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Deep Fuzzy Cognitive Maps for Interpretable
Multivariate Time Series Prediction

Jingyuan Wang, Zhen Peng, Xiaoda Wang, Chao Li, and Junjie Wu

Abstract—The Fuzzy Cognitive Map (FCM) is a powerful
model for system state prediction and interpretable knowledge
representation. Recent years have witnessed the tremendous
efforts devoted to enhancing the basic FCM, such as introducing
temporal factors, uncertainty or fuzzy rules to improve inter-
pretation, and introducing fuzzy neural networks or Wavelets
to improve time series prediction. But how to achieve high-
precision yet interpretable prediction in cross-domain real-life
applications remains a great challenge. In this paper, we propose
a novel FCM extension called Deep FCM for multivariate
time series forecasting, in order to take both the advantage
of FCM in interpretation and the advantage of deep neural
networks in prediction. Specifically, to improve the predictive
power, Deep FCM leverages a fully connected neural network to
model connections (relationships) among concepts in a system,
and a recurrent neural network to model unknown exogenous
factors that have influences on system dynamics. Moreover, to
foster model interpretability encumbered by the embedded deep
structures, a partial derivative-based approach is proposed to
measure the connection strengths between concepts in Deep
FCM. An Alternate Function Gradient Descent algorithm is then
proposed for parameter inference. The effectiveness of Deep FCM
is validated over four publicly available datasets with the presence
of seven baselines. Deep FCM indeed provides an important clue
to building interpretable predictors for real-life applications.

Index Terms—Fuzzy Cognitive Maps, Time Series Prediction,
Deep Neural Networks, Interpretable Prediction

I. INTRODUCTION

The Fuzzy Cognitive Map (FCM) is a flexible and powerful
model for system state prediction and interpretable knowledge
representation [1]. The FCM model describes a system with
multiple interactive components (i.e., concepts) as a weighted
directed graph, where the vertexes denote system components
and edges denote the interactions between components. Since
the knowledge about a system is represented as a graph with
clear interactive relationships, FCM is deemed naturally inter-
pretable for system dynamics and has been widely adopted in
many interpretation-sensitive prediction applications, such as
public policy making [2], business management [3], health-
care diagnosis [4], and behavioral analysis [5].
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Interpretable knowledge representation and high perfor-
mance prediction, unluckily, are often mutually exclusive. The
FCM model is not an exception. In the basic FCM model, the
graph edges can only describe static and linear relationships,
which degrades the prediction performance of FCM in many
complex real-world applications, especially when compared
with neural network-based deep learning models [6]. The deep
learning models, however, are often criticized for their black-
box nature with incomprehensible variables in deep layers,
let alone influence relationship explanations to the variables.
How to improve the capability of FCM in non-linear dynamics
prediction while keeping the interpretation advantage in the
meanwhile, or in other words, to achieve satisfactory inter-
pretable prediction, remains an open and essential problem.

In the literature, many extensions have been proposed
to enhance the performance of the basic FCM model in
terms of interpretation and prediction. For instance, temporal
factors are introduced into the FCM framework to model
dynamic relationships, resulting in Dynamical Cognitive Net-
works, Fuzzy Time Cognitive Maps and Evolutionary Fuzzy
Cognitive Maps [7]–[9]. Fuzzy Grey Cognitive Maps, Intu-
itionistic Fuzzy Cognitive Maps, and Rough Cognitive Maps
are proposed to model uncertain relationships among system
components [10]–[12]. Rule-based Fuzzy Cognitive Maps and
Extended Fuzzy Cognitive Maps adopt logic rules to express
non-linear relationships in FCM [13], [14]. The fuzzy neural
networks and wavelet transform are also adopted to improve
the performance of the FCM framework in time series fore-
casting applications [15]–[18]. While the above studies indeed
have improved the basic FCM model in different aspects, it is
still in great need to design a new FCM model to gain high-
precision yet interpretable prediction power for cross-domain
real-life applications, where non-linear complex dynamics
with unknown exogenous factors are commonly seen.

In this paper, the advantage of deep neural network mod-
els in high-performance prediction is introduced into the
interpretable FCM framework to build a novel interpretable
predictor called Deep FCM (or DFCM for short). Our model
is designed for the task of multivariate time series forecasting.
It extends the basic FCM to a general framework, which
consists of a fully connected neural network to model non-
linear and non-monotonic influences among system concepts,
and a recurrent neural network (RNN) to model unknown
exogenous factors that have latent influence on system dy-
namics. An Alternate Function Gradient Descent algorithm is
then carefully designed for efficient parameter inference of
Deep FCM with built-in deep neural networks. In this way,
Deep FCM is equipped with much greater power than the
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Fig. 1. An illustration of fuzzy cognitive maps.

basic FCM in time series prediction.
Beyond prediction, we also adopt a partial derivative-based

method to measure the connection strength between each
pair of system concepts. This is to ensure that the excellent
interpretability of the basic FCM would not be undermined by
the black-box nature of deep neural network components in
Deep FCM. In this way, our model could achieve improved
performance in multivariate time series prediction while keep-
ing the interpretability of the FCM framework at the same
time. That is why we called Deep FCM an interpretable
prediction model.

The effectiveness of Deep FCM is verified over four pub-
licly available datasets obtained from different application
domains, and is compared with seven competitive baselines.
The experimental results show that Deep FCM indeed can
achieve much better performance in system state prediction.
Meanwhile, the non-linear concept relationships in complex
real-life systems indeed can be accurately captured and clearly
interpreted by the partial derivative-based method. We also
verifies the effectiveness of the RNN component in modelling
periodical exogenous factors, which indeed improves the pre-
diction power of Deep FCM.

II. RELATED WORKS

A. Fuzzy Cognitive Maps

In the basic FCM framework [1], a system consisting of
several interactive components is described by three elements:
Concepts, Activation States, and Relationships. Concepts rep-
resent components in a system, activation states represent
states of components, and relationships represent influences
among components.

As illustrated in Fig. 1, the FCM models a system with
I concepts as a weighted directed graph. We denote the i-th
graph vertex as ci, which is used to express the i-th concept
in the system. The edge weight for vertex i to vertex j is
denoted as wij , which expresses the relationship of ci to cj .
The value of wij is in the range of [−1, 1]. Moreover, each
concept in FCM has a fuzzy activation state ai ∈ [0, 1]. ai = 1
means ci is completely activated and ai = 0 means completely
unactivated. The activation states for ci is a dynamic time
series {a(1)i , . . . , a

(t)
i , . . . a

(T )
i }, where a(t)i is the state at the

time t. The state a(t+1)
i in FCM is influenced by the states of

other concepts at the time t as

a
(t+1)
i = ϕ

a(t)
i +

∑
j 6=i

wjia
(t)
j

 , (1)

where the function ϕ(·) is a membership function to fuzzify
the activation states in [0, 1], and the value of wij is in the
range of [−1, 1] [19].

In real-world applications, the activation levels {a(t)i } are
observable time series, and the relationships wij are unknown
knowledge to be learnt from the observable activation levels.
Given random initial values, the DHL algorithm adjusts wij
using the observable data at time t as follows:

w
(t+1)
ij = w

(t)
ij + λ(t)

(
∆a

(t)
i ∆a

(t)
j − w

(t)
ij

)
, (2)

where ∆a
(t)
i = a

(t)
i − a

(t−1)
i , and λ(t) = 0.1(1 − t/(1.1q))

is a dynamic learning rate, with the parameter q adopted to
ensure that wij ∈ [−1, 1]. The value of w(t+1)

ij is iteratively
updated until convergence or some stopping criterion is met.
The DHL algorithm has many improved versions, such as
NHL (Nonlinear Hebbian learning) [20] and AHL (Active
Hebbian learning) [21]. Moreover, evolutionary optimizations
are also adopted to learn W , such as the real-coded genetic
algorithm (RCGA) [22] and the particle swarm optimization
(PSO) [23].

B. Extensions of FCM
Despite the great success made, the basic FCM yet has

some limitations. Firstly, relationships in many real-world
systems are highly nonlinear and non-monotonic; however, the
relationships modeled by basic FCM are linear and monotonic.
In the literatures, many FCM extensions have been proposed to
overcome this drawback [24]. One main stream of these exten-
sions is using non-linear tools, such as logic rules, to describe
complex concept relationships. For instance, RBFCM uses
qualitative fuzzy rules to replace the quantitative mathematical
description of relationships [13], and FRI-FCM uses fuzzy IF-
THEN rules to express non-linear relationships [25], [26]. The
other stream of the extensions is to introduce uncertainty into
relationships. For instance, FGCM uses the grey system theory
to handle highly uncertain relationships in incomplete and
small datasets [10], iFCM introduces the intuitionistic fuzzy
sets to handle the hesitancy in human decision makings [11],
BDD-FCM replaces absolute linguistic terms as belief degree
distributions to describe uncertain relationships [27], and the
rough sets are introduced by RCM to represent diversity of
the relationship among concepts [12].

The second limitation of the basic FCM is its relationships
are static, which hinders its applications in dynamic systems.
To overcome this drawback, temporal factors are introduced
into FCM by many studies. For instance, DCN introduces a
dynamic function into FCM relationships [7], [28], DRFCM
adopts a reinforced learning procedure to update relationships
dynamically [29], EFCM proposes asynchronous updates of
the variables to handle dynamics of concept interactions [9],
and TAFCM uses timed automata to model dynamic relation-
ships between concepts [30]. A common idea of these works
is to model relationships as a function of time.

In summary, while the above-mentioned studies perform
excellently in adapting FCM to nonlinear and dynamic re-
lationships, a drawback of these extension models is users
have to design complicated logic rules, uncertain and dynamic
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TABLE I
MATH NOTATIONS.

Notation Definition

ci The i-th concept in a system.

ai The fuzzy activation state of the concept i. The instance at time t is denoted as a
(t)
i .

a The fuzzy activation state vector of all concepts (the system state). The instance at time t is denoted as a(t).
wij The relationship of ci to cj , which is a constant in basic FCM but is a function of a in DFCM.
fi(a) The function to model the relationship of the system state a to ai, named as f -function.
ui(t) The function to model the influence of exogenous factors to ai, named as u-function.

y(m,k) The output of the m-th neuron in the k-th hidden layer of a f -function. y(t)
(m,k)

is an instance at time t

v(nm,k) The weight of the n-th input of the m-th neuron in the k-th hidden layer of the f -function.
rij The general relationship of the concept ci to cj , which is a function of a in DFCM.

wij(ak) A general strength measurement of the causal relationship of the concept ci to cj .

…
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…
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…

…
…
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Fig. 2. The framework of Deep FCM.

function according to specific applications. On the contrary,
the representational learning capacity of neural networks lets
users free from complicated rules designing. There is much
room in improving the adaptability of the FCM framework in
different application scenarios. One possible way is to leverage
the representational learning ability of neural networks.

C. FCM for Time Series Predictions

The capabilities of FCM in time series modeling have
already been widely acknowledged. Ref. [31] proposed a
framework that first transforms state of a univariate time
series into fuzzy sets and then uses a basic FCM model to
predict the time series. Ref. [32] uses historical states in a
moving window as concepts of basic FCM models to predict
future state of a univariate time series. Ref. [32] proposed
a mechanism to optimize the FCM structure, membership
functions and moving window size in time series prediction
dynamically. Ref. [33] improved the framework of [31] by
using fuzzy C-means to transform time series into information
granules. Ref. [34] adopted the ARIMA model to improve
the performance of FCMs in time series prediction. In or-
der to handle large-scale nonstationary time series, Wavelet-
HFCM [15] applies redundant Haar wavelet transform to
decompose univariate time series into multivariate time series,
and uses ridge regression to train FCM models for forecasting.

The FCM model was also applied in the multivariate time
series prediction problem, where the time series of multivariate
are considered as states of concepts in a system [16], [35],
[36]. Papageorgiou et al. [35] proposed a modified error func-
tion to optimize the performance for multi-step multivariate

time series prediction of FCM. Froelich et al. [36] proposed
a dynamic optimization for FCM parameter and structure
selection in multivariate time series prediction. Papageorgiou
et al. [16] proposed a two-stage prediction model which uses
evolutionary FCMs to select the most important attributes as
inputs in an ANN to make time series prediction.

Neural network structures were also adopted by FCM for
time series prediction. Ref. [17] implements FCM based on a
fuzzy neural network for time series prediction, and Ref. [18]
adopts a similar FCM structure to model chaotic time series.
However, in order to infer and express relationships between
concepts, the structures of fuzzy neural networks in [17]
and [18] are strictly limited with small numbers of layers.

III. DEEP FUZZY COGNITIVE MAPS

In this section, we propose the Deep Fuzzy Cognitive Maps
model (deep FCM or DFCM for short) for multivariate state
time series prediction and influence analysis among systematic
concepts. Fig. 2 shows the framework of Deep FCM. The
notations used in Deep FCM are listed in Table I.

A. Time Series Fuzzification

Given a system consisting of a group of concepts, we
denote the original time series of a concept j as xj =(
x
(1)
j , . . . , x

(t)
j , . . . , x

(T )
j

)>
, x(t)j ∈ R, ∀ j, t. The deep FCM

first adopts a z-score normalization to preprocess the raw state
value x(t)j as

z
(t)
j =

x
(t)
j − µj
σj

, (3)

where µj and σj are the mean and standard deviation of
xj . Next, deep FCM uses a sigmoid membership function to
fuzzify the normalized time series z(t)j into a

(t)
j ∈ (0, 1) as

follows:
a
(t)
j = ϕ

(
z
(t)
j

)
=

1

1 + e−z
(t)
j

, (4)

where ϕ(·) is the sigmoid membership function that has a
range of (0, 1). Apparently, when z

(t)
j = +∞, a(t)j = 1
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indicating the active state, and when z
(t)
j = −∞, a(t)j = 0

indicating the inactive state. When z(t)j ∈ (−∞,+∞), a(t)j ∈
(0, 1), which indicates the state of active to a certain degree.
In this way, the original time series values of concepts are
represented by the fuzzy values of activation levels in [0,1].

Given a fuzzy activation state a(t+1)
j ∈ [0, 1] predicted by

DFCM, we use the following function to defuzzify a fuzzy
activation state as its raw value cj :

x
(t+1)
j = ϕ−1

(
a

(t)
j

)
· σj + µj . (5)

In the default assumption, input time series xj are not
in crisp values. For the condition x

(t)
j ∈ {0, 1}, we skip

the normalization and fuzzification steps and directly set
a
(t)
j = x

(t)
j . When a

(t)
j = 1 indicating the active state, and

when a(t)j = 0 indicating the inactive state.

B. Modelling Nonlinear Influence

One drawback of the basic FCM is its weak capacity in
modeling nonlinear relationships. To deal with this, Deep FCM
extends Eq. (1) of the basic FCM to a general form as

a
(t+1)
j = ϕ

(
uj(t) + fj

(
a(t)

))
. (6)

Here, the function fj(·) is used to model relationships of a

to aj , where a(t) = (a
(t)
1 , . . . , a

(t)
i , . . . , a

(t)
I )> denotes the

activation states of all concepts (i.e., the system state) at time
t. The function uj(t) is used to model influences of unknown
exogenous factors to aj . We name the two functions as the f -
function and u-function, respectively. In Eq. 6, the summation
of the f -function and the u-function is fuzzified by a sigmoid
membership function ϕ to generate a(t+1)

j . Obviously, when
uj(t) = 0 and fj(a(t)) =

∑I
i=1 wija

(t)
i with wjj = 1, DFCM

degenerates to the basic FCM. In other words, the basic FCM
is a special case of DFCM.

The neural network is a powerful model with universal
approximation capability [37]. The f -functions of DFCM are
implemented by feedforward neural networks [6]. Specifically,
we define fj(a(t)) in Eq. (6) as a feedforward neural network
with K hidden layers. The number of neurons in the layer k
is denoted by Mk. In the time slice t, the output of the m-th
neuron in the k-th layer, i.e., y(t)(m,k), is generated by

y
(t)

(m,k) = ReLU

Mk−1∑
n=1

v(nm,k)y
(t)

(n,k−1)

 , (7)

where v(nm,k) is the connection weight from the neuron n in
the layer k − 1 to the neuron m in the layer k. ReLU(·) is
a Rectified Linear Unit (ReLU) activation function, which is
defined as

ReLU(z) =

{
z, z > 0

0, z ≤ 0
. (8)

As mentoined in Ref. [6] the ReLU activation function have
advanced performance. Moreover, ReLU can also ensure
fj (a) = 0 at the origin a1 = · · · = ai = · · · = aI = 0,
which is consistent with the basic FCM.

In the input layer of fj(a(t)), we set y(t)(n,0) = a
(t)
n . In the

output layer, we calculate a predictive output as

y
(t+1)
(K+1) =

MK∑
n=1

v(n1,K+1)y
(t)
(n,K) = fj(a

(t)). (9)

In the f -function, we do not include a bias term in neurons
and do not applied the ReLU activation to the output layer
neither. Both of the two treatments are to ensure that DFCM,
a deep-structure enhanced FCM, is consistent with the basic
FCM. As shown in Eq. (1), it is obvious that the expression
of the basic FCM does not contain bias terms, which allows
a
(t+1)
i = 0 at the origin a1 = · · · = ai = · · · = aI = 0. In

order to ensure that DFCM has the same feature, we did not
include bias terms in DFCM, which implies that fj (a) = 0
at the origin a1 = · · · = aI = 0. In addition, it is easy to note
that the term a

(t)
i +

∑
j 6=i wjia

(t)
j is in the range of (−∞,∞).

Therefore, in order to ensure fj (a) ∈ (−∞,∞), we did not
apply the ReLU activation to the output layer, whose output
would be in the range of [0,∞). Given the above treatments, it
is obvious that when ui(t) = 0 and fi(a(t)) =

∑I
i=1 wjia

(t)
j

with wjj = 1, the expression of DFCM in Eq. (6) degenerates
to the form of the basic FCM in Eq. (1).

C. Modelling Exogenous Factors

The exogenous factors in the deep FCM refer to those
exogenous factors that have influence to the system state a but
can not be predefined and directly measured. Let us take for
example the Deep FCM for a road transportation system (more
details can be found in the experimental section). In this case,
the road segments can be modeled as concepts and whether
the segment congest can be modeled as activation states.
The traffic speeds of near road segments can influence each
other, which form relationships among concepts and can be
modeled by f -functions. However, the traffic speeds are also
influenced by some exogenous factors, such as the commuting
patterns of residents, traffic controls, important events and so
on. Because the states of these exogenous factors cannot
be directly measured, we cannot use the predefined FCM
concepts to describe them. How to handle these factors is
an age-old challenge for system modelling and attribution
analysis studies [38]. In the literature of FCM, influences
of exogenous factors are often modeled as static constant
inputs [39], [40]. Our DFCM model is designed for time series
prediction tasks, so we pay special attention to time-related
factors and introduce a LSTM-based u-function to capture the
exogenous factors with time dependence.

In the deep FCM framework defined in Eq. (6), the influence
of exogenous factors to aj are indirectly measured by a u-
function as

uj(t) = ϕ−1
(
a

(t+1)
j

)
− fj

(
a(t)

)
, (10)

i.e., the component of aj that cannot be modeled by the system
internal relationships through the f -function. The deep FCM
adopts a Recurrent Neural Network (RNN) to implement the
u-function as

uj(t) = RNN (t,mod(t, τ), uj(t− 1)) , (11)
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which has three inputs: the time stamp t, the time stamp t
modulo a period length τ , and the history state uj(t − 1).
mod(a, b) is a function to calculate a modulo b.

We design the u-function in the form of Eq. (11) based
on three considerations: i) uj(t) is a function of time stamp
t since the influence of exogenous factors usually change
with time. ii) In many scenarios, exogenous factors exhibit
periodicity, such as one day, one week, one month and the
like, so the time stamp t modulo a period length τ is also
adopted as an input. iii) Moreover, the dynamics of exogenous
factors usually have “memory”, i.e., depend on their historical
states. Therefore, we use Recurrent Neural Networks (RNN) to
implement the u-function where the historical state uj(t−1) is
adopted as an input. In practice, the version of RNN in DFCM
is Long Short-Term Memory (LSTM) [41]. The calculation of
uj(t) starts from t = 2, where the input uj(t − 1) is set as
uj(1) = ϕ−1(a

(2)
j )− fj(a(1)).

D. Measuring Concept Relationships

The biggest advantage of FCM lies in its ability in uncover-
ing concept relationships in a complex system. This advantage
is also called as interpretability of FCM. The basic FCM uses
wij to measure the strength of relationships between concepts.
The value of wij has the following interpretations:

• wij = 0 means concept ci has no influence at all to
concept cj ;

• wij = (0, 1] means ci has a positive influence to cj ;
• wij = [−1, 0) means ci has a negative influence to cj .

From a computational perspective, the basic FCM also re-
gards wij as “the level of aj’s increase when ai increases”.
Analogously, we proposed a partial derivative-based method
to measure the relationship of ai to aj in DFCM as:

rij(a) = lim
∆ai→0

fj(ai,a¬i)− fj(ai + ∆ai,a¬i)

ai − (ai + ∆ai)
=
∂fj(a)

∂ai
,

(12)
where a¬i denotes all the elements of a except ai. The
function rij(a) expresses the degree of fj’s increasing when
ai increases ∆ai, given the system state a as a condition. To
understand the necessity of introducing the condition, we can
think about how human’s body weight influences his health
with a given age — ideal body weights are different for
different ages.

Note that the function rij(ak) here is also a function of the
activation states of unconcerned concepts: a¬k. To remove
the impact of the unconcerned concepts, we calculate the
expectation of rij(ak) for all possible values of a¬k as

r̄ij(ak) =

∫
Da¬k

P (a¬k)rij(ak,a¬k) dσ, (13)

where P (a¬k) is the probability density function of a¬k,
and

∫
Da¬k

· dσ is an integral over all possible value of a¬k.
Furthermore, the overall influence of ai to aj is calculated as
the expectation of rij for all possible values of a, i.e.,

r̄
(O)
ij =

∫
Da

P (a)rij(a) dσ. (14)

In practices, P (a) and P (a¬k) are unknown. A practicable
method is to use frequency to approximate probability. For
ak in a small interval [α, β], we assume there are M samples
falling in this range. According to the Large Number Law, the
r̄ij for ak ∈ [α, β] can be calculated approximately as

r̄ij(ak) =
1

M

∑
ak∈[α,β]

rij (ak,a¬k) . (15)

The overall influence r̄(O)
ij can then be approximated as

r̄
(O)
ij =

1

M

M∑
m=1

rij
(
a(m)

)
, (16)

where a(m) is the system state of the m-th sample.
The FCM framework requires the values of relationships to

be in the range of [−1, 1], so we use the hyperbolic tangent
function to resize r̄ij as

w
(C)
ij (ak) = Tanh (r̄ij(ak)) , w

(O)
ij = Tanh

(
r̄

(O)
ij

)
, (17)

where Tanh(·) is in the form of

Tanh(z) =
ez − e−z

ez + e−z
. (18)

The function w(C)
ij (ak) is called the Conditional Relationship

Strength of wij w.r.t. ak, which is used to express how the
relationship of ci to cj changes with the system state ak. The
variable w(O)

ij is called the Overall Relationship Strength of ci
to cj , which is used to express the overall relationship strength
of ci to cj .

The problem remains unsolved is to calculate the partial
derivative ∂fj(a)/∂ai in Eq. (12) given a deep structure.
According to the chain rule, the partial derivative of fj to
the input y(m,k) in the layer k can be recursively expressed as

∂fj
∂y(m,k)

=
∑
n

∂fj
∂y(n,k+1)

∂y(n,k+1)

∂y(m,k)

. (19)

Based on the definition in Eq. (7), the partial derivative
∂y(n,k+1)/∂y(m,k) is calculated as

∂y(n,k+1)

∂y(m,k)

= v(mn,k+1)ϕ
′

Mk+1∑
m=1

v(mn,k+1)y(m,k)

 , (20)

where ϕ′ is the derivative of the ReLU activation function.
Note that in the input layer, ai = y(i,0). In this way, rij can
be recursively calculated for any given system state a.

IV. PARAMETERS INFERENCE

A. Objective Function

Letting z(t)j = (x
(t)
j − µj)/σj , i.e., the Z-score of x(t)j , our

Deep FCM defined in Eq. (6) can be rewritten as

ẑ
(t)
j = fj(a

(t)|θf ) + uj(t|θu), (21)

where ẑ
(t)
j denotes the predicted value of z(t)j , and θf , θu

denote the parameters of fj and uj , respectively.
Because ẑ

(t)
j contains the influence of all concepts and

exogenous factors, the residual between ẑ
(t)
j and z

(t)
j should
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be a random error. We assume ej = ẑ
(t)
j − z

(t)
j is a zero mean

Gaussian noise as

ej ∼ N (0, σ2
e), ∀j, (22)

where σ2
e is the variance. Given a training data set Zj =

{z(1)j , . . . , z
(t)
j , . . . , z

(T )
j }, the likelihood of Zj for given the

DFCM parameters θf , θu is expressed as

P (Zj |θf , θu) =

T∏
t=1

N (ẑ
(t)
j , σ2

e)

=

T∏
t=1

1

σe
√

2π
exp

(
−

(z
(t)
j − ẑ

(t)
j )2

2σ2
e

)
.

(23)

The negative log likelihood of Zj can be formulated as

− lnP (Zj |θf , θu, σ2
e) ∝

T∑
t=1

(
z

(t)
j − ẑ

(t)
j

)2

. (24)

We uses a the Maximum Likelihood Estimation (MLE)
method to infer the parameters θf and θu, which is equal to
minimize the loss function defined as

L(θf , θu) =
1

2

T∑
t=1

(
fj(a

(t)|θf ) + uj(t|θu)− z(t)
j

)2

. (25)

B. Principle of AFGD Algorithm

The biggest difference between DFCM and the basic FCM
lies in that the DFCM contains many deep neural network
components, such as f -function and u-function. However, the
traditional FCM training algorithms, including the Hebbian-
like methods and the evolutionary optimizations, cannot be
directly used to train deep neural networks, which motivates us
to find a new training method, named Alternate Function Gra-
dient Descent (AFGD), to optimize the objective in Eq. (25).
Since the Back-Propagation (BP) algorithm [6] is an effective
algorithm for deep neural network training, we designed the
AFGD algorithm based on BP to train the DFCM model.

AFGD learns the parameters θf and θu via an iterative
approach. Specifically, at the q-th round of iteration, AFGD
updates θf and θu such that the following equations hold:

f
(t)
j

(
θ

(q)
f

)
= f

(t)
j

(
θ

(q−1)
f

)
− ηf ·

∂L(fj)

∂fj

∣∣∣∣
fj=f

(t)
j

(
θ
(q−1)
f

) ,

u
(t)
j

(
θ(q)
u

)
= u

(t)
j

(
θ(q−1)
u

)
− ηu ·

∂L(uj)

∂uj

∣∣∣∣
fj=f

(t)
j

(
θ
(q−1)
u

) ,
(26)

where we denote f (t)j (θ
(q)
f ) as fj(a(t)|θ(q)f ) and u(t)j (θ

(q)
u ) as

uj(t|θ(q)u ) for short, θ(q)f and θ(q)u are the parameters learnt in
the q-th iteration, and ηf , ηu are two updating parameters
representing the learning rates. Eq. (26) ensures that the
parameters updating direction is along the negative gradient
direction of the loss function to the functions fj and uj , so we
name our algorithm as Alternate Function Gradient Descent.

According to the derivations in Appendix A, Eq. (26) is
equal to following parameter iteration functions:

fj(a
(t)|θ(q)

f ) = z
(t)
j − uj(t|θ

(q−1)
u ), (27)

uj(t|θ(q)
u ) = z

(t)
j − fj(a

(t)|θ(q)
f ). (28)

Algorithm 1 The AFGD algorithm.

1: Input: Training dataset D = {(t,a(t), z
(t)
j )}Tt=1.

2: Initialize θf , θu randomly.
3: Initialize y(t)

j ← z
(t)
j for t ∈ [1, T ].

4: repeat
5: θf ← BP

(
fj(θf ), {(a(t), y

(t)
j )}Tt=1

)
6: y

(t)
j ← z

(t)
j − fj(a

(t)|θf ) for t ∈ [1, T ]

7: θu ← BP
(
uj(θu), {(t, y(t)

j )}Tt=1

)
8: y

(t)
j ← z

(t)
j − uj(t|θu) for t ∈ [1, T ]

9: until convergence
10: return θf ,θu

Algorithm 2 The BP algorithm.

1: Input: BP
(
g(θ), {(x(t), y(t))}Tt=1

)
, where g(θ) is a neural

network, and D = {(x(t), y(t))}Tt=1 is a training dataset.
2: repeat
3: for all (x(t), y(t)) ∈ D do
4: Loss(θ) =

(
y(t) − g(x(t), θ)

)2

5: θ ← θ − λ∂Loss(θ)

∂θ
6: end for
7: until convergence
8: return θ

Eqs. (27) and (28) could be intuitively understood as that the
u-function and f -function alternately use the other’s prediction
residuals to train their parameters, that is why we call our algo-
rithm as Alternate Function Gradient Descent. The prediction
residuals of the f -function are the influences that cannot be
modeled by the internal FCM concepts, i.e., the influences of
exogenous-factors, and therefore should be absorbed by the u-
function. In contrast, the prediction residuals of the u-function
correspond to removing the influences of exogenous factors
from zj , which should be modeled by the f -function.

C. Implementation of AFGD Algorithm

Alg. 1 and Alg. 2 give the pseudo-codes about the training
algorithm. Alg. 1 establishes a framework of the AFGD
algorithm. The main body of the algorithm is an iteration
loop, i.e., line 4 to line 9. In each loop, we alternately
use the Back-propagation (BP) algorithm [42] to train the
neural network functions fj(θf ) and uj(θu) with the training
set {(a(t), y

(t)
j )}Tt=1 and {(t, y(t)j )}Tt=1, respectively. For each

training sample, a(t) and t are features and y
(t)
j is a label.

In line 6, the label y(t)j is set as y(t)j ← z
(t)
j − fj(a

(t)|θf )

for uj(θu) training, and in line 8, y(t)j is set as y
(t)
j ←

z
(t)
j − uj(t|θu) for the training of fj(θf ).

Alg. 2 gives the pseudocodes of the BP algorithm [42]. The
main body of the BP algorithm is an iterative gradient descent
loop, i.e., from line 2 to line 7. In each loop, the algorithm
traverses all training samples (x(t), y(t)), and calculates a
function Loss(θ) =

(
y(t) − g(x(t), θ)

)2
using (x(t), y(t)).

Here, g(x(t), θ) = fj(a
(t), θf ) is for the f -function, and

g(x(t), θ) = uj(t, θu) is for the u-function. The algorithm uses
the negative gradient −λ∂Loss(θ)/∂θ to update the neural
network parameters θ, where λ is a preset learning rate. The
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TABLE II
STATISTICS OF THE FOUR DATASETS.

Statistics AQI Traffic EPC. Temp.

# of features 9 6 7 24
# of labels 5 6 3 2

# of records 8,783 3,602 21,899 2,763
Period 1 hour 10 min 1 min 15 min
Range 1 year 1 month 15 days 1 month

negative gradients for the neural networks fj and uj can be
calculated using the chain rule [6].

V. EXPERIMENTAL RESULTS

In this section, we first compare multivariate time series
prediction performance of DFCM with baselines over four
datasets, and give some detail performance and interpretation
analysis over two of the datasets.

A. Experimental Setup

1) Datasets: To estimate performance of the proposed deep
FCM model, we adopted following four real-world multivari-
ate time series datasets in our experiments:
• AQI (Air Quality Indexes): This dataset contains time

series of meteorological and air quality indexes that were
collected from February 2017 to February 2018 in Beijing,
China 1. We use four meteorological indexes and five air
quality indexes at the time t as inputs to predict the air quality
indexes (AQIs) at the time t+ 1.
• Traffic: This dataset contains traffic speeds that were

collected from 1st to 30th April in 2016 of six road segments
in Beijing 2. We use the traffic speeds of all segments at t as
inputs to predict the speed of each road segment at t+ 1.
• Power (Electric Power Consumption): This dataset con-

tains measurements of electric power consumption in one
household 3. Different electrical quantities and some sub-
metering values are available. The date used in our experiment
were collected from 16th to 31st in December 2016. We use
four electrical quantities and three sub-metering values as
inputs to prediction the three sub-metering value at the next
period.
• Temperatures: This dataset contains 24 features that are

collected from a monitor system mounted in a domestic
house 4. The date used in our experiment were collected from
3rd March to 11th April in 2012. We use all features at time
t to predict the indoor temperature of dinning-room and room
at time t+ 1.

Table II summaries the statistics of the datasets. All of the
datasets are publicly available.

1https://www.kdd.org/kdd2018/kdd-cup
2https://github.com/BuaaPercy/Traffic-DataSet-of-Beijing-Road
3http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+

power+consumption
4https://archive.ics.uci.edu/ml/datasets/SML2010

2) Baselines: We consider the following methods as base-
lines to compare:
• FCM [43]: This baseline treats multivariate time series as

a multip-concept sytem and uses a basic FCM whose weights
are trained by a Real-Coded Genetic Algorithm (RCGA) to
predict concept states of the system.
• ANN [44]: This baseline uses artificial neural networks

(ANN) to predict multivariate time series. The ANN model
used in our operations contains three hidden layers, and each
hidden layer consists of 50 hidden neurons.
• VAR [45]: This baseline uses the vector auto regression

(VAR) to predict multivariate time series.
• LSTM [46]: This baseline uses the Long Short-Term

Memory (LSTM) network to predict multivariate time series.
The LSTM is a type of neural network specially designed for
sequential data. This baseline treats the features and labels
of the datasets as inputs and outputs of the LSTM model,
respectively. The LSTM network used in our experiment
contains one hidden layer that consists of 50 LSTM neurons.
• ARIMA [47]: We adopt the Auto Regressive Integrated

Moving Average (ARIMA) model as a representative of
univariate time series forecasting models. In the ARIMA
experiments, we treat a multivariate time series as multiple
univariate time series and use ARIMA models to predict their
feature states, respectively.
• LSTM-U: This baseline uses LSTM as a univariate model

to predict each series of a multivariate time series. This
baseline is also a representative of univariate time series
forecasting model. The LSTM network used in our experiment
contains one hidden layer that consists of 50 LSTM neurons.
•W-HFCM [15]: The Wavelet-High-order FCM (W-HFCM)

model is specially designed for univariate time series fore-
casting. It uses the redundant Haar wavelet transform to
decompose original univariate time series as a multivariate
time series and learns the parameters of HFCM by a method
based on ridge regression. This baseline is a representative
of the state-of-the-art univariate time series forecasting model
based on the FCM framework.
• Naive Method: The naive method directly uses yt−n as the

predication of yt. This is the simplest method in time series
prediction. It is worth to note that the performance of the naive
method is even acceptable for many scenarios.
• Exponential Smoothing: The exponential smoothing

method calculates st = αyt + (1 − α)st−1 and uses st as
a prediction of yt+1, where α is the smoothing factor, and
0 < α < 1.

The hyper-parameters setting of the baselines are given in
the Supplementary Materials.

3) Evaluation Metrics: We use two metrics to evaluate
the model performance, including Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE), which are defined
as follows:

RMSE =

√√√√ 1

T

T∑
t=1

(x̂(t) − x(t))
2
,

MAE =
1

T

T∑
t=1

∣∣∣x̂(t) − x(t)
∣∣∣,

(29)
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TABLE III
COMPARISON WITH OTHER PREDICTION MODELS IN TERMS OF RMSE.

DataSet Target Features DFCM FCM ANN VAR LSTM LSTM-U ARIMA W-HFCM Naive ES

Traffic

R1 3.188 7.958 3.736 4.152 3.401 3.402 4.081 3.320 4.188 14.66
R2 4.784 10.64 5.109 6.000 4.820 5.335 6.458 5.206 6.561 19.87
R3 4.359 7.603 4.902 4.981 4.388 4.642 5.120 4.309 5.387 13.09
R4 4.718 10.87 5.360 7.060 4.986 5.317 7.342 4.911 7.346 23.52
R5 4.982 11.25 5.147 7.073 5.270 5.609 7.204 5.101 7.202 22.65
R6 5.354 11.25 5.961 7.945 5.776 6.219 8.317 5.582 8.354 25.38

AQIs

PM2.5 12.73 29.25 23.38 18.99 12.84 14.17 24.11 14.72 27.06 70.55
NO2 9.622 16.01 12.06 14.85 9.657 9.716 19.35 9.900 22.24 42.66
CO 0.264 0.728 0.719 0.346 0.269 0.270 0.440 0.617 0.487 1.012
O3 8.504 15.30 13.02 14.47 8.713 9.995 16.93 20.86 20.72 40.11

SO2 2.732 6.044 4.513 3.638 2.860 3.041 4.161 4.035 4.778 7.433

Power
Sub-metering 1 2.141 3.424 2.293 3.251 2.166 2.160 4.646 4.040 4.742 11.24
Sub-metering 2 2.752 6.882 2.806 3.358 2.865 2.914 6.314 9.075 6.091 15.15
Sub-metering 3 1.069 1.596 1.134 1.635 1.182 1.128 2.462 1.307 2.731 11.02

Temperature Dining Room 0.109 1.821 0.488 0.121 0.140 0.139 0.195 0.208 0.316 2.492
Room 0.099 1.709 0.580 0.130 0.143 0.207 0.207 0.197 0.324 2.516

Winning times 15 0 0 0 0 0 0 1 0 0
AVG arithmetic ranking 1.063 8.250 5.000 5.125 2.813 3.625 6.750 4.563 7.750 10.00
AVG geometric ranking 1.044 8.151 4.642 4.843 2.720 3.482 6.665 3.861 7.695 10.00

TABLE IV
COMPARISON WITH OTHER PREDICTION MODELS IN TERMS OF MAE.

DataSet Target Features DFCM FCM ANN VAR LSTM LSTM-U ARIMA W-HFCM Naive ES

Traffic

R1 2.467 6.931 2.894 3.137 2.580 2.668 3.130 2.561 3.146 11.81
R2 3.593 9.368 3.996 4.471 3.637 4.084 4.686 3.929 4.728 16.15
R3 3.171 6.364 3.698 3.616 3.305 3.535 3.792 3.228 4.012 10.19
R4 3.114 9.782 3.679 4.469 3.351 3.747 4.587 3.347 4.588 17.73
R5 3.405 10.12 3.631 4.622 3.929 4.086 4.532 3.459 4.531 16.88
R6 3.245 10.10 3.771 4.465 3.664 3.995 4.349 3.487 4.364 17.72

AQIs

PM2.5 7.579 22.03 16.26 10.92 8.646 10.07 13.52 9.950 15.48 51.75
NO2 7.047 13.09 9.533 10.23 6.715 6.797 13.11 7.001 15.68 32.72
CO 0.161 0.551 0.601 0.224 0.172 0.174 0.313 0.360 0.311 0.768
O3 6.349 13.13 9.502 11.02 6.396 7.747 11.36 18.90 13.58 32.41

SO2 1.682 3.619 3.063 2.335 1.863 2.381 2.566 2.687 2.758 5.017

Power
Sub-metering 1 0.407 1.625 0.733 0.550 0.567 0.500 0.958 0.663 0.692 4.274
Sub-metering 2 0.823 2.516 0.915 0.848 0.885 1.198 1.477 2.857 1.393 6.902
Sub-metering 3 0.304 0.994 0.445 0.370 0.561 0.456 0.543 0.447 0.595 7.209

Temperature Dining Room 0.085 1.560 0.381 0.097 0.100 0.108 0.114 0.186 0.241 2.111
Room 0.076 1.515 0.435 0.098 0.102 0.156 0.123 0.169 0.243 2.131

Winning times 15 0 0 0 1 0 0 0 0 0
AVG arithmetic ranking 1.188 8.625 5.625 4.625 2.938 4.063 6.313 4.438 7.188 10.00
AVG geometric ranking 1.091 8.594 5.273 4.123 2.697 3.901 6.220 3.827 7.112 10.00

where x(t) is the actual value of the state of a concept at time
t, x̂(t) is the predicted value, and T is the length of time series.
The two metrics are the smaller, the better.

B. Results and Analysis

We present the results of all the comparison methods in
Table III and Table IV with the summarized information listed
in the bottom three lines. Note that the best performance for
each dataset is emphasized in bold.

From the experiment results, we have three observations:
• The first is the nonlinear models have superior per-

formance over the linear models. As shown in the tables,
the methods with top three performance are DFCM, LSTM
and LSTM-U. All of the three are deep neural-network-based

forecasting models. Although Wavelet-HFCM adopts wavelet
transform to extract frequency information from time series,
its linear basic FCM framework can not fully exploit the
information and therefore limits its performance.
• The second observation is long-term dependencies is

helpful for time series forecasting. As shown in the tables,
although the ANN model has nonlinear modeling abilities, its
performance is still worse than Wavelet-HFCM. The reason
might be that Wavelet-HFCM adopts historical data in a slice
window as inputs to exploit long-term dependencies in time
series, but the ANN model can only exploit dependencies
between adjacent periods. The LSTM-based baselines can
exploit long-term dependencies using memory gates [46], so
their performance is better than ANN too. The basic FCM can
neither exploit long-term dependencies nor model nonlinear
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Fig. 3. A map of the road traffic system.

relationships, which leads its performance worse than all
methods.
• The third observation is the performance of multivariate

models are better than univariate models. Here, the perfor-
mance of LSTM is better than LSTM-U, and the performance
of VAR is better than ARIMA. The multivariate models treat
multiple time series as a whole to exploit dependencies among
them, so they have superior performance over univariate
models that can only exploit dependencies inner a series.

In the DFCM model, neural network components enable
it to model nonlinear relationships, the u-function adopts a
LSTM network to exploit long-term dependencies, and the
model can also exploit dependencies among different series.
Therefore, as shown in the experiments, DFCM achieves the
best performance in terms of both the largest number of wins
(the best in 15 out of 16 prediction targets) and the smallest
average performance ranks.

C. Effectiveness of Components

In this section, we perform detailed experiments to demon-
strate the effectiveness of each component of the DFCM
model. Due to space limit, we only report the results on the
traffic and AQI datasets. The rest results show the similar
findings, and are omitted here.

1) Baselines: In the experiments, we compare the predic-
tion performances of five models:

• DFCM-1L: DFCM that contains one hidden layer in the
f -function and one hidden layer in the u-function.

• DFCM-3L: DFCM that contains three hidden layers in
the f -function and one hidden layer in the u-function.

• fi-1L: DFCM that contains one hidden layer in the f -
function and no u-function.

• fi-3L: DFCM that contains three hidden layers in the f -
function and no u-function.

• FCM: The basic FCM as a benchmark.

The comparison between DFCM-1L and DFCM-3L models is
used to demonstrate the necessity of the deep neural network
structure in the f -function. And, the comparison between
DFCM-*L and fi-*L are used to demonstrate the effectiveness
of the u-function. Note that in the DFCM models, all hidden
layers in both f and u consists of 40 neurons.

TABLE V
TRAFFIC SPEED PREDICTION IN TERMS OF RMSE.

DFCM-1L DFCM-3L fi-1L fi-3L FCM

R1 3.249 3.188 6.044 5.034 7.958
R2 5.265 4.784 9.104 7.624 10.64
R3 4.485 4.359 6.958 5.958 7.603
R4 4.937 4.718 9.475 9.261 10.87
R5 5.188 4.982 9.132 8.674 11.25
R6 5.682 5.354 10.286 8.972 11.25

Overall 4.801 4.564 8.500 7.587 9.929

TABLE VI
TRAFFIC SPEED PREDICTION IN TERMS OF MAE.

DFCM-1L DFCM-3L fi-1L fi-3L FCM

R1 2.531 2.467 4.417 3.760 6.931
R2 4.062 3.593 6.863 5.742 9.368
R3 3.372 3.171 4.978 4.420 6.364
R4 3.332 3.114 6.415 6.214 9.782
R5 3.699 3.405 6.191 5.988 10.12
R6 3.526 3.245 6.365 5.501 10.10

Overall 3.420 3.166 5.872 5.271 8.777

TABLE VII
CONCEPTS OF THE AIR POLLUTION SYSTEM.

Types Concepts

AQIs PM2.5, NO2, CO, O3, SO3
Meteorological Temperature, Pressure, Humidity, Wind Speed

2) Prediction of Road Traffic System: The traffic dataset
contains traffic speed data of six road segments of the Xueyuan
Road in Beijing. Figure 3 illustrates the topological structure
of the segments. In the experiments, the time line is divided
evenly into slices, with ten minutes per slice. The period length
τ is set to one day, i.e., the natural rhythm of urban commuting.
The results of DFCM and its variants are given in Table V and
Table VI. From the results we have the following observations:
• First, all the variants of DFCM achieve much higher

predictive accuracies than the basic FCM, which indeed per-
forms very poorly. This implies that the basic FCM cannot well
capture the complicated interactive relations between elements
in a nonlinear real-world system. In contrast, by introducing
non-linear neural networks into the f -function, DFCM works
much better.
• Second, the performances of the DFCM models, i.e.,

DFCM-1L and DFCM-3L, are obviously superior to that of
the fi benchmarks, i.e., fi-1L and fi-3L. This indicates that
the exogenous factors introduced to DFCM by the u-function
is indeed of great help to the prediction of system states.
• Third, DFCM and fi with three hidden layers in the f -

function perform slightly better than that with only one layer.
This implies that a deep structure is generally better than a
shallow one, although excessive layers might lead to higher
computational complexity and higher risk of overfitting.

In summary, the experiment results indicate that it is very
effective to introduce deep neural networks into the FCM
framework for improved prediction of nonlinear open systems.
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TABLE VIII
AIR POLLUTION PREDICTION IN TERMS OF RMSE.

DFCM-1L DFCM-3L fi-1L fi-3L FCM

PM2.5 18.95 12.73 21.42 20.425 29.25
NO2 10.46 9.622 10.68 10.39 16.01
CO 0.315 0.264 0.335 0.319 0.728
O3 9.346 8.504 14.61 12.95 15.30
SO2 4.246 2.732 5.008 4.609 6.044

Overall 6.143 4.832 7.361 6.864 10.47

TABLE IX
AIR POLLUTION PREDICTION IN TERMS OF MAE.

DFCM-1L DFCM-3L fi-1L fi-3L FCM

PM2.5 12.72 7.579 16.59 14.40 22.03
NO2 7.536 7.047 7.671 7.606 13.09
CO 0.183 0.161 0.233 0.214 0.551
O3 7.125 6.349 11.41 9.837 13.13
SO2 2.212 1.682 3.446 3.221 3.619

Overall 4.278 3.239 5.569 4.986 8.360

3) Prediction of AQIs: Next, we run a similar experiment
over the AQI dataset. As listed in Table VII, the dataset
contains nine concepts, where the upper five are to describe air
pollutants and the lower four to describe the meteorological
factors. In the experiments, the period length τ of the u-
function is also set as one day in the air pollution system.
The prediction performance of DFCM and its variants are
listed in Table VIII and IX, from which we have the following
observations:
• First, the DFCM model with a three-layer f -function

and a u-function (DFCM-3L) achieves the best prediction
performance among all the competitors, which again verifies
the superiority of DFCM in predictive applications.
• Second, the prediction performance of the models with

three hidden layers (DFCM-3L and fi-3L) is better than that
with only one hidden layer (DFCM-1L and fi-1L), which veri-
fies the better predictive ability of deeper structures. Moreover,
the performance of DFCM with u-functions (DFCM-1L and
DFCM-3L) is better than that without u-functions (fi-1L and
fi-3L), which again verifies the necessity of introducing ex-
ogenous factors for high-performance prediction. These results
are consistent with that of the road traffic system.
• It is worth noting that the performance gap between

DFCM with and without u-function is not as big as that
in the traffic system case. This might be due to that the
interrelationships between air pollutants and meteorological
factors are more determinant than that between road segments
in the traffic system.

In summary, the experimental results of the air pollution
system indicate that the superior predictive power of DFCM
is robust across different application scenarios and model
parameter settings.

VI. INTERPRETATION EXPERIMENTS

In this section, we use the experiments over the AQI dataset
to demonstrate the interpretation feature of DFCM. A similar

TABLE X
THE AVERAGE INFLUENCE OF METEOROLOGICAL FACTORS TO AQIS IN

THE BASIC FCM.

PM2.5 NO2 CO O3 SO2

Temp. -0.66 -0.77 -0.79 0.32 -0.66
Pressure -0.79 -0.73 -0.78 -0.67 -0.78
Humidity -0.46 -0.41 -0.34 -0.30 -0.52

Wind -0.53 -0.67 -0.54 -0.07 -0.46

TABLE XI
THE AVERAGE INFLUENCE (w(O)

ij ) OF METEOROLOGICAL FACTORS TO AIR
POLLUTION.

PM2.5 NO2 CO O3 SO2

Temp. -0.53 -0.85 -0.76 0.42 -0.36
Pressure -0.39 -0.50 -0.53 -0.30 -0.14
Humidity -0.37 -0.30 -0.28 -0.71 -0.29

Wind -0.19 -0.55 -0.31 0.04 -0.21

FCM
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Fig. 4. The correlation of the relationships modeled by FCM and DFCM
from the AQI dataset.

experiments over the traffic dataset could be found in the
supplementary materials.

A. Interpretation of Relationships

The concept of interpretation in DFCM is inherited from
the basic FCM, where the relationships between concepts are
interpreted as connection weights wij of FCM. Analogously,
DFCM uses the Overall Relationship Strength w

(O)
ij defined

in Eq. (17) to interpret relationships among concepts. In
this section, we use the AQI dataset as a show case to
demonstrated how FCM and DFCM interpret the influences
of meteorological factors to air pollution using wij and w(O)

ij .
In the experiments, we use the AQI dataset to train FCM and

DFCM models, respectively. The experiment setups are same
as basic FCM and DFCM-3L in the section V-C3. After the
model are well trained, we calculate w(O)

ij of DFCM according
to Eq. (14) and extract wij from the basic FCM model. The
w

(O)
ij and wij are used to express (interpret) the influences

from the concept i to the concept j.
Table X and Table XI list the strengths of influences

measured by wij of FCM and by w(O)
ij of DFCM, respectively.

Figure 4 plots the correlation of the values in the two tables.
We can see that the values in the two tables are highly
correlated. Indeed, the correlation between the two tables is
0.72, indicating the knowledge revealed by FCM and DFCM
from the AQI dataset is very similar. Further, we can see
for most of the conditions, the meteorological factors have
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Fig. 5. Influence of meteorological factors to air pollution.

negative impacts to the pollutants. This could be interpreted
by some basic meteorological knowledge as follows:
• High air pressure in an area causes air flowing to sur-

rounding areas and thus takes pollutants away. So air
pressure has negative influence to air pollution.

• High humidity usually corresponds to precipitation
weather, such as rain and snow, which can wash away
pollutants in air. So humidity also has negative influence
to air pollution.

• Wind can blow air pollutants away, so it is negative w.r.t.
air pollution.

• The relationships between temperature and air pollutants
are relatively indirect. In the northern cities of China, like
Beijing, people burn fossil fuels in winter for heating,
which therefore increases air pollutants in low temper-
ature days. Indeed as reported in [48], heavy pollution
days usually appear in winter.

Nevertheless, not all relationships between the meteorolog-
ical factors and pollutants follow the above rules. We can
see that O3 has several special characteristics in the tables.
In order to further study the influences of the meteorological
factors to O3, we plots the conditional relationship strength,
i.e., w(C)

ij (ak) defined in Eq. (17), for different meteorological
factors to O3 in Fig. 5. The horizontal axis ak denotes value
of meteorological factors. The vertical axis denotes influences
w

(C)
ij of the meteorological factors with corresponding mete-

orological factor values as conditions.
As shown in Fig. 5(b) and 5(c), both air pressure and

humidity have negative influence to O3 for different values of
ak, which is consistent with that for other pollutants. Fig. 5(a)
however shows that the temperature has positive influence to
O3, which could be due to the fact that high temperatures can
facilitate the production of O3 [49]. The relationship between
wind speed and O3 is more complicated. When the wind speed
is not very high, the airflow of wind can blow O3 pollutants
away and then reduces the concentration of O3. When the wind
speed is high, it can reduce the stability of the boundary layer
of atmosphere, and the intrusion of O3 from the upper layer
to the surface layer can thus increase the O3 concentration of
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Fig. 6. Expressing the influence of temperature to AQIs using a bar map.
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Fig. 7. Periodicity of ui(t) in the air pollution system.

the surface [49]. Therefore, as shown in Fig. 5(d), when the
value of ak is very low, the influence w(C)

ij of wind speed to
O3 is in negative, but when the value of ak becomes higher,
w

(C)
ij turns into positive values. More extremely, when the

wind speed is too high, the high dispersion of wind could
offset the O3 contributions from the upper layer. Therefore, the
influence w(C)

ij reduces to a value near to zero when ak is very
high. It is interesting that the results about the relationships
between wind speed and O3 agree with the conclusion of
related meteorology studies [49].

Comparing the results in Table X and Fig. 5, we can
see the relationships modeled by DFCM contain more detail
information, then could be used in nonlinear system analysis.
Oppositely, the basic FCM model can only express linear rela-
tionships, and is not very suitable to complex system analysis.
For simple concept relationships, a more comprehensible way
to express the influences is using the bar map. Figure 6 shows
the influences of temperature to AQIs. The temperature has
significant negative influences to PM2.5, NO2, CO, and SO3,
while has positive to O3.

B. Interpretation of Exogenous Factors
DFCM uses the u-function to model exogenous factors of

a system. Therefore, we can use the value of u-function to
interpret influences of exogenous factors to system concepts.
Fig. 7 depicts the periodicity of ui(t) for different meteorolog-
ical factors and pollutants. In Fig. 7(a), we plot the fluctuations



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XXX, NO. XXX, XXX 2019 12

of ui(t) in the first ten days. As can be seen, there is an
obvious rhythm in ui(t) that repeats every day. Fig. 7(b)
plots the fluctuations of ui(t) in one year. As shown in the
figure, although we do not adopt any seasonal information
other than τ in the u-function, there exists long-term seasonal
periodicity that waves from spring to winter for each concept.
Accordingly, we might expect that the short-term periodicity
in ui(t) corresponds to the influence of human activities to air
pollution since life rhythms of human are mostly with daily
frequency. The long-term periodicity might correspond to the
impact of season changes to air pollution. In the Deep FCM
model, the influences of different exogenous factors are all
integrated into a same u-function.

The results in the performance and interpretation experi-
ments demonstrate that the proposed DFCM model not only
have high predictive ability for multivariate time series forecast
tasks but also can offer meaningful explanations for the
prediction results.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a deep neural network-based
fuzzy cognitive maps model, named Deep FCM, to gain
interpretable multivariate prediction. The Deep FCM model
introduces deep neural network models into the knowledge
representation framework of FCM so that the advantage of
FCM in interpretation and the advantage of deep neural
networks in prediction can be integrated into a same model.
The excellent performances of Deep FCM in terms of both
interpretability and predictive ability were verified over two
real-world open systems. Deep FCM indeed provided an
important clue to building interpretable predictors for real-life
applications.

How to handle exogenous factors is an age-old challenge
for system modelling and attribution analysis studies [38]. Our
DFCM model is designed for time series prediction tasks, so
we pay special attention to time-related factors and introduce
a LSTM-based u-function to capture the exogenous factors
with time dependence. Nevertheless, DFCM is still an open
framework that calls for new approaches for modelling other
types of exogenous factors. Studying new exogenous factors
modeling approaches is our next step work.
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APPENDIX A
DERIVATIONS OF AFGD ALGORITHM

The objective function of the AFGD algorithm is

minL(θf , θu) =
1

2

T∑
t=1

(
fj(a

(t)|θf ) + uj(t|θu)− z(t)
j

)2

. (30)

In the AFDG algorithm, we optimize the parameters θf and
θu iteratively. Given a training sample {a(t), z

(t)
j }, we denote

f
(t)
j (θf ) = fj(a

(t)|θf ) and u
(t)
j (θu) = uj(t|θu) for short. In

the q-th round of iteration, the algorithm updates θf and θu
to make following equations hold:

f
(t)
j (θ

(q)
f ) = f

(t)
j (θ

(q−1)
f )− ηf ·

∂L(fj)

∂fj

∣∣∣∣
fj=f

(t)
j (θ

(q−1)
f

)

,

u
(t)
j (θ(q)

u ) = u
(t)
j (θ(q−1)

u )− ηu ·
∂L(uj)

∂uj

∣∣∣∣
fj=f

(t)
j (θ

(q−1)
u )

,

(31)

where θ(q)f and θ(q)u are the parameters in the q-th iteration, and
ηf , ηu are learning rates. Eq. (31) ensures that the parameters
updating direction is along the negative gradient direction of
the loss function to the functions fj and uj , so we name our
algorithm as Function Gradient Descent.

According to the definition of the loss function in Eq. (30),
for any training data z(t)j , the partial derivatives of L(fj , uj)
to fj and uj are in the form of

∂L(fj)

∂fj

∣∣∣∣
fj=f

(t)
j (θ

(q−1)
f

)

= z
(t)
j − u

(t)
j (θ(q−1)

u )− f (t)
j (θ

(q−1)
f ),

∂L(uj)

∂uj

∣∣∣∣
fj=f

(t)
j (θ

(q−1)
u )

= z
(t)
j − f

(t)
j (θ

(q−1)
f )− u(t)

j (θ(q−1)
u ).

(32)
Plugging Eq. (32) into Eq. (31), we have

f
(t)
j (θ

(q)
f ) =f

(t)
j (θ

(q−1)
f )

+ ηf
(
z

(t)
j − u

(t)
j (θ(q−1)

u )− f (t)
j (θ

(q−1)
f )

)
,

(33)

u
(t)
j (θ(q)

u ) =u
(t)
j (θ(q−1)

u )

+ ηu
(
z

(t)
j − f

(t)
j (θ

(q−1)
f )− u(t)

j (θ(q−1)
u )

)
.

(34)

For the f -function, we plug Eq. (33) into Eq. (30), the loss
function L in the q-th iteration is in the form of

L(ηf ) =
1

2

T∑
t=1

[
f

(t)
j (θ

(q−1)
f ) + u

(t)
j (θ(q−1)

u )− z(t)
j

+ηf
(
z

(t)
j − u

(t)
j (θ(q−1)

u )− f (t)
j (θ

(q−1)
f )

)]2 (35)

For the learning rate ηf , the function in Eq. (35) is a convex
function, so the optimum point of L can be achieved at
∂L/∂ηf = 0, i.e.,

∂L

∂ηf
=

T∑
t=1

[(
f

(t)
j (θ

(q−1)
f ) + u

(t)
j (θ(q−1)

u )− z(t)
j +

ηf
(
z

(t)
j − u

(t)
j (θ(q−1)

u )− f (t)
j (θ

(q−1)
f )

))
×
(
z

(t)
j − u

(t)
j (θ(q−1)

u )− f (t)
j (θ

(q−1)
f )

)
︸ ︷︷ ︸

TermI

]
= 0.

(36)
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We cannot have
(
z
(t)
j − u

(t)
j (θ

(q−1)
u )− f (t)j (θ

(q−1)
f )

)
= 0

held for all samples for Term I, so the following equation
need be satisfied:

f
(t)
j (θ

(q−1)
f )+u

(t)
j (θ(q−1)

u )− z(t)
j +

ηf
(
z

(t)
j − u

(t)
j (θ(q−1)

u )− f (t)
j (θ

(q−1)
f )

)
= 0

(37)

which means ηf = 1. By plugging ηf = 1 into Eq. (33), we
have

f
(t)
j (θ

(q)
f ) = z

(t)
j − u

(t)
j (θ(q−1)

u ). (38)

For the u-function, we also have ηu = 1 via the similar
derivations as that in Eqs. (33) - (37). By plugging ηu = 1
into Eq. (34), we have

u
(t)
j (θ(q)

u ) = z
(t)
j − f

(t)
j (θ

(q−1)
f ). (39)

Therefore, Eq. (31) (i.e., Eq. (26)) is equal to following
parameter iteration functions:

fj(a
(t)|θ(q)

f ) = z
(t)
j − uj(t|θ

(q−1)
u ), (40)

uj(t|θ(q)
u ) = z

(t)
j − fj(a

(t)|θ(q)
f ). (41)

REFERENCES

[1] B. Kosko, “Fuzzy cognitive maps,” International journal of man-
machine studies, vol. 24, no. 1, pp. 65–75, 1986.

[2] K. Perusich, “Fuzzy cognitive maps for policy analysis,” in Proceedings
of 1996 International Symposium on Technology and Society Technical
Expertise and Public Decisions. IEEE, 1996, pp. 369–373.

[3] Z. Wei, L. Lu, and Z. Yanchun, “Using fuzzy cognitive time maps
for modeling and evaluating trust dynamics in the virtual enterprises,”
Expert Systems with Applications, vol. 35, no. 4, pp. 1583–1592, 2008.

[4] V. C. Georgopoulos, G. A. Malandraki, and C. D. Stylios, “A fuzzy
cognitive map approach to differential diagnosis of specific language
impairment,” Artificial intelligence in Medicine, vol. 29, no. 3, pp. 261–
278, 2003.

[5] A. S. Andreou, N. H. Mateou, and G. A. Zombanakis, “The cyprus
puzzle and the greek-turkish arms race: Forecasting developments using
genetically evolved fuzzy cognitive maps,” Defence and Peace Eco-
nomics, vol. 14, no. 4, pp. 293–310, 2003.

[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[7] Y. Miao, Z.-Q. Liu, C. K. Siew, and C. Y. Miao, “Dynamical cognitive
network-an extension of fuzzy cognitive map,” IEEE transactions on
Fuzzy Systems, vol. 9, no. 5, pp. 760–770, 2001.

[8] K. S. Park and S. H. Kim, “Fuzzy cognitive maps considering time rela-
tionships,” International Journal of Human-Computer Studies, vol. 42,
no. 2, pp. 157–168, 1995.

[9] Y. Cai, C. Miao, A.-H. Tan, Z. Shen, and B. Li, “Creating an immersive
game world with evolutionary fuzzy cognitive maps,” IEEE computer
graphics and applications, vol. 30, no. 2, pp. 58–70, 2010.

[10] J. L. Salmeron, “Modelling grey uncertainty with fuzzy grey cognitive
maps,” Expert Systems with Applications, vol. 37, no. 12, pp. 7581–7588,
2010.

[11] D. K. Iakovidis and E. Papageorgiou, “Intuitionistic fuzzy cognitive
maps for medical decision making,” IEEE Transactions on Information
Technology in Biomedicine, vol. 15, no. 1, pp. 100–107, 2011.

[12] Z. Chunying, L. Lu, O. Dong, and L. Ruitao, “Research of rough
cognitive map model,” in Advanced Research on Electronic Commerce,
Web Application, and Communication. Springer, 2011, pp. 224–229.

[13] J. P. Carvalho and J. A. B. Tome, “Rule based fuzzy cognitive maps-
expressing time in qualitative system dynamics,” in Fuzzy Systems, 2001.
The 10th IEEE International Conference on, vol. 1. IEEE, 2001, pp.
280–283.

[14] M. Hagiwara, “Extended fuzzy cognitive maps,” in Fuzzy Systems,
1992., IEEE International Conference on. IEEE, 1992, pp. 795–801.

[15] S. Yang and J. Liu, “Time-series forecasting based on high-order fuzzy
cognitive maps and wavelet transform,” IEEE Transactions on Fuzzy
Systems, vol. 26, no. 6, pp. 3391–3402, 2018.

[16] E. I. Papageorgiou and K. Poczeta, “A two-stage model for time
series prediction based on fuzzy cognitive maps and neural networks,”
Neurocomputing, vol. 232, pp. 113–121, 2017.

[17] S. Hengjie, M. Chunyan, W. Roel, and F. Catthoor, “Implementation of
fuzzy cognitive maps based on fuzzy neural networks and application in
numerical prediction of time series,” IEEE Trans. Fuzzy Systems, vol. 18,
pp. 233–250, 2010.

[18] H. Song, C. Miao, Z. Shen, W. Roel, D. Maja, and C. Francky, “Design
of fuzzy cognitive maps using neural networks for predicting chaotic
time series,” Neural Networks, vol. 23, no. 10, pp. 1264–1275, 2010.

[19] W. Pedrycz, “Why triangular membership functions?” Fuzzy sets and
Systems, vol. 64, no. 1, pp. 21–30, 1994.

[20] E. Papageorgiou, C. Stylios, and P. Groumpos, “Fuzzy cognitive map
learning based on nonlinear hebbian rule,” in Australasian Joint Con-
ference on Artificial Intelligence. Springer, 2003, pp. 256–268.

[21] E. Papageorgiou, C. D. Stylios, and P. P. Groumpos, “Active hebbian
learning algorithm to train fuzzy cognitive maps,” International journal
of approximate reasoning, vol. 37, no. 3, pp. 219–249, 2004.

[22] D. Koulouriotis, I. Diakoulakis, and D. Emiris, “Learning fuzzy cog-
nitive maps using evolution strategies: a novel schema for modeling
and simulating high-level behavior,” in Evolutionary Computation, 2001.
Proceedings of the 2001 Congress on, vol. 1. IEEE, 2001, pp. 364–371.

[23] K. E. Parsopoulos, E. I. Papageorgiou, P. Groumpos, M. N. Vrahatis
et al., “A first study of fuzzy cognitive maps learning using particle
swarm optimization,” Proc. IEEE, pp. 1440–1447, 2003.

[24] E. I. Papageorgiou and J. L. Salmeron, “A review of fuzzy cognitive
maps research during the last decade,” IEEE Transactions on Fuzzy
Systems, vol. 21, no. 1, pp. 66–79, 2013.

[25] H. J. Song, C. Y. Miao, R. Wuyts, Z. Q. Shen, M. D Hondt, and
F. Catthoor, “An extension to fuzzy cognitive maps for classification
and prediction,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 1,
pp. 116–135, 2011.

[26] X. Lai, Y. Zhou, and W. Zhang, “Software usability improvement:
modeling, training and relativity analysis,” in Information Science and
Engineering (ISISE), 2009 Second International Symposium on. IEEE,
2009, pp. 472–475.

[27] D. Ruan, F. Hardeman, and L. Mkrtchyan, “Using belief degree-
distributed fuzzy cognitive maps in nuclear safety culture assessment,” in
Fuzzy Information Processing Society (NAFIPS), 2011 Annual Meeting
of the North American. IEEE, 2011, pp. 1–6.

[28] Y. Miao, C. Miao, X. Tao, Z. Shen, and Z. Liu, “Transformation of
cognitive maps,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 1,
pp. 114–124, 2010.

[29] J. Aguilar, “A dynamic fuzzy-cognitive-map approach based on random
neural networks,” International Journal of Computational Cognition,
vol. 1, no. 4, pp. 91–107, 2003.

[30] G. Acampora, V. Loia, and A. Vitiello, “Distributing emotional services
in ambient intelligence through cognitive agents,” Service Oriented
Computing and Applications, vol. 5, no. 1, pp. 17–35, 2011.

[31] W. Stach, L. A. Kurgan, and W. Pedrycz, “Numerical and linguistic
prediction of time series with the use of fuzzy cognitive maps,” IEEE
Transactions on Fuzzy Systems, vol. 16, no. 1, pp. 61–72, 2008.

[32] W. Homenda, A. Jastrzebska, and W. Pedrycz, “Modeling time series
with fuzzy cognitive maps,” in 2014 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE). IEEE, 2014, pp. 2055–2062.

[33] W. Pedrycz, A. Jastrzebska, and W. Homenda, “Design of fuzzy cog-
nitive maps for modeling time series,” IEEE Transactions on Fuzzy
Systems, vol. 24, no. 1, pp. 120–130, 2016.
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