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GAN-Based Anomaly Detection for Multivariate
Time Series Using Polluted Training Set

Bowen Du, Xuanxuan Sun, Junchen Ye, Ke Cheng, Jingyuan Wang, and Leilei Sun

Abstract—Multivariate time series anomaly detection has great potentials in many practical applications such as structural health
monitoring, intelligent operation and maintenance, quantitative trading, efc. Extreme unbalanced training set and noise interference
make it challenging to accurately capture the distribution of normal data and then detect anomalies. Recently, dozens of AutoEncoder
(AE) and Generative Adversarial Network (GAN) based methods have been proposed to learn the latent representation of normal data
and then detect anomalies based on reconstruction error. However, existing AE-based approaches are lack of effective regularization
method specially designed for anomaly detection tasks thus easily overfitting while GAN-based approaches are mostly trained under
the hypothesis of pollution-free training set, which means the training set is all composed of normal samples and that is hard to satisfy
in practice. To tackle these problems, in this paper we propose a GAN based anomaly detection method for multivariate time series
named FGANomaly (letter F is for Filter). The core idea is to filter possible anomalous samples with pseudo-labels before training the
discriminator thus to capture the distribution of normal data as precise as possible. In addition, we design a novel training objective for
the generator, which leads the generator to concentrate more on plausible normal data and ignore anomalies. We conducted
comprehensive experiments on four public datasets, and the experimental results show the superiority of our method over baselines in
both performance and robustness.

Index Terms—Anomaly Detection, Generative Adversarial Networks, Multivariate Time Series, Pseudo-label.
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1 INTRODUCTION compared with univariate time series, anomaly detection
in multivariate time series is more complex for the reason
of complicated correlations between different dimensions.
Under this circumstance, automated and scalable anomaly
detection methods are in urgent need.

The rapid development of data acquisition and storage
technology provides abundant raw materials for machine
learning algorithms, which leads to the boom of machine
learning based anomaly detection methods. In the past
years, many approaches have been proposed to address
the problem of anomaly detection. Amongst them, the most
commonly used methods are clustering based models and
one class classification based models. Clustering based mod-
els such as K-means and density peak clustering consider
the observations far away from any of the clustering centers
as anomalies [6], [7]. One class classification methods such
as one class SVM and isolation forest only model the distri-
bution of normal data, then consider the observations that
do not follow this distribution as anomalies [8], [9]. These
data driven anomaly detection methods are more intelligent,
but they are still not competent to large scale data due to
the curse of dimensionality and sub-optimal performance.
Most recently, the unsupervised learning methods based on
reconstruction has received a lot of attention [10], [11], [12],
[13].

Reconstruction based anomaly detection methods for
multivariate time series usually have two stages: 1) data
decomposition and reconstruction. 2) anomaly scores cal-
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ULTIVARIATE time series is a type of real-world data
Mof great volume, which is usually collected by mon-
itoring system and contains significant run-time informa-
tion of the monitored subject. Generally, anomalies in the
measured data reflect abnormal states of the system such as
structural failures in structural health monitoring [1], intru-
sions in intelligent operation and maintenance [2], frauds in
finance [3], etc. These abnormal states could bring great eco-
nomic losses even casualties. Therefore, the establishment of
anomaly detection system which could detect anomalies in
multivariate time series accurately and fast has drawn more
and more interest from both of academia and industry.

In a time series, anomalies are defined as observations
deviate severely from their expected values. Historically,
the expected values are determined by system monitoring
experts who have extensive experience thus clear about
the boundaries of normal values [4], [5]. The experts firstly
establish normal behavior thresholds for every feature to be
measured, then measurements exceed their corresponding
expert-defined thresholds will be considered as anoma-
lies. However, because of the scale and complexity of the
monitored subject, the number of features to be measured
has increased dramatically over time, which makes it no
longer simple and effective to detect anomalies with tra-
ditional expert-defined methods. As shown in Figure 1,
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Fig. 1. Compared with univariate time series, anomaly detection in
multivariate time series is more complex for the reason of complicated
correlations between different dimensions.

distance between each observation and its reconstructed
counterpart is then calculated as anomaly score. Generally,
the farther the distance is, the more likely the observation
is to be abnormal. By setting a threshold, the abnormal
samples can be detected. Matrix factorization is a kind
of classic dimension reduction technologies which can be
also used for data reconstruction and anomaly detection.
Non-negative matrix factorization (NMF) [11] and principal
component analysis (PCA) [14] are widely used for anomaly
detection. However, they are linear models which are not
suitable for complex non-linear data while deep learning
based methods are more powerful and suitable. Among
various deep learning methods, recurrent neural networks
(RNNs) [13] are very popular for that they are proper to
deal with sequential data like time series. However, RNNs
incur in high costs associated to time for the reason of its
structural characteristics. Other deep learning based mod-
els include autoencoder based and variational autoencoder
based models such as Deep Autoencoding Gaussian Mix-
ture Model (DAGMM) [15], Donut [12] and OmniAnomaly
[16] which also have limitations. They are lack of effec-
tive regularization method specially designed for anomaly
detection tasks, which makes them learn the patterns of
abnormal data as well thus fail to detect anomalies pre-
cisely. For the reason of sample generation capability, GAN-
based anomaly detection methods are rising quickly, such as
GANomaly [17], MAD-GAN [18], LSTM-based VAE-GAN
[19] and BeatGAN [20]. The architecture of GAN is able
to capture the distribution of training data, which provides
global regularization information during the training pro-
cess thus to relieve overfitting [20]. But that only makes
sense when the training set is pollution-free, which means
there are only normal samples in the training set. When the
training set is polluted with anomalous samples, the models
would not only capture the distribution of normal data but
also the distribution of abnormal data.
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To address the problems aforementioned, in this paper
we propose a novel GAN-based unsupervised anomaly
detection method for multivariate time series named
FGANomaly. The intuition behind FGANomaly is that be-
fore training the discriminator of GAN, filter the plausible
abnormal samples at first using pseudo-labels. When train-
ing the generator of GAN which is in the form of encoder-
decoder, replace MSE loss with a special designed loss as
training objective. In summary, the main contributions of
this paper are:

o To the best knowledge of us, this is the first re-
search conducting multivariate time series anomaly
detection with GAN but not under the hypothesis of
pollution-free training set.

o We propose a pseudo-label generation method which
enables the GAN architecture to filter possible
anomalous samples thus accurately capture the dis-
tribution of normal data even the training set is
polluted with abnormal data. We name the novel
GAN architecture Filter GAN.

o We design a novel training objective for the generator
named Adaptive Weighted Loss (AdaWL), which dy-
namically assigns weights to different points during
the training process according to their reconstruction
errors. With this training objective, the model could
concentrate more on plausible normal data and thus
relieve overfitting.

The rest of this paper is organized as follows. Section
2 discusses related unsupervised methods for detecting
anomalies in multivariate time series. Section 3 discusses
some preliminaries for this task. And in section 4, the
details of our method will be described. Section 5 and 6
describe the experiments we conducted and the conclusions
we draw. Our code has been published on GitHub for better
reproducibility’.

2 RELATED WORKS

Tremendous effort has been devoted to unsupervised
anomaly detection, the existing methods can be grouped
up into three main categories, which are: 1) one class
classification based methods, 2) clustering based methods,
3) reconstruction based methods.

One class classification based anomaly detection methods
only modelling the distribution of normal data, the
observations that do not follow this distribution are
considered as anomalies. Under this framework, what the
algorithms need to do is to learn a discriminative boundary
that surrounds the normal samples. One class SVM [21] and
isolation forest [9] are typical models. Considering that lots
of deep learning based anomaly detection approaches are
not trained on an anomaly detection based objective, Ruff
et al. introduces a new anomaly detection method—Deep
Support Vector Data Description which is trained on an
anomaly detection based objective and it combines the
advantages both of deep learning an one class classification
[22]. Miao et al. propose a distributed online one class

1. https:/ / github.com/sxxmason/FGANomaly
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SVM for anomaly detection to address the problem of
anomaly detection for distributed data [23]. To reduce the
false alarm rate, Khreich et al. proposes a new anomaly
detection system which combines the temporal information
of system with an one class support vector machine detector
[8]. Though this kind of methods are easy to understand
and implement, they usually suffer from sub-optimal
performance due to the curse of dimensionality as the
number of dimensions grows higher.

Clustering based anomaly detection methods usually
consider the observations far away from any of the
clustering centers as anomalies. This kind of methods are
essentially doing density estimation and samples with
lower probability density than threshold are considered
as anomalies. Multivariate Gaussian Model, Gaussian
Mixture Model and K-means are typical models. Emadi et
al. detect anomalies in wireless sensor networks using a
density-based spatial clustering of applications with noise
(DBSCAN) algorithm, this algorithm detects the points in
regions with low density as anomalies [24]. Harish et al.
presents a network anomaly detection method based on
fuzzy clustering [25]. To address the problem of detecting
anomalous multi-elemental geochemical footprints of
mineral deposits, Ghezelbash et al. proposes genetic K-
means clustering (GKMC) algorithm, which is a hybrid
genetic algorithm-based technique [26]. To make use of the
temporal and variable relationships between multivariate
time series, Li et al. introduces an extended Fuzzy C-
Means clustering to reveal the available structure within
multivariate time series data by taking the amplitude and
the shape of multivariate time series into consideration
[27]. For the reason that the structures of clustering based
models are too simple to deal with complex data, they have
little potential to accommodate further anomaly detection
tasks.

Reconstruction based methods assume that anomalies
can not be effectively reconstructed from low dimensional
representations when the ratio of abnormal samples in
original data is quite small. Therefore, the anomaly score
can be defined as reconstruction error, the larger the
anomaly score is, the more likely the observation is to be
abnormal. Classic method of this category is PCA [14].
Plain PCA only has the ability of linear projection while
kernel PCA [28] can carry out non-linear projections. For
more complex data, deep learning models have been
proposed [12], [13], [15], [16]. However, deep autoencoder
based models are short of effective regularization method
for anomaly detection tasks while GAN-based models
introduce adversarial regularization to relieve overfitting
[17], [18], [19], [20], [29]. But when the training set is
polluted with anomalous samples, the conventional GAN-
based models would not only capture the distribution of
normal data but also the distribution of abnormal data. To
tackle the aforementioned problems, we have designed two
special components with which FGANomaly can relieve
overfitting greatly and detect anomalies precisely.

Existing reconstruction based methods provide a
paradigm that can accurately identify anomalies even

1 i ublication/redistribution requires IEEE permission. See http://www.ieee.org/,
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under unsupervised situations. Meanwhile, with the
powerful representation learning ability of deep learning
methods, it is possible to deal with the tremendous data and
mining useful information to detect anomalies. However,
it is still faced with some problems which are waiting to
be solved such as easily overfitting with abnormal patterns
and non-robustness when trained with polluted data.

3 PRELIMINARIES

In this section, the notations throughout the manuscript
are introduced first, and then the task of multivariate time
series anomaly detection is defined.

Definition 1. Observation (or Sample/Instance). An
observation x is a data point collected by the monitoring
system at a certain time. For univariate time series, x
degrades into a scalar while it is a vector of M-dimension
under the scenario of multivariate time series.

Definition 2. Multivariate time series. A type of
sequential data of length T containing successive
observations collected at equal-space intervals, noted
as T = {x1,x2,...,xp}. The sampling interval between two
consecutive observations ranges from seconds to hours.

Definition 3. Sliding window. A sliding window is a
consecutive subsequence of length W sampled from 7T,
noted as V. A time series could be transformed into a
sequence of sliding windows: W = {W!' W2 . W7},
W? = {x],x},....,x};;}, j is the serial number of current
sliding window. For the sake of simplicity, j will be omitted
in the following sections. If the labels are provided, W’
could be further divided into two sets: SJ and S7,,. The
former consists of all the normal observations in YW/ while
the latter consists of all the anomalous observations.

Definition 4. Reconstruction. Reconstruction based
anomaly detection methods first decompose the input data
into their low dimensional representations (or codings):
H = {H',H? ...,H’}, here H = {h},h},..,hl;,}. Then,
the input data will be reconstructed with these codings as:

W, — (&5, o 7y ]

Definition 5. Reconstruction error. The distance
between the original observation and its corresponding
reconstruction. Generally defined as:

diy = Il = %I (1)

w

Problem statement. Given a multivariate time series 7 =
{x1, %2, ...,x7}. The objective of anomaly detection is to as-
sign a label y € {0, 1} (0 for normal, 1 for abnormal) for each
observation x; € 7. To learn the correlations between an
observation and its surrounding ones, the original sequence
is usually transformed into a sequence of sliding windows
W= {W! W2, .., W/} In order to detect anomalies, recon-
struction based anomaly detection methods first decompose
and reconstruct the input data as: W = {Wl, W2, .., W‘]},
then the reconstruction errors are calculated with the input
data and reconstructions, which will be taken as anomaly
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scores for the input data. Eventually, the observations with
d greater than a given threshold th will be considered as
anomalies.

4 METHODOLOGY

In this section, we present the details and implementation
of FGANomaly.

4.1 Overview of Proposed Model

The overall architecture of FGANomaly is depicted in Figure
2. As shown in the figure, FGANomaly consists of three
components: generator, filter and discriminator. Note that the
generator is under the architecture of encoder-decoder. Let
X, H denote the feature space and latent vector space
respectively. What the generator G' needs to do is mapping
the observations into lower dimensional space first and then
reconstructs them into feature space:

fenc:X*)Ha fdec:H%X- (2)

We implement the encoder f.,. with a one-layer bidirec-
tional LSTM network followed with a linear projection, and
the decoder fg.. with a symmetrical network. Convention-
ally, the original samples and reconstructed ones are then
labeled as real and fake (considering that the generator is in
the form of autoencoder, fake means reconstructed and real
means original here) respectively to train the discriminator
D. The discrimination mapping fg;s is:

fdis X = [05 1]a (3)

it receives temporal sequences and returns classification
results. We implement the discriminator with a step-wise
feedforward network. Different from conventional models,
in FGANomaly the original samples and reconstructed ones
must be screened by the filter before they are sent to the dis-
criminator. The details of filter will be described later. With
these screened samples, the discriminator will be trained to
distinguish fake samples from the real ones.

4.2 Pseudo-Label and Filter GAN

As deep generative models, GANs are able to capture the
distribution of training set thus generate samples which
follow this distribution. That is to say, the models will learn
the knowledge about normal data and be able to generate
normal samples if they are trained only with normal sam-
ples. Meanwhile, it is hard for them to generate abnormal
samples since they have never met any of them. Under
this scenario, the normal samples will be reconstructed at
a relatively high accuracy while the abnormal ones cannot
be reconstructed well and eventually be easily detected. But
in practice it is hard and costly to build a training set only
consists of normal samples. When the training set is polluted
with abnormal samples the distribution captured by GAN
is no longer accurate.

To address this problem, a plain idea is to abandon
abnormal samples before training the discriminator. But
labels are not available under the scenario of unsupervised
learning, thus a pseudo-label generation method is needed.
Considering that an observation with relatively larger re-
construction error will be considered as anomaly under
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the paradigm of reconstruction based anomaly detection
method, we can generate pseudo-labels based on the recon-
struction errors. Given input data W = {x1,xa, ..., xw }, the
reconstruction errors d = {dj,ds,...,d,,} can be obtained
after the encoding and decoding processes. With denoting d
and ¢ as the mean value and variance, the z-score z,, of d,,
is calculated as: _
dy —d

5
Then, the abnormal probability Pab of observation x,, is
defined as:

4)

Zw =

Poy(xy) = 0(20) = o—(d“’ —d

), ©)

o is the sigmoid function. As Equation 5 indicates, if the
reconstruction error of an observation equals to d, the prob-
ability of it to be abnormal is 0.5. But if the reconstruction
error of an observation is larger than the mean value, it
is more likely to be abnormal thus will be assigned a
probability larger than 0.5. On the contrary, an observation
whose reconstruction error is less than the average level is
more likely to normal thus will be assigned a probability
less than 0.5.

However, at the beginning of the training process, the
model is not strong enough to learn efficient latent represen-
tations, so the reconstruction errors cannot reflect anomaly
information precisely, a balance factor should be introduced.
The probability of observation x,, to be abnormal is eventu-
ally defined as:

R )

here, n denotes the number of current iteration. f(n) is a
function of n which meets the following requirements:

f(n)=1 when n=1
f(n) = 400 when n — 400,

Pap(xw) = o(

@)

f(n) could be log(n — 1 + e), n, n?. With this balance
factor P,p(x,,) would be adjusted dynamically according
to current training iteration. The abnormal probabilities of
all the observations are 0.5 when the training process just
begins. As the training process goes on they are assigned
with different abnormal probabilities. After P, (x,,) is ob-
tained, observation x,, will be labeled as positive sample
at the probability of Pu(x,) and negative sample at the
probability of 1 — Py (xy,).

With the generated pseudo-labels y = {y1,¥y2, ..., yw },
the training objective Lg;s for the discriminator of Filter
GAN is redefined as:

w
Luie = =5 D (1=1)-[logD(x.) +logl1 ~ D(G(xa)])

w=1
®)
W, is the number of positive samples.

4.3 Adaptive Weighted Loss

Deep learning based anomaly detection methods take mean
squared error as training objective to reconstruct the input
data. It is a good choice when the training set is clean
or slightly polluted with anomalous samples, because the
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Fig. 2. Overview of the proposed model. It consists of three parts which are generator, filer and discriminator. The generator reconstructs the input
data and the filer selects possible normal samples both from the input and reconstruction.The discriminator is then trained with these cleaned
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Fig. 3. A comparison between MSE loss and AdaWL. (a) The recon-
struction result of a fully connected network autoencoder trained with
MSE loss. (b) The reconstruction result of the same autoencoder trained
with AdaWL. Compared two subfigures, we can find that the model
is severely overfitting and reconstruct abnormal values precisely when
trained with MSE loss. But when the training objective is changed to
AdaWL, the overfitting phenomenon is relieved.

models could learn effective low dimensional representa-
tions of the training data. But when the training set con-
tains relatively more anomalies, they would not only learn
the representations of normal samples but also those of
anomalous samples, which means the models are overfit-
ting. Here we have a little case study shown in Figure 3.
We trained two simple models on a multivariate time series
with conventional MSE loss and AdaWL respectively. From
the visualization of reconstruction results we can tell that it
is easy for models to be overfitted with abnormal patterns
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when trained with MSE loss. For mere reconstruction tasks,
the result shown in figure 3(a) may be better because its
reconstruction error is less, but it is not good for anomaly
detection tasks. In the task of anomaly detection, a good
model is supposed to reconstruct normal samples as precise as
possible but fail to reconstruct abnormal samples well. Inspired
by this idea, we propose a novel reconstruction objective
specially designed for anomaly detection tasks.

As previously discussed, given input data W =
{x1,x2,...,xw }, conventional training objective L. for re-
construction is:

1
Lyce = W (9)

w
Z |2t — Xwl|.
w=1
In Equation 9, each observation contributes to the loss
equally. However, the ideal training objective in anomaly
detection tasks is supposed to be:

1

w
|Sn| Z wa 75(10” ’ (1 7yw)v

w=1

Lrec = (10)

where |S,,| is the number of elements in set S,,. In Equation
10, only normal observations have contribution to the loss.
When the model is trained with this objective by gradient
descent, it can only learn the knowledge about normal pat-
terns, thus avoid overfitting. But as aforementioned, labels
are not available under the scenario of unsupervised learn-
ing, normal samples cannot be separated from abnormal
ones. To address this problem, we propose an approximate
function for Equation 10.

Considering that the larger the reconstruction error is,
the more likely the observation is to be abnormal, so we can
assign a weight for each observation before calculating the
loss. The more likely the observation is to be normal, the
larger the weight assigned to it is. Before back-propagation
at each iteration, we get z-scores for all the observations.
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Then, the weight &, for observation x,, is defined as:

. e v

Aoy = Wa 11)
z-score larger than 0 means the corresponding reconstruc-
tion error is larger than the average level, then the weight
will be less than % The larger the reconstruction error is,
the less the weight will be. z-score less than 0 means the
corresponding reconstruction error is less than the average
level, then the weight will be larger than % The less
the reconstruction error is, the larger the weight will be.
Similarly, a balance factor should be introduced. Thus, the
weight of x,, is finally defined as:

1 e Fw Zk#w e %k + f(n) L e Fw
7z e f(n)- ez
Z is the normalization factor. When the training process just
begins, n = 1 and o, = %, which means every observation
contributes equally to the loss. As n increases to +00, o,
gets closer to Equation 11, each observation is assigned with
different weights. Now, Equation 10 is approximated by:

O , (12

w
Lyce = Z ||xw - -;CwH * Oy (13)

w=1
With this function as reconstruction objective, the model
could concentrate more on plausible normal data and thus
relieve overfitting.

4.4 Model Training

Given the training set W = {W! W2 . W7/}, the
generator and discriminator of FGANomaly are trained al-
ternately. For discriminator, the training objective is defined
in Equation 8. Under the framework of conventional GANSs,
the generator is trained only with adversarial loss:

w
1

Laav = =35 > logD|G(xw)], (14)

w=1
which is not adequate for the generator to attend to the
temporal correlations unique to time-series data. We trained
the generator with both of L,4, and L,... Therefore, the
training objective of the generator is:

Lgen = Lrec +v- Ladin (15)

v is used to parameterize the trade-off between L,.. and
Lagy. The training process is shown in algorithm 1.

5 EXPERIMENTS

To evaluate the effectiveness and robustness of proposed
method, comprehensive experiments were conducted. In
this section, experimental setups are described firstly. Then,
we compare the overview performance of FGANomaly with
other classic anomaly detection methods and state-of-art
methods. We also conducted ablation study to investigate
how different components influence the performance of
FGANomaly. The robustness of FGANomaly under varying
noise ratio was verified by injecting noise into the training
set. At last, we introduce a case study to get insights into
the model.

Authorized licensed use limited to:

Algorithm 1 Training algorithm

Input: Sequence of fragmented data W = {W?! ... W7},
max epochs M, the rate of adversarial loss
Output: Trained G and D
Initialization: initialize all the parameters of G and D
n<1lm+1
repeat
for j <~ Oto J do
W+ GW)
Get d based on Equation 1
for all x,, do
Get P,;(x,,) based on Equation 6
n « rand(0,1)
if < Pup(xy,) then
Y 1
else
Yuw < 0
end if
end for
Y {y1, Y2, Yu}
Get Lg;s based on Equation 8
Update the parameters of D using L ;s
for all x,, do
Get «,, based on Equation 12
end for
a— {ag, g, ..., 0}
Get Lyqy and L, based on Equation 14 and 13
Lgen — Lrec + v Ladv
Update the parameters of G using Lgen
n<—n+1l
end for
m<+—m+1
until m=M

5.1 Experimental Setup
5.1.1 Public Datasets

Four public datasets are used in our experiments. The main
characteristics of the datasets are summarized in table 2, and
here is a brief introduction for them.

Mars Science Laboratory (MSL) rover dataset and Soil Mois-
ture Active Passive (SMAP) satellite dataset. Both of MSL and
SMAP were collected from NASA [13]. Each dataset has
been divided into two parts of training and testing subsets,
and anomalies in testing subsets are expert-labeled.

Secure Water Treatment (SWaT) dataset. The data was
collected from an operational test-bed for water treatment
[31]. The original dataset was systematically generated from
the test-bed over 7 days under normal situation and 4 days
with varying attack scenarios. Since we want to verify the
robustness of all the models when trained with polluted
training set, the first 7 days data are abandoned and then
the remaining data are divided into training set and testing
set evenly, at which we conducted all the experiments.

The Water Distribution (WADI) dataset. WADI test-bed
is an extension of the SWaT system. Similarly, WADI was
collected over 16 days of continuous operation, of which
14 days were collected under normal operation and 2 days
with attack scenarios. For the same reason, we also abandon
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TABLE 1
Overview performance of all methods. Following the setting of [30]. Top: Precision(P), Recall(R) and F1 Score(F1) of MSL and SMAP with
point-adjust. Middle: Metrics of SWaT subset both with and without point-adjust. Bottom: Metrics of WADI subset both with and without

point-adjust.
MSL SMAP
Metrics P R F1 p R F1
PCA 0.93655 | 0.84007 | 0.88569 | 0.90691 | 0.57600 | 0.70453
NMF 0.85891 | 0.89209 | 0.87519 | 0.97293 | 0.55324 | 0.70538
AE 0.87627 | 0.85359 | 0.86478 | 0.59024 | 0.91579 | 0.71780
BeatGAN | 0.88445 | 0.86930 | 0.87681 | 0.75878 | 0.91162 | 0.82821
USAD 0.89396 | 0.87619 | 0.88499 | 0.83925 | 0.88052 | 0.85939
FGANomaly | 0.90052 | 0.93600 | 0.91792 | 0.76093 | 0.99925 | 0.86395
swaTsubset
With Point-Adjust Without Point-Adjust
Metrics P R F1 p R F1
PCA 0.98554 | 0.92723 | 0.95550 | 0.38665 | 0.32885 | 0.35542
NMF 0.94916 | 0.98782 | 0.96810 | 0.46683 | 0.56875 | 0.51278
AE 0.99509 | 0.88869 | 0.93889 | 0.92842 | 0.75351 | 0.83187
BeatGAN | 0.99277 | 091601 | 0.95285 | 0.97172 | 0.79201 | 0.87271
USAD 0.98392 | 0.96666 | 0.97522 | 097516 | 0.76784 | 0.85917
FGANomaly | 0.97735 | 0.98862 | 0.98295 | 0.98506 | 0.79538 | 0.88011
WADIypset
With Point-Adjust Without Point-Adjust
Metrics P R F1 p R F1
PCA 0.56650 | 0.49581 | 0.52880 | 0.06900 | 0.21664 | 0.10467
NMF 0.63266 | 0.83124 | 0.71848 | 0.16543 | 0.29952 | 0.21314
AE 0.57798 | 0.72412 | 0.64285 | 0.54799 | 0.32286 | 0.40633
BeatGAN | 0.72808 | 0.61610 | 0.66742 | 0.40050 | 0.43058 | 0.41500
USAD 0.85543 | 0.72412 | 0.78431 | 0.33980 | 0.47187 | 0.39509
FGANomaly | 0.96350 | 0.61610 | 0.75160 | 0.43536 | 0.50180 | 0.46622
TABLE 2 nonlinear relationship between data and thus recon-
Main characteristics of four benchmark datasets. struct normal data better at most time.
_ i e BeatGAN [20]. A GAN based multivariate time se-
Dataset Training | Testing No. of Anf)mily ries anomaly detection method, which adopt au-
setsize | setsize | Dimension | ratio (%) toencoder as main architecture and discriminator as
MSL 58317 73729 55 10.72 adversarial regularization.
SMAP 135183 | 427617 25 13.13 o UnSupervised Anomaly Detection (USAD) [30]. USAD
SWaToupser | 224959 | 224960 51 19.05 is a anomaly detection model based on adversely
WADIsupser | 86401 86401 123 3.87 trained autoencoders. By jointly training two autoen-

the the data collected under normal situation and divide the
remaining 2 days data into training set and testing set.

5.1.2 Baselines

We take 5 unsupervised anomaly detection methods as
baselines which are

e Principal Component Analysis (PCA) and Non-negative
Matrix Factorization (NMF). These are two classic
matrix decomposition based anomaly detection al-
gorithms. This kind of methods first decompose the
input matrix into two different matrices, then recon-
struct the input matrix with them. The anomaly score
is defined as the reconstruction error.

e Multi-Layer Perceptron Autoencoder (AE). A simple
deep autoencoder based on multi-layer perceptron.
Compared with PCA and NMEF, AE could capture

Authorized licensed use limited to:

coders adversely and combining the reconstruction
errors of them, USAD could detect anomalies in
multivariate time series fast and precisely.

Since scikit-learn has excellent implementations of PCA
and NME we directly conducted anomaly detection based
on the implementations of scikit-learn. The number of com-
ponents for PCA and NMF is 10. Both of the encoder and
decoder of AE are single-hidden-layer fully connection net-
work, the number of hidden units is 100 and the dimension
of coding is 10. The architecture of BeatGAN is as same
as that described by Zhou et al. [20], but the dimension of
coding is changed to 10. The architecture of USAD is totally
as same as that described by Audibert et al. [30].

5.1.3 Evaluation Metrics

Considering the imbalance problem, we adopt Precision (P),
Recall (R), and F1 Score (F1) to evaluate anomaly detection
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performance, which are defined as:

TP
P=—— 1
TP+ FP’ (16)
TP
= TN a
P-R
Fl=92._ " 18
e (18)

where TP is for True Positives, FP is for False Positives, and
FN is for False Negatives.

We assign a label for each data point. The performance
of each model is assessed after a post-processing operation
named point-adjust proposed by Xu et al. [12], which is
inspired by the fact that anomalous observations usually
occur in contiguous anomaly segments for the reason of the
continuity of time series. Therefore, we consider all points in
an anomaly segment as detected if any point in it is detected
while points outside the ground truth anomaly segment are
treated as usual. In order to compare the performance of
our model with the one proposed by Audibert et al. [30],
we also assess performance on SWaT and WADI without
point-adjust.

5.1.4 Task Setting

In order to search the best hyper-parameters for models,
each training set is further divided into two parts: training
set and validation set at the ratio of 7:3. Since it is costly to
build an expert-labeled training set in practice, we consider
searching optimal hyper-parameters based on the recon-
struction error on validation set rather than F1 score directly,
which means we consider hyper-parameters with whom the
model has smallest reconstruction error on validation set as
optimal hyper-parameters.

Since the original data are in the form of long-range
continuous time series, which is not suitable for neural
network-based models, thus a sliding window is needed
to turn the original data into fragments. In all of our experi-
ments, the sliding window size and stride of neural network
based models except USAD are 120 and 1 respectively. The
sliding window size of USAD for different datasets are as
same as described by Audibert et al. [30].

All of the methods will assign an anomaly score to each
observation but not all of them have a specific threshold
selection theory, we simply search all of the possible thresh-
olds to decide whether an observation is normal or anoma-
lous, then take the best F1 scores as their performance.
Specifically, following the setting from Y. Su et al. [16], when
anomaly scores of all the samples in the testing set are
obtained, we set each score one by one as the threshold to
evaluate the models and then choose the best F1 scores from
them.

5.2 Overview Performance

The key hyper-parameters for training FGNomaly are f(n)
and v, we search f(n) in [log(n — 1 + ¢€),n,n?] and v in
[0.001, 0.005,0.01,0.05, 0.1, 0.5]. The performance of all the
methods is demonstrated in Table 1, from which we can tell
that at most time FGANomaly achieves better performance
than the baselines.

Authorized licensed use limited to:

TABLE 3
Models and corresponding descriptions of ablation study.

Model Name
LSTM-AE

Description
Plain LSTM based autoencoder,
trained only with MSE loss
LSTM based autoencoder,
trained only with AdaWL
LSTM based FGAN, the generator
is trained with MSE loss.

LSTM-AE+AdaWL

LSTM-AE+FGAN

On the top of table 1 lists the results of all the methods
on MSL and SMAP with point-adjust. As demonstrated
in the table, the difference between performance of dif-
ferent models on MSL is not so significant, which could
be explained by the characteristics of dataset MSL and
point-adjust: observations of MSL have little variance which
makes it hard to learn normal patterns from abnormal ones,
and after point-adjust, the difference is further reduced.
Despite such tough circumstance, FGANomaly improves
F1 score significantly compared with baselines. In addition,
FGANomaly also has the best recall which is very important
under the background of anomaly detection. As for dataset
SMAP, due to the extreme large data volume, PCA and NMF
obtain worst results. It is hard to learn important patterns in
such a large matrix by decomposing it directly. AE dose not
perform well on this dataset either, which is because AE
is faced with overfitting problem during training process.
Since both of BeatGAN and USAD have special mechanisms
to relieve overfitting, they obtain better results. FGANomaly
achieves best performance whether evaluated with F1 Score
or recall, the latter is almost reach 1.0.

In the middle of table 1 lists the results of all the
methods on SWaT subset both with and without point-
adjust. As demonstrated in the table, FGANomaly achieves
best performance under both of the two situations. Due to
the characteristics of point-adjust, the difference between
different models after adjustment is not so significant, the
results before point-adjust could provide more precise infor-
mation. From the results before adjustment, we can see that
NMEF and PCA obtain the worst results for the same reason
of large data volume while BeatGAN and USAD perform
better than AE, FGANomaly achieves the best performance
both evaluated with F1 and recall. On the bottom of the
table lists the results on WADI subset both with and without
point-adjust. Since the data dimension of WADI is relatively
higher, it is harder for the models to precisely capture the
complex correlations between different dimensions, all the
methods perform worse on this dataset. USAD achieves the
best performance after point-adjust, but FGANomaly obtain
the best performance before point-adjust.

5.3 Ablation Study

As discussed in the previous section, FGANomaly has
achieved significant improvement over most of the base-
lines. In this section, we investigate the improvement
gained by different components of FGANomaly. We com-
pare FGANomaly with other three models which are LSTM-
AE, LSTM-AE+AdaWL and LSTM-AE+FGAN, they are de-
scribed in table 3.
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Fig. 4. Ablation study result with point-adjust. Both of AdaWL and FGAN
could bring performance improvement but the gains from AdaWL are
more significant on SMAP, SWaT and WADI while AdaWL and FGAN
bring almost the same improvement on MSL.

The result of ablation study is illustrated in figure 4.
From figure 4, we can tell that both of AdaWL and FGAN
can bring improvement when evaluated with F1 score. Par-
ticularly, LSTM-AE+AdaWL achieves significant improve-
ment compared with plain LSTM-AE on all datasets, which
indicates AdaWL performs better than MSE loss when it
comes to anomaly detection problems. FGAN also brings
improvement though not as much as AdaWL does. AdaWL
fails to perform better than FGAN on MSL but obtains better
results on the remaining datasets. This is because as a pair-
wise loss, AdaWL provides local and direct guidance to
learn normal patterns and ignore abnormal ones, it plays a
leading role in the training process while as a regularization,
FGAN provides global guidance to capture the distribution
of normal samples, it plays a secondary role in the training
process.

5.4 Robustness Verification

In order to probe into the stability of the training pro-
cess and the effectiveness of our method, we visualize the
training curve and the changes in the reconstruction loss
both of the normal samples and the abnormal ones. As
shown in Figure 5, despite that we introduce items related
to training epochs in both the generation of pseudo-label
and the adaptive weighted loss, the training process is quite
stable. With the training process going on, the reconstruction
loss of the normal samples keeps slight decrease while the
reconstruction loss of the abnormal samples remains the
same, even slightly increases.

We randomly inject noise into the training set at a certain
percentage to verify the robustness of FGANomaly. We first
investigate how the noise influences AdaWL and FGAN on
MSL, the noise we inject is limited to Gaussian distribution
(w =0, 6 =1) and the noise ratio ranges from 0.0% to
20%. The results are shown in Figure 6. Figure 6(a) shows
the performance of LSTM-AE trained with MSE loss and
AdaWL respectively. Line charts demonstrate the change of
F1 scores while histogram shows the disparity. As indicated
in figure 6(a), the performance of the model trained with
MSE loss gets worse rapidly as the noise ratio increases
while the performance of model trained with AdaWL re-
mains relatively stable when the noise ratio is under 15%
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Fig. 5. The training curve and the changes in the reconstruction loss
both of normal samples and abnormal samples.

but starts to decline as it exceeds 15%. The gap between
MSE loss and AdaWL almost increases continually when
the noise ratio is under 15% while it starts to decline as
noise ratio exceeds 15%. Figure 6(b) shows the performance
of LSTM-AE trained under FGAN architecture and conven-
tional GAN architecture. From figure 6(b) we can tell that as
the noise ratio increases, both of GAN and FGAN perform
worse. But FGAN has better robustness because it declines
slower as indicated in the histogram. As demonstrated in
the line charts, sometimes the performance of models get
better as noise ratio increases, that is because the noise we
inject into the training set can be regarded as adversarial
examples which sometimes increase the robustness of mod-
els. As the experiment results indicate, the components we
propose for anomaly detection have better characteristics
compared with their counterparts.

Then, we compare the robustness of FGANomaly with
two state-of-art methods: BeatGAN and USAD on four of
the datasets, and the noise we inject is limited to Gaussian
distribution (¢ = 0, § = 1) and the noise ratio ranges from
0.0% to 30%. The results are illustrated in figure 7. As shown
in figure 7, BeatGAN has the worst robustness, the F1 score
of BeatGAN declines rapidly as noise ratio increases on all
of the datasets, especially on WADI, the F1 score changes
from about 0.66 to 0.3. That is because BeatGAN is designed
to be trained only on clean data to capture the distribution of
normal data. But as noise ratio increases, conventional GAN
architecture captures not only the distribution of normal
data but also the one of abnormal data, thus fails to detect
anomalous samples from normal ones. USAD has better
robustness compared with BeatGAN due to the design of
adversarial training, but the effect is not so significant. Due
to the special design of AdaWL and FGAN, FGANomaly
shows the best robustness. When the noise ratio is under
20%, the F1 scores of FGANomaly remain relatively constant
and high which indicates FGANomaly has the ability to
precisely learn the normal patterns even if the training set
has been contaminated partially.

5.5 Case Study

We apply FGANomaly to The 1! International Project Com-
petition for Structural Health Monitoring (IPC-SHM, 2020).
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Fig. 6. Robustness verification results of AdaWL and FGANomly. (a): We compare the robustness of AdaWL and MSE loss. (b): We compare the
robustness of FGANomaly and conventional GAN architecture. Line charts depict the change of F1 score while histograms depict the improvement.
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Fig. 8. Visualization of the distributions of original data and reconstructed data. Pictures on the top are the kde plots of normal distributions after
dimension reduction while on the bottom are the results of abnormal distributions. Red lines stand for reconstructed distribution and blue lines stand

for original distribution.
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Fig. 9. Normal data and six classes of anomalies in project 2, IPC-SHM,
2020 [32]

It is a competition aiming at combining artificial intelligence
(Al) technology with Structural Health Monitoring (SHM)
to better ensure the infrastructures safe and reliable?. The
competition consists of three projects, each incorporating
data drawn from a full-scale bridge. We are interested in
the second projects: data anomaly detection for SHM.

In this project, a dataset that consists of one-month of ac-
celeration data for a long-span cable-stayed bridge in China
is provided. There are 38 sensors thus the dimension of data
is 38. The sampling frequency of all the sensors is 20Hz. As
shown in Figure 9, there are six classes of anomalies in the
dataset. For the sake of simplicity, we merge the six type
of anomalies into one class: anomaly. Since the sampling
frequency is high, the data of each 10 seconds are aggregated
into single value by mean operation. The dataset is divided
into two subsets: a training set corresponding to the first 15
days data and a testing set corresponding to the remaining
data. In this competition, we take BeatGAN and USAD as
baselines, the result is listed in Table 4, form which we can
tell that FGANomaly obtains the best results on this project
on all of the metrics.

TABLE 4
Anomaly detection result on project 2, IPC-SHM, 2020.

] Models \ Precision \ Recall \ F1 Score ‘
BeatGAN 0.74962 | 0.80322 | 0.77549
USAD 0.90502 | 0.87132 | 0.88785
FGANomaly | 0.93508 | 0.92134 | 0.92816

To compare the performance of the models more directly,
anomaly scores of the normal samples and abnormal sam-
ples are visualized in Figure 10. As shown in the figure,
there are three pairs of box plots which correspond to
BeatGAN, USAD and FGANomaly respectively. For each
model, the left box plot depicts the anomaly score dis-
tribution of normal samples while the right one is the
anomaly score distribution of abnormal samples. As the
figure shows, FGANomaly reconstructs the distribution of
normal samples best, because the anomaly scores for normal
samples obtained by FGANomaly are smallest while Beat-
GAN has largest anomaly scores for normal samples. The
distance between anomaly scores of normal samples and

2. http:/ /sstl.cee.illinois.edu/ipc-shm2020/
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Fig. 10. Anomaly score visualization. For each model, there are two
box plots: on the left depicts the anomaly score distribution of normal
samples while on the right is the anomaly score distribution of abnormal
samples.

abnormal samples obtained by FGANomaly is the largest,
which means FGANomaly learns clearer boundary between
the normal distribution and abnormal distribution. On the
contrary, the boundary learned by BeatGAN is not so clear
thus it obtains worse result to detect anomalies.

The distributions of original data and reconstructed data
are also visualized, which are shown in Figure 8. There are
tow pictures for each model, the one on the top is a two-
dimensional kde plot of the normal distribution after dimen-
sion reduction while the one on the bottom belongs to the
abnormal distribution. As the figure shows, FGANomaly re-
constructs the normal samples at a very high precision while
reconstructed abnormal samples badly, which explains the
good performance of FGANomly well.

6 CONCLUSION

In this paper, we proposed a novel GAN-based anomaly
detection method for multivariate time series. To address
the problem of overfitting in conventional AE-based and
GAN-based anomaly detection methods, we proposed Filter
GAN which screens the possible abnormal samples be-
fore training the discriminator thus makes the model to
capture the distribution of normal data precisely, and we
also designed a special objective named Adaptive Weight
Loss for the generator which dynamically assigns weights
to different points during the training process according
to their reconstruction errors. To evaluate the proposed
method, we conducted comprehensive experiments on four
public datasets, the experimental results showed that our
model has superiority both in performance and robustness.
For the purpose of having some insights into the model,
we did a case study to visualize the results, which showed
that our model learns clear boundary between the normal
distribution and abnormal distribution thus is able to detect
anomalies well. Moreover, there are also some points to
be improved, such as the fusion of information between
different dimensions in multivariate time series, which is
an important research direction for the future work.
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