally, the model NASR and its improved version
NASR+ are consistently better than all the baselines in
all cases, yielding very good performance even on long
queries. Comparing the two versions of our model, we can
see NASR+ further produces substantial improvement over
the base model NASR. The major difference between the
two versions of our model lies in the fact that NASR+
is able to learn distance and preference information using
the position-aware node embeddings. For the PRR task,
the positional and personalized information of locations are
particularly important to consider. The proposed PA-GNN
can learn such characteristics by setting up anchor sets and
measuring the relations between anchor locations and target
locations from the positional and personalized perspective.

By summarizing these results, we can see heuristic
search methods are competitive to solve the PRR task,
especially when suitable heuristics are used and context
information is utilized. Besides, deep learning is also able to
improve the performance by leveraging the powerful mod-
eling capacity. Our proposed models are able to combine
both the benefits of heuristic search and neural networks,
and hence it performs best among the comparison methods.

6.3 Detailed Model Analysis

In this section, we perform a series of detailed analysis
on NASR+ for further verifying its effectiveness. Due to
space limit, we only report the results of F1 scores on
the Beijing taxi dataset. The rest results show the similar
findings, and are omitted here.

6.3.1 The Effect of the RNN Component

We first examine the effect of the RNN component with
different variants. We have incorporated two kinds of atten-
tions, namely inter- and intra-trajectory attention in Sec. 5.2.
Here, we consider three variants of the attention mechanism
for implementing g(·): without attention (NA), using only
intra-trajectory attention (IA) and using both intra- and inter-
trajectory attention (BA). Recall our RNN component is also
able to learn a vectorized representation for the moving
state of users. We further prepare a variant for verifying the
effect of the learned moving state in the estimation network,
namely the model that does not provide the moving state
to the H(·) function, denoted by (BA¬S). In Fig. 3(a), it
can be seen that the performance rank is as follows: NA
< IA< BA and BA¬S < BA. It shows that both inter-
and intra-trajectory attention are important to improve the
performance of the PRR task. Especially, the learned moving
state from the RNN component is useful for the estimation
network. When the moving state is incorporated, the perfor-
mance of the joint model has been substantially improved.

6.3.2 The Effect of the Estimation Network
Predicting the future cost (i.e., H(·)) of a candidate

location is especially important for our task. We use an
estimation network for implementing H(·), which replaces
the traditional heuristics. We now examine the performance
of different variants for the estimation network. In this
part, we fix the RNN component as its optimal setting.
Then we prepare four variants for the estimation network
as comparisons, including (1) ED using Euclid distance
as heuristics, (2) SP using the scalar product between the
embeddings of the candidate and destination locations, (3)
NASR using the base version of our model which does
not consider positional information nodes, and (4) NASR+
using our complete model. In Fig. 3(b), it can be observed
that the performance rank is as follows: ED < SP < NASR
< NASR+. We can see that the simplest spatial distance
baseline ED gives the worst performance, which indicates
simple heuristics may not work well in our task. Position-
aware graph neural networks are more effective to capture
geographical and personalized characteristics from graphs.
When incorporating these information, our estimation net-
work is able to outperform the base version.

6.3.3 The Effect of the Estimation Network on Search
Space

Search space is an importance metric to evaluate the
effect of heuristics. We now examine the performance of dif-
ferent variants for the estimation network on the reduction
of search space. We measure the reduced ratio yielded by
a search algorithm over the original search space. In this
part, we fix the RNN component as its optimal setting.
Then we prepare four variants for the estimation network
as comparisons, including (1) ED using Euclid distance
as heuristics, (2) SP using the scalar product between the
embeddings of the candidate and destination locations, (3)
NASR using the base version of our model which does
not consider positional information nodes, and (4) NASR+
using our complete model. Overall, Fig. 3(c) shows similar

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3068479, IEEE
Transactions on Knowledge and Data Engineering

11

TABLE 3
Performance comparison using four metrics on three datasets. All the results are better with larger values except the EDT measure. With paired

t-test, the improvement of the NASR over all the baselines is significant at the level of 0.01.

Datasets Metric Precision Recall
Length RICK MPR CTRR STRNN DM NASR NASR+ RICK MPR CTRR STRNN DM NASR NASR+

Beijing Short 0.712 0.347 0.558 0.491 0.742 0.821 0.834 0.723 0.372 0.164 0.384 0.756 0.848 0.856

Taxi Medium 0.638 0.253 0.276 0.446 0.642 0.757 0.782 0.651 0.261 0.067 0.350 0.654 0.773 0.793
Long 0.586 0.169 0.194 0.359 0.562 0.684 0.735 0.589 0.173 0.045 0.214 0.575 0.709 0.741

Porto Short 0.697 0.359 0.701 0.442 0.721 0.804 0.813 0.705 0.381 0.358 0.372 0.726 0.832 0.840

Taxi Medium 0.622 0.271 0.416 0.403 0.619 0.729 0.742 0.634 0.293 0.106 0.326 0.628 0.754 0.765
Long 0.565 0.184 0.305 0.340 0.547 0.657 0.679 0.578 0.198 0.036 0.218 0.568 0.671 0.690

Beijing Short 0.652 0.303 0.587 0.559 0.673 0.788 0.799 0.670 0.313 0.272 0.330 0.685 0.802 0.814

Bicycle Medium 0.568 0.217 0.603 0.461 0.582 0.715 0.737 0.574 0.226 0.142 0.304 0.589 0.724 0.747
Long 0.503 0.129 0.613 0.297 0.487 0.641 0.675 0.519 0.139 0.045 0.206 0.492 0.663 0.694

Datasets Metric F1-score EDT
Length RICK MPR CTRR STRNN DM NASR NASR+ RICK MPR CTRR STRNN DM NASR NASR+

Beijing Short 0.717 0.359 0.253 0.431 0.749 0.834 0.845 4.594 8.287 9.082 7.551 4.362 3.376 2.941

Taxi Medium 0.644 0.257 0.108 0.392 0.648 0.765 0.787 8.273 16.321 23.110 14.725 8.730 5.728 5.192
Long 0.587 0.171 0.073 0.268 0.568 0.703 0.738 11.283 25.873 27.493 22.705 12.059 8.314 7.102

Porto Short 0.701 0.370 0.474 0.404 0.723 0.818 0.826 4.801 8.104 6.935 8.790 4.496 3.563 3.194

Taxi Medium 0.628 0.282 0.169 0.360 0.623 0.741 0.753 8.619 15.032 18.294 13.368 8.930 5.949 5.280
Long 0.571 0.191 0.065 0.266 0.557 0.663 0.684 11.379 21.349 31.745 19.603 12.297 8.572 7.339

Beijing Short 0.661 0.308 0.372 0.414 0.679 0.795 0.806 5.183 8.924 7.784 7.092 4.629 3.719 3.183

Bicycle Medium 0.571 0.221 0.229 0.367 0.585 0.720 0.742 8.972 17.497 20.966 14.503 9.039 6.253 5.319
Long 0.511 0.134 0.084 0.243 0.489 0.671 0.684 11.891 22.028 57.997 21.324 12.692 8.794 7.395

short medium long

0.7

0.75

0.8

0.85

F1

NA IA BA BA-S

(a) Examining the RNN compo-
nent.

short medium long
0.65

0.7

0.75

0.8

0.85

0.9

F1

ED SP NASR NASR+

(b) Examining the estimation net-
work.

short medium long

10

20

30

40

50

60
ED SP NASR NASR+

R
ed
uc
tio
n

R
at

io
 (%

)

(c) Examining the search space.

short medium long
0.65

0.7

0.75

0.8

0.85

0.9

F1

r-PAGANN d-PAGANN p-PAGANN h-PAGANN

(d) Examining the generation of an-
chor sets.

Fig. 3. Detailed analysis of our model on the dataset of Beijing taxi using F1 measure.

observations for different variants: ED < SP < NASR <
NASR+. Our full model NASR+ leads to the maximum
reduction over the search space, which further indicates
the effectiveness of the learned position-aware node embed-
dings.

6.3.4 The Effect of Different PA-GNN Variants
A major novelty of our model is it can learn more

effective node embeddings by integrating the distance- and
preference-based PA-GNN variants. Here, we would like to
examine the effect of different ways to learn the position-
aware node embeddings on the model performance. We
consider four variants for the estimation network as com-
parisons, including (1) r-PAGNN using the original imple-
mentation in [19], (2) d-PAGANN using our distance-based
variant, (3) p-PAGANN using our preference-based variant,
and (4) h-PAGANN using a hybrid of our proposed two
variants. In Fig. 3(d), it can be observed that the performance
rank is as follows: r-PAGNN < d-PAGNN < p-PAGNN <
h-PAGNN. The original PA-GNN performs worst, which
indicates a simple application of PA-GNN may not work
well on our task. The two variants are effective to improve
the model performance, and the preference-based variant
seems to yield a better performance. By integrating the two
variants, our model achieves the best performance.

TABLE 4
Effect of different context features on Beijing taxi dataset using F1

measure.

Model Short Medium Long
NASR+ 0.845 0.787 0.738
¬week 0.813 0.751 0.715
¬hour 0.801 0.732 0.703
¬user 0.795 0.725 0.697

6.3.5 Effect of Different Context Features

In Eq. (5), besides location ID, we have considered dif-
ferent features to enrich the context information, namely
user ID, weekly index and hourly index. Here, we study
the effect of context features on the performance of our
task. We keep our approach with all the context features
as a reference. Then, we remove one kind of context feature
at one time, and examine how it affects the performance:
(1) ¬week removes the week context, (2) ¬hour removes the
hour context, and (3) ¬user removes the user context. The
comparison results are reported in Table 4. From this table,
we can observe that the three kinds of features contribute
to the final performance. In particular, user ID seems to be
more important the other two kinds of temporal features.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3068479, IEEE
Transactions on Knowledge and Data Engineering

12

TABLE 5
Examining the influence of data sparsity on the model performance

with Beijing dataset using F1 measure.

Type ≤ 5 ≤ 10 ≤ 15

NASR+ 0.755 0.814 0.837
RICK 0.569 0.621 0.673

DeepMove 0.575 0.639 0.701

This finding is reasonable since the task itself has a person-
alized setting.

6.3.6 The Influence of Data Sparsity
Our current task setting is highly based historical tra-

jectory data, i.e., learning the route recommendation model
using these historical data. A potential issue is that data
sparsity (e.g., some locations are seldom been visited) will
influence the algorithm performance. Here, we examine the
influence of data sparsity on the route recommendation
algorithm. In specific, we only consider the recommenda-
tion performance on the infrequently visited locations at
different sparsity levels (≤ 5 times, ≤ 10 times and ≤ 15
times). We select the baselines of RICK and DeepMove
for comparison. Table 5 reports the performance of the
three methods at different sparsity levels. As we can see,
our model performs consistently better than the other two
baselines, especially for the most sparse case. By designing
a more effective model architecture, our approach is more
resistible to the data sparsity.

6.4 Parameter Tuning
In our model, there are several parameters to tune. We

present the tuning results of F1 scores of four important
parameters in Fig. 4.

Since the G(·) is developed based on GRU, an important
parameter to consider is the dimensionality KR of the
hidden state in GRU. We vary the embedding size from 128
to 640, with a gap of 128. As shown in Fig. 4(a), the optimal
embedding size is around 500. Overall, the range from 400
to 600 gives good performance.

To implement the H(·) function, we need to set the
number of anchor sets for use. Overall, using more anchor
sets will increase the capacity of learning structural char-
acteristics, and meanwhile incur a high model complexity.
Intuitively, it should be set to a suitable value neither too
large nor too small. To see the influence of the number of
anchor sets, we vary it from 16 to 80 with a gap of 16 for
the Beijing dataset. Fig. 4(b) presents the varying results for
different numbers of anchor sets. It can be observed that
using 64 anchor sets gives the best performance for the
Beijing dataset.

In the H(·) network, another parameter to tune is the
number of hidden layers in MLP defined in Eq. (20). We
vary the number of layers from 0 to 4. From Fig. 4(c), it can
be observed that using relatively fewer hidden layers lead to
a better performance. The optimal performance is achieved
with one hidden layer. Finally, we also tune the number
of hidden layers in GNN defined in Eq. (14). We vary the
number of GNN layers from 1 to 4. Overall, using two
hidden layers achieves the optimal performance as shown
in Fig. 4(d).

200 300 400 500 600
GRU dimension

0.55

0.6

0.65

0.7

0.75

NASR+
RICK

(a) The hidden dimensions in
GRU.

20 30 40 50 60 70 80
Anchor Sets

0.72

0.725

0.73

0.735

0.74

NASR+

(b) The # of acnchor sets in
the estimation network.

0 1 2 3 4
MLP layers

0.715

0.72

0.725

0.73

0.735

0.74

NASR+

(c) The # of hidden layers in
MLP.

1 1.5 2 2.5 3 3.5 4
GNN layers

0.715

0.72

0.725

0.73

0.735

0.74

NASR+

(d) The # of graph neural
network layer.

Fig. 4. Parameter sensitivity on long queries with Beijing taxi dataset
using F1 measure.

6.5 Qualitative Analysis on Model Interpretability

Previously, we have shown the effectiveness of our
model in the PRR task. In this part, we qualitatively analyze
why NASR+ is able to yield a good performance.

In NASR+, the improved graph neural network is the
core component for modeling road network information. It
can generate informative node representations for encoding
structural characteristics. To see this, we present an illustra-
tive example in Fig. 5. A user is currently located at li and
moving towards the destination ld. Recall that, according to
Eq. (18), the elements in z

(P)
lk

represent the importance levels
of anchor-sets on the representation of lk, called anchor-
set importance for short. For each location lk on the road
network, we plot the anchor-set importance with varying
darkness degrees on a location in an associated sub-figure. A
darker triangle means the anchor-set is more important for
location lk. For comparison, we plot anchor-set importance
expressed by z(P) for locations on both the actual and
shortest routes. As we can see, the anchor-set importance
subfigure for li is more similar to those for locations from
the actual route (upper right) than the shortest route (left
lower). By inspecting into the dataset, we find the shortest
route contains several side road segments that are possibly
in traffic congestion at the visit time. Another interesting
observation is that the user indeed visits the locations in
the actual route more times in historical trajectories. These
observations indicate that our model is able to learn effective
node representations for identifying more important loca-
tions to explore for the PRR task.

Next, we continue to study how the learned cost function
helps the search procedure in NASR+. Figure 6 presents
a sample trajectory from a specific user. Given the source
and destination, we need to predict the actual route. By
comparing Fig. 6(a) (the original search space) and Fig. 6(b)
(the reduced search space by NASR+), it can be seen that
our model is able to effectively reduce the search space,
i.e., 65% search space has been reduced for this case. When
zooming into a subsequence of this route, we further com-
pare the estimated cost values for two candidate locations
(green points) in Fig 6(c). Although the upper location has

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3068479, IEEE
Transactions on Knowledge and Data Engineering

13

Current

𝑙𝑙𝑑𝑑

𝑙𝑙𝑖𝑖

r

Actual Path

freq = 7 freq = 7

Shortest Path Destination

Fig. 5. Visualization of the learned representation using improved
position-aware graph neural networks. The yellow circles denote loca-
tions in the road network. The colored triangles denote the centric points
of anchor-sets in the road network. A darker triangle in a subfigure
indicates the corresponding author-set is more important to the associ-
ated location. “freq” denotes the visit frequency by the user in historical
trajectories.

(a) Orginal Search SpaceStart

End

(b) Reduced Search Space

by NASR+

Start

End

Area of Fig.(c)

H= 4. 13

H= 12.86

(c) Estimated costs by NASR+

Fig. 6. Visualization of the search procedure with the estimated costs
by the NASR+ model. In (c), red points have been already explored and
green points are candidate locations to extend in A∗ search algorithm.

a longer distance with the explored locations, it is located
on the main road that is likely to lead to a better traffic
condition. Our model is able to predict a lower cost for
the upper location by effectively learning such trajectory
characteristics from road network and historical data.

7 CONCLUSIONS
In this paper, we took the initiative to use neural net-

works to automatically learn the cost functions in A∗ for the
PRR task. We first presented a simpleA∗ solution for solving
the PRR task, and formally defined the suitable form for the
search cost. Then, we set up two components to learn the
two costs respectively, i.e., the RNN component for G(·) and
the estimation network for H(·). The two components were
integrated in a principled way for deriving a more accurate
cost of a candidate location for search. A major novelty of
this model lies in the estimation network, which is devel-
oped based on position-aware graph attention networks.
By selecting suitable anchor sets, the estimation network is
more capable of learning distance and preference structure
characteristics of road networks. We constructed extensive
experiments for verifying the effectiveness and robustness
of the proposed model. Interestingly, besides the system
performance, we have found that the proposed model is
also able to effectively reduce the search space.

A possible extension of our work is the incorporation
of prior information. Currently, we mainly learn the model
and data representations through the historical trajectories,
which can be either sparse or noisy. In order to improve
our model, it will be also useful to inject prior informa-
tion about traffic conditions, e.g., the congestion time of a
crossroad. Besides, our approach relies on the cost function
for the decision of each candidate location. However, the
cost function is difficult to understand, e.g., why a candidate
location has a large estimated cost. As future work, we will
consider designing more interpretable estimation network
for deriving the cost. Besides, our elaborate model structure
also introduce some additional computational complexity.
Therefore, improving the computational efficiency is also an
extension direction of our model.

ACKNOWLEDGMENTS

This work was supported by the National Key R&D
Program of China (2019YFB2102103), the National Natural
Science Foundation of China (Grant No.92046010, 61872369,
61572059). Dr. Jingyuan Wang’s work was partially sup-
ported by BRICS STI Framework Programme: Response to
COVID-19 global pandemic (MFQuantiC), the CCF-DiDi
Gaia Collaborative Research Funds for Young Scholars, and
the Fundamental Research Funds for the Central Universi-
ties (Grant No. YWF-20-BJ-J-839).

REFERENCES

[1] J. Wang, C. Chen, J. Wu, and Z. Xiong, “No longer sleeping with a
bomb: a duet system for protecting urban safety from dangerous
goods,” in KDD’17. ACM, 2017, pp. 1673–1681.

[2] J. Wang, X. He, Z. Wang, J. Wu, N. J. Yuan, X. Xie, and Z. Xiong,
“CD-CNN: a partially supervised cross-domain deep learning
model for urban resident recognition,” in AAAI’18, 2018.

[3] J. Wang, J. Wu, Z. Wang, F. Gao, and Z. Xiong, “Understanding
urban dynamics via context-aware tensor factorization with neigh-
boring regularization,” IEEE TKDE, 2019.

[4] L. Tang, Z. Duan, Y. Zhu, J. Ma, and Z. Liu, “Recommendation for
ridesharing groups through destination prediction on trajectory
data,” IEEE TITS’19, pp. 1–14, 2019.

[5] G. Cui, J. Luo, and X. Wang, “Personalized travel route recom-
mendation using collaborative filtering based on gps trajectories,”
IJED, vol. 11, no. 3, pp. 284–307, 2018.

[6] J. Dai, B. Yang, C. Guo, and Z. Ding, “Personalized route recom-
mendation using big trajectory data,” in ICDE, April 2015, pp.
543–554.

[7] L. Y. Wei, Y. Zheng, and W. C. Peng, “Constructing popular routes
from uncertain trajectories,” in KDD’12, 2012, pp. 195–203.

[8] W. Luo, H. Tan, L. Chen, and L. M. Ni, “Finding time period-
based most frequent path in big trajectory data,” in SIGMOD’13,
2013, pp. 713–724.

[9] H. Wu, J. Mao, W. Sun, B. Zheng, H. Zhang, Z. Chen, and W. Wang,
“Probabilistic robust route recovery with spatio-temporal dynam-
ics,” in KDD’16, 2016, pp. 1915–1924.

[10] Z. Chen, H. T. Shen, and X. Zhou, “Discovering popular routes
from trajectories,” in ICDE’11, 2011, pp. 900–911.

[11] A. Al-Molegi, M. Jabreel, and B. Ghaleb, “STF-RNN: space time
features-based recurrent neural network for predicting people
next location,” in SSCI’16, 2016, pp. 1–7.

[12] C. Yang, M. Sun, W. X. Zhao, Z. Liu, and E. Y. Chang, “A neural
network approach to jointly modeling social networks and mobile
trajectories,” ACM T-IS, vol. 35, no. 4, pp. 36:1–36:28, 2017.

[13] H. Wei, N. Xu, H. Zhang, G. Zheng, X. Zang, C. Chen, W. Zhang,
Y. Zhu, K. Xu, and Z. Li, “Colight: Learning network-level cooper-
ation for traffic signal control,” in CIKM’19, 2019, pp. 1913–1922.

[14] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional re-
current neural network: Data-driven traffic forecasting,” ICLR’18,
2018.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3068479, IEEE
Transactions on Knowledge and Data Engineering

14

[15] J. Wang, X. Wang, C. Li, J. Wu et al., “Deep fuzzy cognitive maps
for interpretable multivariate time series prediction,” IEEE TFS’20,
2020.

[16] S. Guo, C. Chen, J. Wang, Y. Liu, X. Ke, Z. Yu, D. Zhang, and D.-
M. Chiu, “Rod-revenue: Seeking strategies analysis and revenue
prediction in ride-on-demand service using multi-source urban
data,” IEEE TMC’19, 2019.

[17] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural
networks and tree search,” Nature, vol. 529, no. 7587, p. 484, 2016.

[18] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE TSSC’68,
vol. 4, no. 2, pp. 100–107, 1968.

[19] J. You, R. Ying, and J. Leskovec, “Position-aware graph neural
networks,” in ICML’19, 2019, pp. 7134–7143.

[20] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in ICLR’18, 2018.

[21] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” ICLR’16, 2016.

[22] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li,
and M. Sun, “Graph neural networks: A review of methods and
applications,” arXiv preprint arXiv:1812.08434, 2018.

[23] N. Wu, J. Wang, W. X. Zhao, and Y. Jin, “Learning to effectively
estimate the travel time for fastest route recommendation,” in
CIKM’19. ACM, 2019, pp. 1923–1932.

[24] J. Wang, N. Wu, X. Lu, X. Zhao, and K. Feng, “Deep trajectory
recovery with fine-grained calibration using kalman filter,” IEEE
TKDE’19, 2019.

[25] J. Wang, N. Wu, W. X. Zhao, F. Peng, and X. Lin, “Empowering
A* search algorithms with neural networks for personalized route
recommendation,” in SIGKDD’19. ACM, 2019, pp. 539–547.

[26] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang,
“T-drive: driving directions based on taxi trajectories,” in SIGSPA-
TIAL. ACM, 2010, pp. 99–108.

[27] H. Liu, L. Y. Wei, Y. Zheng, and M. Schneider, “Route discovery
from mining uncertain trajectories,” pp. 1239–1242, 2011.

[28] S. Shafique and M. E. Ali, “Recommending most popular travel
path within a region of interest from historical trajectory data,” in
SIGSPATIAL. ACM, 2016, pp. 2–11.

[29] D. Chen, C. S. Ong, and L. Xie, “Learning points and routes to
recommend trajectories,” in CIKM. ACM, 2016, pp. 2227–2232.

[30] B. Chang, Y. Park, D. Park, S. Kim, and J. Kang, “Content-aware
hierarchical point-of-interest embedding model for successive POI
recommendation.” in IJCAI’18, 2018, pp. 3301–3307.

[31] X. Zhou, C. Mascolo, and Z. Zhao, “Topic-enhanced memory
networks for personalised point-of-interest recommendation,”
SIGKDD’19, 2019.

[32] S. Zheng, Y. Yue, and P. Lucey, “Generating long-term trajectories
using deep hierarchical networks,” in NIPS’17, 2017, pp. 1543–
1551.

[33] Q. Gao, F. Zhou, G. Trajcevski, K. Zhang, T. Zhong, and
F. Zhang, “Predicting human mobility via variational attention,”
in WWW’19. ACM, 2019, pp. 2750–2756.

[34] H. Wu, Z. Chen, W. Sun, B. Zheng, and W. Wang, “Modeling
trajectories with recurrent neural networks,” in ICJAI’17, 2017, pp.
3083–3090.

[35] J. Feng, Y. Li, C. Zhang, F. Sun, F. Meng, A. Guo, and D. Jin,
“Deepmove: Predicting human mobility with attentional recurrent
networks,” in WWW’18, 2018, pp. 1459–1468.

[36] Q. Liu, S. Wu, L. Wang, and T. Tan, “Predicting the next location: a
recurrent model with spatial and temporal contexts,” in AAAI’16,
2016, pp. 194–200.

[37] L. Lelis, R. Stern, and S. J. Arfaee, “Predicting solution cost with
conditional probabilities,” in ASSC’11, 2011.

[38] M. Ernandes and M. Gori, “Likely-admissible and sub-symbolic
heuristics,” in ECAI’04. Citeseer, 2004, pp. 613–617.

[39] M. Samadi, A. Felner, and J. Schaeffer, “Learning from multiple
heuristics.” in AAAI’08, 2008, pp. 357–362.

[40] C. Yang and G. Gidofalvi, “Fast map matching, an algorithm in-
tegrating hidden markov model with precomputation,” IJGIS’18,
vol. 32, no. 3, pp. 547–570, 2018.

[41] K. Nachtigall, “Time depending shortest-path problems with ap-
plications to railway networks,” EJOR’95, vol. 83, no. 1, pp. 154–
166, 1995.

[42] E. Kanoulas, Y. Du, T. Xia, and D. Zhang, “Finding fastest paths
on a road network with speed patterns,” in ICDE’06. IEEE, 2006,
pp. 10–10.

[43] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Gated feedback
recurrent neural networks,” in ICML’15, 2015, pp. 2067–2075.

[44] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” in ICLR’15, 2015.

[45] S. Milgram, “The small world problem,” Psychology today, vol. 2,
no. 1, pp. 60–67, 1967.

[46] J. Han, M. Kamber, and A. K. H. Tung, “Spatial clustering methods
in data mining: A survey,” in Geographic data mining and knowledge
discovery, 2001.

[47] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with
noise.” in KDD’96, vol. 96, no. 34, 1996, pp. 226–231.

[48] Y. Wu, W. Wu, D. Yang, C. Xu, and Z. Li, “Neural response
generation with dynamic vocabularies,” in AAAI’18, vol. 32, no. 1,
2018.

[49] M. Thorup, “Compact oracles for reachability and approximate
distances in planar digraphs,” Journal of the ACM (JACM), vol. 51,
no. 6, pp. 993–1024, 2004.

[50] T. Kameda, “On the vector representation of the reachability in
planar directed graphs,” Information Processing Letters, vol. 3, no. 3,
pp. 75–77, 1975.

[51] K. H. Lim, J. Chan, C. Leckie, and S. Karunasekera, “Personalized
tour recommendation based on user interests and points of interest
visit durations.” in IJCAI’15, vol. 15, 2015, pp. 1778–1784.

Jingyuan Wang received the Ph.D. degree from
the Department of Computer Science and Tech-
nology, Tsinghua University, China. He is cur-
rently an Associate Professor of School of Com-
puter Science and Engineering, Beihang Univer-
sity, China. His is also the head of the BIGSCity
lab, and Vice Director of the Beijing City Lab
(BCL). He published more than 30 papers on
top journals and conferences, such as SIGKDD,
AAAI, ICDM, IEEE TKDE, IEEE TMC, ACM
TOIS, etc.. His general area of research is data

mining and machine learning, with special interests in smart cities.

Ning Wu received the MEng degree in computer
science from the Beihang University, China, in
2021. He is currently a data scientist in Mi-
crosoft, working on Bing search engine. He has
published several papers in international con-
ferences and journals such as SIGKDD, CIKM,
IEEE TKDE. His research interests are urban
data analysis and natural language processing.

Wayne Xin Zhao received the PhD degree from
Peking University in 2014. He is currently a
tenured associated professor in Gaoling School
of Artificial Intelligence, Renmin University of
China. His research interests are web text min-
ing and natural language processing. He has
published a number of papers in international
conferences and journals such as ACL, SIGIR,
SIGKDD, WWW, ACM TOIS, and IEEE TKDE.
He is a member of the IEEE.

