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Background

Pregnancy complications, such as gestational diabetes and gestational
hypertension, create severe threats to the health of pregnant women.

 It has been reported that about 300,000 women died due to complications in
pregnancy and childbirth in 2017.



Motivation

For specific task.
Diagnosis prediction

Risk prediction

It is difficult to reuse these existing methods to provide a general solution for
pregnancy complications!
How to learn effective representations from EHR data, which can capture the
major data characteristics of examination records?

To address unique issues.
Irregular time intervals
Data insufficiency

Early Study



Challenges

EHR data change with irregular time intervals.
 examination records of prenatal care correspond to irregularly distributed samples of

women’s physical characteristics during the entire pregnancy

Different pregnancy complications usually correspond to varying factors or
indicators.
 gestational diabetes is more sensitive to timesteps
 gestational hypertension is more sensitive to specific week

The EHR data tend to be sparse or incomplete.
 only a few items are checked at each visit



Idea

 Learn robust representation with pre-training technique.

Design a suitable network architecture for pretraining on EHR data.

Design pre-training tasks that can effectively extract data characteristics and 
address EHR data issues.



Definition

Examination Record.

Prenatal Care Sequence Data.

⋯

Numerical records

Diastolic pressure Weight

Categorical records

1 0 0 0

A B AB O

121 items
2 items
A total of 8 categories

𝜏𝜏1 = 18 𝜏𝜏2 = 27 𝜏𝜏3 = 31 𝜏𝜏T = 40 (T = 7)⋯

Different T for different pregnant women

Different 𝜏𝜏i for different pregnant women

Blood Type



Overview
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Reasonability Check

Masked Prediction
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Similarity Prediction
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Time Span Information



Time-Aware Self-Attention

Input Week index

Embedding Position
Encoding

Multiply MLP

Add & Softmax

Multiply & Add

Time-Aware Self-Attention
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 Standard Self-Attention

𝐴𝐴𝑖𝑖,𝑗𝑗 =
𝑞𝑞𝑖𝑖𝑇𝑇𝑘𝑘𝑗𝑗
ℎ

 Self-Attention with week index

𝐴𝐴𝑖𝑖,𝑗𝑗 =
𝑥𝑥𝑖𝑖𝑇𝑇𝑥𝑥𝑗𝑗 + 𝑥𝑥𝑖𝑖𝑇𝑇𝑢𝑢𝑗𝑗 + 𝑢𝑢𝑖𝑖𝑇𝑇𝑥𝑥𝑗𝑗 + 𝑢𝑢𝑖𝑖𝑇𝑇𝑢𝑢𝑗𝑗

ℎ

 Time-Aware Self-Attention

𝐴𝐴𝑖𝑖,𝑗𝑗 =
𝑞𝑞𝑖𝑖𝑇𝑇𝑘𝑘𝑗𝑗 + 𝑾𝑾𝝉𝝉 × |𝒖𝒖𝒊𝒊 − 𝒖𝒖𝒋𝒋|

ℎ



Similarity Prediction
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Similarity Prediction

Measure the Euclidean distance of all pregnant women’s last visits.
 Take the 15% pairs with the smallest distance as the positive samples and the

15% pairs with the largest distance as the negative samples to train the model.

ℒ𝒔𝒔 =
𝟏𝟏
𝑵𝑵𝒑𝒑

�
𝒊𝒊=𝟏𝟏

𝑵𝑵𝒑𝒑

𝒛𝒛𝒊𝒊𝒅𝒅𝒊𝒊𝟐𝟐 + 𝟏𝟏 − 𝒛𝒛𝒊𝒊 𝒎𝒎𝒎𝒎𝒎𝒎(𝒎𝒎 − 𝒅𝒅𝒊𝒊,𝟎𝟎)𝟐𝟐



Masked Prediction
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𝒄𝒄𝒕𝒕

Randomly mask 30% of all visits by 𝑐𝑐∗.
Use the corresponding hidden state to predict the important examination

records.

ℒm =
𝟏𝟏

|𝐶𝐶†|
�

𝑐𝑐†∈𝐶𝐶†
||𝑐̂𝑐† − 𝑐𝑐†||22

Masked Prediction
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Reasonability Check

Negative samples: randomly select 50% - 75% visits and replace them with 
visits from other sequences.

Positive samples: do nothing.

ℒr = −
𝟏𝟏
𝑵𝑵r

�
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𝑵𝑵r

r𝒊𝒊log 𝑟̂𝑟𝒊𝒊 + 𝟏𝟏 − r𝒊𝒊 log 1 − 𝑟̂𝑟𝒊𝒊

Reasonability Check



Pre-training.
 Pre-train the model with three pre-

training tasks for robust representation.

Fine-tuning.
 Fine-tune the model with specific task 

for better performance.

Model Training



Downstream Task
 Gestational Diabetes Prediction
 Gestational Hypertension Prediction
 Pregnancy Outcome Prediction.
 Risk Period Prediction.

Dataset.
 A hospital in Beijing

 From 2008 to 2018

 63,001 pregnant women

Dataset statistics

Dataset & Task



 Classification Task：AUC, Precision, Recall, F1, ACC.

 Regression Task： RMSE, MAE, MPAE, R2, EV.

Metric

Baseline
 LSTM [Neural Comput. 1997] : Long Short-Term Memory.
 Transformer [NIPS 2017] : based solely on attention mechanisms.
 RETAIN [NIPS 2016] : Reverse Time Attention.
 T-LSTM [KDD 2017] : Time-aware LSTM.
 Dipole [KDD 2017] : Diagnosis prediction model.
 HiTANet [KDD 2020] : Hierarchical Time-aware Attention Network.

Metric & Baseline



Gestational diabetes is more sensitive to timesteps.
Models considering irregular time intervals achieve better performance.

Results & Analysis



Gestational hypertension is more sensitive to examination records of specific weeks.
Models considering irregular time intervals perform worse than models

considering other characteristics.

Results & Analysis



Our model handles various characteristics in EHR data.
Our model is consistently better than all of the baselines in all tasks.

Results & Analysis



Human performance is measured with the gold standard.
The gold standard do not have the ability to predict future examination

records.
The diagnosis of our model is timelier.

Results & Analysis



Scatter plots for embeddings

Qualitative Analysis



28 week

26 week

23 week

21 week

18 week

16 week

-1.00 1.00

Suffer from Gestational Hypertension
Positive 

Influence
Negative 
Influence Missing

Interface for doctors

Diagnosis System



 We design a novel network architecture which is suitable for modeling EHR data and pre-
training.

 We carefully design three pre-training tasks for medical data related to pregnancy
complications.

 We introduced an interpretation method by sensitivity analysis and designed an interface to
show the prediction results and interpretation.

Conclusion



Thank You!
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