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ABSTRACT
Road network is the core component of urban transportation, and

it is widely useful in various traffic-related systems and applications.
Due to its important role, it is essential to develop general, effective
and robust road network representation models. Although several
efforts have been made in this direction, they cannot fully capture
the complex characteristics of road networks.

In this paper, we propose a novel Hierarchical Road Network
Representation model, named HRNR, by constructing a three-level
neural architecture, corresponding to “functional zones”, “structural
regions” and “road segments”, respectively. To associate the three
kinds of nodes, we introduce two matrices consisting of probabil-
ity distributions for modeling segment-to-region assignment or
region-to-zone assignment. Based on the two assignment matrices,
we carefully devise two reconstruction tasks, either based on net-
work structure or human moving patterns. In this way, our node
presentations are able to capture both structural and functional
characteristics. Finally, we design a three-level hierarchical update
mechanism for learning the node embeddings through the entire
network. Extensive experiment results on three real-world datasets
for four tasks have shown the effectiveness of the proposed model.
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1 INTRODUCTION
Nowadays, intelligent transportation systems are becoming in-

creasingly important in daily life by providing traffic-related ap-
plications, such as route plan [2, 6, 24, 28, 31], arrival time esti-
mation [10, 11] and next-location prediction [4, 14, 29]. A core
component of such a system is road network, which consists of a
network of interconnected road segments to accommodate vehicle
and pedestrian traffic [6, 12]. Road network generally forms the
most basic transport infrastructure within urban areas. It is widely
useful in various traffic-related systems and applications [12, 20–
22, 36, 39].

Due to its important role, it is essential to develop suitable meth-
ods to effectively characterize and model road networks, especially
in a general way. Early research mainly considers road networks as
constraints and adopt standard graph data structure for developing
their algorithms [29, 38]. More recently, deep learning has shed
light on the modeling of road network. Several recent studies start
to utilize network or graph representation learning for obtaining
node representations over road network [5, 24, 25]. In this way, the
underlying characteristics of road network can be extracted and uti-
lized, which is expected to improve the performance of downstream
applications.

However, road network is a rather complex system, and it is not
easy to design effective representation learning methods. There are
at least three major issues, which have not been studied by previous
works, to address. First, road network is not flat. It naturally orga-
nizes traffic units as “clusters”, either structural (e.g., transportation
hub) or functional (e.g., commercial area). Besides, some traffic units
are more important and undertake more significant transportation
task through the road network. While, previous studies [5, 24, 25]
usually adopt standard graph neural networks and treat nodes equal,
which cannot characterize the hierarchical structure. Second, road
network might not be “small-world”, tending to have long average

Research Track Paper  KDD '20, August 23–27, 2020, Virtual Event, USA

6

https://doi.org/10.1145/3394486.3403043
https://doi.org/10.1145/3394486.3403043


paths. For example, the length of arterial roads typically increases
with the growth of urban areas. However, in typical graph neural
network [5, 7, 19], only messages from nearby nodes are aggregated,
which cannot effectively capture long-range dependency among
nodes. Third, road network mainly reflects structural character-
istics, while other aspects of information might not be obtained
through network structure. For example, it is usually difficult to
determine the functional role (e.g., shopping mall) of a traffic unit
just based on its road connections.

To address these issues, the focus of this paper is to design a
general, effective and robust road network representation method
for various downstream applications. Our key idea is to develop hi-
erarchical graph neural network for learning such representations.
By taking a hierarchical organization, we can gradually form more
abstractive clusters by aggregating fine-grained units, encoding
useful characteristics at different levels. Especially, we expect that
the hierarchical organization can correspond to actual aggregation
of traffic units in road networks, such as the aforementioned struc-
tural or functional clusters. For this purpose, we incorporate two
kinds of virtual nodes into the hierarchy, namely structural region
and functional zone. Structural regions are mainly used to charac-
terize spatially connected road segments, serving as some traffic
role, e.g., overpass and crossing. Furthermore, functional zones are
formed on top of structural regions, providing some kind of func-
tionality for traffic users, e.g., shopping area.With such a three-level
organization, we can alleviate the issue related to long-range node
dependency, since we can first perform message sharing at a high
level, and then propagate the information to low-level nodes. For
the third issue, we consider incorporating real trajectory data of
users for complementing the structure information. As shown in
previous studies [23, 36, 40], users’ trajectory data can be used to
discover the underlying functional or lifestyle-related patterns.

To this end, in this paper, we propose a novel Hierarchical Road
Network Representation model, named HRNR. We construct a three-
level neural architecture by following the hierarchy “functional
zones” → “structural regions” → “road segments”. We first apply
spectral clustering to construct structural regions by aggregating
spatially connected road segments. Furthermore, we form func-
tional zones by composing functionally related structural regions.
To associate the three kinds of nodes, we introduce two assignment
matrices, modeling segment-to-region or region-to-zone member-
ship. The two matrices characterize the probability distributions of
road segments in a structural region and probability distributions
of structural regions in a functional zone, respectively. Based on the
two assignment matrices, we carefully devise two reconstruction
tasks, either based on network structure or human moving patterns.
In this way, we can drive the learned node embeddings to capture
both structural and functional characteristics. Finally, we design a
three-level hierarchical update mechanism for learning the node
embeddings through the entire network.

To our knowledge, it is the first time that road network represen-
tations have been learned with hierarchical graph neural networks,
capturing both structural and functional characteristics. Our model
is able to naturally model long-range dependencies between distant
nodes on the road network, and utilize trajectory data to extract
the functional characteristics. Our model provide a general repre-
sentation learning method for various downstream traffic-related

applications. We construct extensive experiments on four typical
application tasks using three real-world datasets. Experimental
results demonstrate the effectiveness of the proposed model.

2 RELATEDWORK
Our work is related to the following research directions.

Modeling Road Networks. Since road network is the basic com-
ponent of the transportation systems, various applications have
incorporated it for developing the algorithms, such as next-location
prediction [4, 14, 29], route plan [2, 6, 24, 28], arrival time esti-
mation [10, 11] and destination prediction [8, 32, 33]. In order to
utilize road network information, early studies mainly focus on
designing heuristic constraints [6, 42] or constructing graph-based
algorithms on the road network [30, 37, 38]. Later on, statistical
models such as Hidden Markov Models have been used to model
the location transitions over the road networks [15, 17]. With the
rapid growth of deep learning techniques, several studies try to
learn effective node representations from road network, including
RNN-based models [29], graph convolution networks [5], graph
attention network [24] and other types of networks [25]. Although
these studies have improved the application performance with the
enhanced data representations, they lack a comprehensive consid-
eration of the proposed issues in Section 1. Specially, these methods
usually focus on some specific tasks, which is not flexible to adapt
to other tasks.

Graph Representation Learning. Recent years have witnessed
the success of deep learning in modeling graph data. In specific,
Graph Neural Networks (GNN) have been widely used for model-
ing complex graph data for learning effective node characteristics.
Two classic models are graph convolution networks (GCN) [7]
and graph attention network (GAT) [19]. The basic procedure is to
perform message passing and aggregate the message from neigh-
borhoods. Based on such a core architecture, various variants have
been proposed to improve the original network [24]. Especially,
the efforts on modeling hierarchical or structural characteristics
are quite related to our work, including differentiable graph pool-
ing [35], geometric aggregation scheme [18], and heterogeneous
or meta-path-driven attention aggregation [27, 41]. However, all
these studies are not tailored to road networks. It is not suitable to
directly apply these studies to model road networks.

Our work is based on the extensive studies on traffic-based appli-
cation tasks [10, 11, 29]. Instead of focusing on some specific task,
we design a general, capable and robust road network representa-
tion learning model, so that it can provide effective representations
for various downstream applications. To our knowledge, it is the
first time that a comprehensive representation model has been
proposed for road networks based on hierarchical graph neural
networks.

3 PRELIMINARIES
In this section, we introduce the used notations throughout the

paper and formally define our task.

Definition 1. Road Segment. A road segment s ∈ S is a uniform
section of road that is identified separately in transportation [26], and
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it is usually associated with some side features (e.g., longitude and
latitude, segment type, and length).

Definition 2. Road Network. A road network is characterized
as a directed graph G = ⟨S,AS ⟩, where S is a vertex set of kS road
segments and AS ∈ R

kS×kS is the adjacency matrix. Each entry
AS [si , sj ] is a binary value indicating whether there exists a directed
link from road segment si to road segment sj .

Here, we follow the widely adopted setting [5, 11, 24] by consid-
ering road segments as vertices. It will be equally feasible to define
locations (e.g., POI or location cell) as vertices. For bidirectional
road segments, we simply add two directed links by inverting their
start and end vertices. As motivated in Section 1, our aim is to
incorporate hierarchical structure to better organize vertices on
road network. We would like to capture and learn a three-level
hierarchy, namely functional zones → structural regions → road
segment. Next, we define the two new concepts.

Definition 3. Structural Region. A structural region r ∈ R is
composed of a set of spatially connected road segments [40], serving
as some traffic role, e.g., overpass and crossing.

Definition 4. Functional Zone. A functional zone z ∈ Z con-
sists of multiple structural regions, providing some kind of traffic
functionality [36, 40], e.g., shopping areas and transportation hub.

We assume that there are kR structural regions and kZ func-
tional zones, denoted by region set R and zone setZ, respectively.
Throughout the paper, we use the lower-case alphabet s , r and z
to denote a road segment, structural region and a functional zone,
respectively, and their upper-cases S , R and Z indicate the index
types for aggregated data. For convenience, we might call segment,
region and zone for short in unambiguous cases. We further utilize
such a hierarchical structure to organize road network.

Definition 5. Hierarchical RoadNetwork. A hierarchical road
network is formally described asH = ⟨V, E⟩, whereV = S ∪ R ∪
Z consisting of road segments, structural regions and functional
zones, and E = {AS ,AR ,AZ ,A

SR ,ARZ }, where the five matrices
AS ∈ R

kS×kS , AR ∈ R
kR×kR , AZ ∈ R

kZ×kZ , ASR ∈ RkS×kR and
ARZ ∈ RkR×kZ denote (weighted or binary) adjacency matrices for
capturing the links between (1) two segment nodes, (2) two regions
nodes, (3) two zone nodes, (4) a segment node and a region node, and
(5) a region node and zone node, respectively.

Different from road segments, structural regions and functional
zones are virtual nodes. Therefore, AR , AZ , ASR and ARZ are un-
known parameters to learn. We also call ASR and ARZ segment-to-
region and region-to-zone assignment matrices, respectively, which
are used to associate segments with regions or associate regions
with zones. We present an illustrative example for the hierarchical
road network in Fig. 1. Now, we are ready to define our task.

Definition 6. Representation Learning on Road Networks.
Given a road network G, we aim to construct the corresponding hi-
erarchical road network H and meanwhile derive a d-dimensional
representation nm ∈ Rd for each vertex onH , where d ≪ |V| and
m is a placeholder for a vertex fromV .

For the three kinds of nodes, we can aggregate their embeddings
in a matrix form, namely NS ∈ R

kS×d , and NR ∈ R
kR×d and NZ ∈
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Figure 1: The overall architecture of the HRNR model.

RkZ×d , which denote the segment, region and zone embedding
matrices, respectively. Our task becomes how to form the virtual
region and zone nodes and learn the embedding matrices (NS , NR ,
NZ ) and the adjacency matrices (AR , AZ , ASR , ARZ ).

4 MODEL
In this section, we present the proposed Hierarchical Road Net-

work Representation (HRNR) model. Our core idea is to extend the
graph neural network for road network representation learning by
characterizing a three-level hierarchy. The overall architecture for
the proposed model is presented in Fig. 1. We start with contex-
tual embedding for location segments, then present how to model
structural regions and functional zones, and finally discuss how to
update the hierarchical model and train the entire network.

4.1 Contextual Embedding for Road Segments
As we introduced in Section 3, a road segment is associated with

a set of useful context features. Here, we embed these side informa-
tion and learn the contextual embeddings for road segments.

Different from the node representations using link information
(i.e., nli ), we use vli ∈ R

d to denote the contextual embedding
using the side features from itself. Given a road segment si , we
consider five kinds of features for contextual embedding, namely
road segment ID, road type (RT), lane number (LN), segment length
(SL), and longitude and latitude (LL). For continuous features, we
divide the entire value range into several consecutive bins, and uti-
lize the bin number for feature coding. In this way, we set a unique
embedding vector for each discrete value (or bin number), and then
concatenate the associated vectors as the contextual embedding:

vsi = vID ∥vRT ∥vLN ∥vSL ∥vLL , (1)
where “∥” is the vector concatenation operation and v(·) denotes
the embedding vector for some kind of context feature.

Such a simple approach is flexible to include more side features.
We adopt it for initializing the graph node embeddings:

N (0)S ← V , (2)
where V is the aggregate matrix for the contextual embeddings of
all the road segments.

4.2 Modeling Structural Regions
In our model, structural regions are mainly used to characterize

the local connected patterns for some traffic purpose. We assume
a road segment belongs to one single region, and different road

Research Track Paper  KDD '20, August 23–27, 2020, Virtual Event, USA

8



segments correspond to different importance levels in a region.
Next, we introduce how to model structural regions.

4.2.1 Constructing Structural Regions by Spectral Clustering. We
adopt the classic spectral clustering algorithm [16] for deriving
structural regions. It takes a graph cut view by splitting weak links,
so that the yielded clusters achieve a more closely connected status.
Such a clustering algorithm is particularly suitable for our task,
since we aim to look for closely connected road segments. Formally,
given the adjacency matrix AS for road segments, we first derive
its graph laplacian LS by subtracting the diagonal matrix DS , so
we have LS = DS − AS . By computing the first d ′ eigenvectors
u1, ...,uk of laplacian matrix LS , we obtain the matrixU ∈ RkS×d

′

consisting of the d ′ eigenvectors. By running standard K-means
algorithm over the matrixU , we can obtain a hard mapping from
locations to clusters (i.e., structural regions). We incorporate an
membership matrixM1 ∈ RkS×kR , where each entry is defined as

M1[l , r ] =

{
1 l ∈ r ,

0 other .
(3)

4.2.2 Learning Region Representations with Assignment Matrix.
Since different road segments in a cluster are not equally impor-
tant, we adopt the Graph Attention Network (GAT) [19] to model
segment importance scores as follows:

W1 = GAT (V ,AS ) , (4)

where GAT(·, ·) is a standard implementation of [19] detailed in
supplementary documents, V is the contextual embedding ma-
trix (Eq. 1), AS is the adjacency matrix for road segments, and
W1 ∈ RkS×kR is the learned output through GAT. Here, we set the
column number ofW1 to kR (i.e., the number of structural regions),
and associate each latent dimension with a unique structural region.
A column vector inW1 measures the importance levels of road seg-
ments w.r.t. some region. Since we have previously obtained a hard
location-region mapping matrixM1 (Eq. 3), we further multiply the
two matrices and derive the soft assignment of road segments in a
structural region as:

ASR = softmax (M1 ⊙W1) , (5)

where “⊙” denotes the matrix-based element-wise product, and
softmax(·) is the standard softmax function for column normaliza-
tion. Each entryASR [s, r ] indeed models the conditional probability
of a road segment s in a structural region r :

ASR [s, r ] = Pr(s |r ). (6)

We further utilize ASR to associate region representations with
segment representations:

NR = ASR⊤NS , (7)

where NS ∈ R
kS×d is the representation matrix of road segments,

and NR ∈ R
kR×d is the representation matrix of structural regions.

It can be seen that nr =
∑
s ∈r Pr(s |r )ns . We can further obtain a

weighted adjacency matrix AR ∈ R
kR×kR for region nodes:

AR = ASR⊤ ·AS ·A
SR . (8)

Such a formula can be explained as:

AR [ri , r j ] =
∑

s,s ′∈S

Pr(s |ri )Pr(s ′ |r j )AS [s, s
′]. (9)

4.2.3 Learning the Assignment Matrix by Network Reconstruction.
The assignment matrix ASR plays the key role in associating seg-
ment representations NS with region representations NR . Such a
way is similar to hierarchical pooling technique with assignment
matrix in DP-GCN [35]. However, it is difficult to directly learnASR

without a suitable supervision signal for our task, since road net-
work has its own unique features. Above, we have adopted spectral
clustering to pre-construct region nodes. Here, we further present
an enhanced learning method based on network reconstruction.
Our core idea is to utilize region representations to fit segment rep-
resentations based on assignment matrix, and reconstruct the road
network with the approximated segment representations. Formally,
we obtain the fitted segment representations NS as follows:

N̂S = ASRNR . (10)

We can rewrite the above equation in a vector form:ns = Pr(s |rs )nr ,
where rs is the assigned region for segment s . Furthermore, N̂S is
utilized to reconstruct the original adjacency matrix AS :

ÂS = sigmoid(N̂S N̂
⊤
S ), (11)

where sigmoid function applies to each matrix element for trans-
forming the value into the interval (0, 1). Furthermore, the cross
entropy function is employed to compute the reconstruction loss:

Loss1 =
∑

si ,sj ∈S

−AS [si , sj ] log(ÂS [si , sj ]) (12)

−(1 −AS [si , sj ]) log(1 − ÂS [si , sj ]).

A major merit with such network reconstruction is that it forces
both ASR and NR to learn effective characteristics from original
road network structure and enhances the association between re-
gions and segments.

4.3 Modeling Functional Zones
In this part, we study how to model functional zones. A func-

tional zone is constructed on top of functionally related structural
regions. It aims to capture important functional characteristics,
even for disconnected or distant regions.

4.3.1 Learning Zone Representations with Assignment Matrix. We
adopt a similar strategy in Section 4.2.2 (Eq. 7) to learn function zone
representations using a linear combination of region representa-
tions. Given the region-to-zone assignment matrix ARZ ∈ RkR×kZ ,
each entry ARZ [r , z] denotes the conditional probability of region
r in a zone z. By aligning a latent dimension with a zone, we utilize
the GAT network to derive ARZ :

ARZ = softmax(M2), (13)
M2 = GAT (NR ,AR ) , (14)

whereM2 ∈ RkR×kZ represents the region-to-zone mapping and
we perform the softmax function by columns to derive the region-
to-zone probability matrixARZ . In this way, we can set zone repre-
sentations as the linear combination of region representations:

NZ = ARZ⊤NR . (15)
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With NZ , we further derive the adjacency matrix for zone nodes:

AZ = RELU
(
NZN

⊤
Z − σ

)
, (16)

where AZ is the computed weighted adjacency matrix for zone
nodes and σ is a scaling parameter set to 0.5.

4.3.2 Capturing Functional Characteristics with Trajectory Data.
Road network itself mainly reflects the structural characteristics,
containing very limited functional information. Therefore, we con-
sider using real trajectory data for capturing functional characteris-
tics. Previous studies on trajectory data mining [36, 40] have shown
that trajectory behaviors can correspond to important functional
patterns of underlying road network units. We collect trajectory
sequence data of real users, which is a time-ordered road segment
sequence visited by a user. In order to utilize the trajectory data,
we construct a road segment transition matrix T (λ) ∈ RkS×kS , in
which entryT (λ)[si , sj ] indicates the frequency that si has reached
sj with a step length λ in all trajectory sequences. With T (λ), we
can obtain a updated connectivity matrixC ∈ RkS×kS :

C = AS +

λ∑
j=1

T (j), (17)

whereC considers the connectivity in terms of both road network
structure and human moving behaviors, and λ is a tunable param-
eter set to 5 in this work. Furthermore, we perform row-based
normalization onC . Then, we follow the similar way in Eq. 10 to
fit segment representations based on zone representations:

N̂S = ASRARZNZ , (18)

where ASR and ARZ are the segment-to-region or region-to-zone
assignment matrices, respectively. This can be explained in a vec-
tor form: ns = Pr(s |rs )

∑
z∈Z Pr(rs |z)nz , which is a two-step fit

process. Similar to Eq. 11, we reconstruct matrixC as:

Ĉ = N̂S N̂
⊤
S . (19)

Instead of using sigmoid function on Ĉ for deriving probabilities,
we keep the original reachable degree from trajectory data. We use
Mean Square Error (MSE) to measure the difference between the
real and reconstructed matrices:

Loss2 = ∥C − Ĉ∥
2, (20)

where Ĉ is the estimated connectivity matrix in Eq. 19.

4.4 Hierarchical Update Mechanism
Above, we have discussed how to learn the two assignment

matrices that associate regions with zones or associate locations
with regions. Next, we assume the twomatrices are fixed and discuss
how to update the node representations by designing a hierarchical
update mechanism by levels.

4.4.1 Zone-level Update. We first perform the zone-level update.
At this level, we update zone representations and prepare them
for message passing to the next level. We adopt a standard Graph
Convolutional Network (GCN) [7] to update the zone embeddings:

N (t+1)Z = GCN
(
N (t )Z ,AZ

)
, (21)

where AZ is the computed weighted adjacency matrix for zone
nodes in Eq. 16. Since the AZ is not a binary matrix, we do not
adopt GAT here, and GCN’s details can be found in supplementary
documents. Then, it sends the zone embeddings to the next level
for updating region embeddings:

ÑR
(t )

= N (t )R + д
ZR ⊙

(
ARZN (t+1)Z

)
, (22)

дZR = sigmoid
((
N (t )R ∥(A

RZN (t+1)Z )

)
·w1

)
, (23)

where дZR is a gate vector controlling the information passing
from zones to regions, andw1 is a parameter vector to learn.

4.4.2 Region-level Update. At the region level, it first updates its
own embedding representations by adopting standard GCN:

N (t+1)R = GCN
(
ÑR
(t )
,AR

)
, (24)

where AR is the weighted adjacency matrix in Eq. 8. Then, we
forward the region embeddings to the next level for updating the
segment representations:

Ñ (t )S = N (t )S + д
RS ⊙

(
ASRN (t+1)R

)
, (25)

дRS = sigmoid
((
N (t )S ∥(A

SRN (t+1)R )

)
·w2

)
, (26)

whereдRS is a gate vector controlling the information passing from
regions to segments, andw2 is a parameter vector to learn.

4.4.3 Segment-level Update. Finally, we employ a Graph Attention
Network [19] (GAT) to model the relation between segment nodes
as follows

N (t+1)S = GAT
(
Ñ (t )S ,AS

)
, (27)

where AS is the binary adjacency matrix for the segment nodes.

4.5 Learning and Discussion
In our model, various kinds of node embeddings (NS , NR , NZ ),

assignment matrices (ASR , ARZ ) and involved component parame-
ters are the model parameters. Note that each GAT or GCN compo-
nents have corresponded to a unique parameter set.

At each iteration, we first learn the assignment matrices ASR

and ARZ . For this purpose, we optimize the loss in Loss1 (Eq. 12)
for learning ASR , and then jointly optimize Loss1 (Eq. 12) and
Loss2 (Eq. 20) for learning ARZ . Then, the assignment matrices
ASR and ARZ are provided to the hierarchical update algorithm.
Finally, we apply the hierarchical update mechanism in Section 4.4
for learning node embeddings. We provide detailed description for
the algorithm flow, time complexity and training method in the
supplementary materials.

Once our model has been learned, we can apply the node em-
beddings to various downstream applications. Interestingly, it is
straightforward to add new task-specific loss according to some
downstream application. In this way, we can re-tune the parameters
in order to yield the best performance. Compared with previous
studies on graph representation learning [7, 18, 19] or road network
representation [5, 25], we design a three-level hierarchical archi-
tecture for learning effective representations from three kinds of
nodes, namely segments, regions and zones. Our model can learn
both structural and functional characteristics by utilizing both road
network structure and human moving trajectory data.
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Table 1: Statistics of the three datasets after preprocessing.

Statistics Beijing Chengdu Xi’an
#tpyes 17 13 12

#trajectories 302,654 224,184 493,254
#records 16,040,662 9,632,481 6,672,027
#edges 47,082 8,224 7,341

#road segments 15,500 3,157 2,910
#label 708 303 291

graph diameter 131 71 47
average hop number 48 35 28

5 EXPERIMENTS
In this section, we construct experiments to demonstrate the

effectiveness of our model.

5.1 Experimental Setup
5.1.1 Construction of the Datasets. To measure the performance of
our proposed model, we use three real-world road network datasets
with corresponding trajectory data. For the three datasets, we col-
lect corresponding road network information from open street
map 1. The Beijing trajectory data is sampled every minute, while
the Chengdu dataset and Xi’an dataset is sampled every 2-4 seconds.
The Xi’an and Chengdu dataset are originally released in GAIA
Open Dataset 2. We further perform map matching [34] by aligning
GPS points with locations in the road network. In this way, we
transform the trajectory data into road segment sequences. With
the boundary indicators provided by the three datasets, we split the
location sequence into multiple trajectories. Table 1 lists statistics
of the three datasets after preprocessing. We can see that the three
road networks have a long graph diameter. Especially, the average
hop number between segments is also significantly large.

5.1.2 Methods to Compare. We consider the following methods
for comparison:

•MDW [3]: metapath2vec extends DeepWalk by constructing
meta-path-guided paths. In our dataset, each road segment is asso-
ciated with a road type. We manually create type-based meta-paths
to guide the path generation in DeepWalk.

•IRN2Vec [25]: IRN2Vec is special road network model devel-
oped using shallow node representations, and which explores geo-
locality andmoving behaviors of road users. It defines and optimizes
three parts of loss, namely location, type and tag.

•GAT [19]: It is a standard implementation of graph attention
network for road network. Here, we adopt the same contextual
embeddings (i.e.,vs ) for road segments. Another similar baseline is
GCN [7]. We omit it since the two methods have similar results.

•Geo-GCN [18]: Geo-GCN extends GCN by using a new geomet-
rical aggregation scheme to solve the long dependency problem.
We adapt it to road networks by aggregating the spatially closely
road segments as neighbors.

•DP-GCN [35]: DP-GCN is a differentiable graph pooling model
that can generate hierarchical representations of graphs. It adopts

1https://www.openstreetmap.org/
2https://outreach.didichuxing.com/appEn-vue/dataList

a hierarchical pooling way to construct the hierarchy. In our ex-
periments, it is set to contain three pooling levels. Different from
our method, it does not incorporate additional loss to supervise the
learning of assignment matrices.

5.1.3 Application Tasks. We consider using four traffic-related ap-
plications for testing the effectiveness of the above comparison
methods. For each application task, we construct a simple yet stan-
dard neural network architecture (e.g., GRU or MLP) as the basic
framework. Then, we incorporate the learned road network repre-
sentations (mainly road segments) as embeddings to enhance the
basic framework. Note that we do not construct very complicated
neural architectures or adopt more data signals. Our focus is to
learn generally useful road network representations and reduce the
influence of other factors. Except MDW and IRN2Vec, the other
comparison methods can be jointly optimized with the application
tasks. The four application tasks are described as follows:

Next-Location Prediction. Next-location prediction aims to pre-
dict the next location to visit for a user [29]. A classic solution is to
construct a GRU-based model, taking as input the historical trajec-
tory and outputting a ranked list of candidate location(s). Here, we
consider a road segment as a location. As a major motivation, we
aim to capture long-range dependencies among locations. There-
fore, we adopt a large down-sampling interval of ten minutes on
the original trajectory data. A good method should rank the actual
location at a high position in the candidate list.

Label Classification. Label classification is a standard task to test
the performance of representation learningmodels [25]. Our dataset
(Table 1) contains the labels for the road segments, such as birdges
and tunnel. We develop a predictor based on the logistic regres-
sion model, taking as input the road segment representations and
generating a label distribution. We adopt the label with the largest
predictive probability as the final prediction.

Destination Prediction. Destination prediction [33] aims to pre-
dict the destination based on a partial trajectory. This task is use-
ful to map navigation, POI recommendation, etc. Similar to next-
location prediction, we construct a GRU based predictor and take as
input the learned representations. While it is trained by optimizing
the model using the destination as the ground-truth. We take the
last location of a trajectory sequence as the destination.

Route Planning. Route plan aims to generate the actual route that
connects source location with destination location [28]. It is more
difficult than next-location or destination prediction. We construct
a hierarchical predictor, which first encodes the seen trajectory
with a GRU component and then predicts the next location with
a MLP component. Given a trajectory sequence, the first and last
locations are considered as source and destination, respectively,
while the rest locations are hidden for prediction.

5.1.4 Evaluation Metrics. We adopt different evaluation metrics for
the above four tasks. For next-location and destination prediction,
we treat them as a ranking task and adopt top-1 and top-5 prediction
accuracies as metrics, denoted by ACC@1 and ACC@5. For label
classification, we adopt F1-score and AUC: F1-score considers both
precision and recall of binary classification, and AUC computes
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Table 2: Performance comparison for four tasks on three datasets. All the results are better with larger values except the EDT
measure. Here, “BJ”=Beijing, “CD”=chengdu, and “XA”=Xi’an.

Tasks Next Location Prediction Tasks Label Classification
Set MDW IRN2vec GAT Geo-GCN DP-GCN HRNR Metric MDW IRN2vec GAT Geo-GCN DP-GCN HRNR

BJ ACC@1 0.357 0.362 0.380 0.387 0.388 0.413 F1 0.728 0.732 0.770 0.775 0.772 0.829
ACC@5 0.482 0.491 0.514 0.521 0.522 0.551 AUC 0.810 0.804 0.841 0.845 0.844 0.888

CD ACC@1 0.370 0.368 0.385 0.396 0.396 0.422 F1 0.689 0.687 0.701 0.713 0.703 0.748
ACC@5 0.503 0.496 0.534 0.540 0.541 0.567 AUC 0.692 0.690 0.722 0.739 0.733 0.773

XA ACC@1 0.315 0.317 0.333 0.342 0.340 0.372 F1 0.619 0.622 0.636 0.643 0.637 0.685
ACC@5 0.449 0.452 0.463 0.471 0.469 0.503 AUC 0.624 0.631 0.657 0.670 0.662 0.716
Tasks Destination Predition Tasks Route Planning

Set MDW IRN2vec GAT Geo-GCN DP-GCN HRNR Metric MDW IRN2vec GAT Geo-GCN DP-GCN HRNR

BJ ACC@1 0.215 0.218 0.233 0.240 0.241 0.273 F1 0.269 0.274 0.298 0.300 0.305 0.329
ACC@5 0.313 0.316 0.347 0.350 0.357 0.396 EDT 8.742 8.851 8.235 8.151 8.132 7.851

CD ACC@1 0.239 0.235 0.256 0.267 0.263 0.288 F1 0.310 0.312 0.330 0.338 0.341 0.357
ACC@5 0.343 0.346 0.375 0.394 0.389 0.413 EDT 8.142 8.013 7.869 7.731 7.664 7.361

XA ACC@1 0.201 0.202 0.210 0.222 0.225 0.251 F1 0.259 0.254 0.271 0.278 0.282 0.301
ACC@5 0.305 0.304 0.333 0.348 0.351 0.370 EDT 9.268 9.163 8.873 8.653 8.532 8.138

the area under the ROC curve. For route planning, given an actual
route p, we predict a possible route p′ with the same source and
destination. Following [1, 13], we use F1-score as evaluation metrics:
Precision =

|p∩p′ |
|p′ | , Recall =

|p∩p′ |
|p | and F1 = 2∗P∗R

P+R . F1-socre
measures the degree of overlapping locations w.r.t. the actual and
predicted routes respectively. Besides, we use the Edit distance
as a second measure [9], which is the minimum number of edit
operations required to transform the predicted route into the actual
route. For the four tasks, we divide all data into three parts with
a ratio of 7 : 1 : 2, namely training set, validation set and test set.
We train the model with training set, tune the parameters with
validation set, and then report the performance on the test.

5.2 Results and Analysis
Table 2 presents the results of all the comparison methods.
First, network embedding based methods MDW and IRN2Vec

performworst among all the baselines. A possible reason is that they
are not flexible to characterize rich context information. Besides,
the two models cannot be jointly optimized with downstream ap-
plications. Comparing MDW and IRN2Vec, IRN2Vec gives a better
performance. MDW only simply utilizes the type information via
metapaths, while IRN2Vec incorporates geographical constraints
into the random walk process and adopts a multi-task learning
mechanism to capture more correlations among road segments.

Second, the three graph neural network variants (i.e., GAT, Geo-
GCN and DP-GCN) perform better than the MDW and IRN2Vec. A
major merit of graph neural networks is that they are able to model
network attribute information and characterize the node relation
with deep neural networks. However, it is not suitable to capture
either hierarchical characteristics or long-range dependency in road
network. While, Geo-GCN and DP-GCN have made extensions to
improve these issues, yielding a better performance. Geo-GCN
mainly characterizes spatial information, and DP-GCN adopts a
hierarchical pooling mechanism.

Finally, the proposed model HRNR is consistently better than all
the baselines with a large margin in all cases. We carefully design
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Figure 2: Ablation study of ourmodel on Beijing taxi dataset
for four tasks.
a three-level hierarchy for organizing road network information.
We devise effective reconstruction loss to associate components at
different levels, and adopt a hierarchical update mechanism. Our
model is able to explicitly learn both structural and functional char-
acteristics using network structure and trajectory data. Bymodeling
such a hierarchy in message passing, our model is more capable
of learning long-range dependency between road segments. Com-
paredwithDP-GCN, our hierarchical structure ismore interpretable
and capture real-world “clusters”.

5.3 Ablation Study
In our model, we have incorporated two additional kinds of

nodes, namely structural regions and functional zones, respectively.
Here, we would like to check how each part actually contributes
to the final performance. We construct the ablation study experi-
ment on the Beijing taxi dataset. The findings on the other datasets
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Figure 3: Parameter sensitivity on label classification on Bei-
jing taxi dataset using F1 measure.

are similar and omitted for space limit. We report the result of F1
scores for label classification and route plan, and report the result
of ACC@1 for next-location and destination prediction. We pre-
pare five variants of the proposed HRNR model for comparisons,
including (1) NB without either structural regions or functional
zones, (2) NZ without functional zones (the reconstruction loss in
Eq. 20 is also removed), (3)NR without structural regions and , (4)
NT without using trajectory data (containing structural regions
and functional zones), and (5) HRNR that is the complete model.

Figure 2 presents all the comparison results of the four variants.
As we can see, the performance rank can be given as follows: NB <
NR < NZ < NT < HRNR. These results indicate that the two parts
are essential to improve the performance of our model. Besides, it
seems that structural regions are more useful than functional zones.
A possible reason is that it is a lower level and forms basic clusters
of road segments for modeling functional zones. The basic variant
NB removes both levels and performs worst among all the variants,
which degenerates to a similar architecture of GAT. A final note is
that the difference between NZ and NT is very small. This indicates
that it might be less effective to simply incorporate more virtual
cluster nodes. Instead, a suitable supervision signal (recall that we
have designed the reconstruction loss in Eq. 20 using trajectory
data) is more important to model road networks.

5.4 Parameter Sensitivity
In addition to the model components, there are several param-

eters to tune in our model. Here we incorporate the best baseline
DP-GCN for comparison. We report the tuning results on label
classification on the Beijing dataset.

We tune the number of structural regions and functional zones,
respectively. We vary the number of regions kR in the set {150, 200,
250, 300, 350}, and the number of zoneskZ in the set {10, 20, 30, 40, 50}.
In Fig. 3(a) and Fig. 3(b), we can see that using 300 structural re-
gions and using 30 functional zones are the optimal settings. Since
functional zones are composed of structural regions, it is reasonable
to have more regions than zones.

Overall, our model is relatively stable when varying the four
parameters, consistently better than DP-GCN and GAT.

5.5 Qualitative Analysis
Previously, we have shown the effectiveness of our model on

four tasks. In this part, we qualitatively analyze how the learned
representations are useful in traffic-related applications.

Overlapping

(e) Road Segment Similarity

Similar Road Segments by HRNR
Similar Road Segments by GAT
Target Segments

(a) Structural  Region

Area of Fig.(b)

(c) Top-3 Functional Zone

Area of Fig.(d)Area

(b) Region Details

A Block-shaped Region

A Transportation Region

(d) Zone Details

Overlapping

Figure 4: Visualization of the learned representations for
road segments, structural regions and functional zones. The
colored lines denote road segments in the road network.
Road segments with the same color correspond to one struc-
tural region or one functional zone.

In our model, we incorporate two kinds of virtual nodes, namely
structural regions and functional zones. Now, we examine whether
they actually capture structural or functional characteristics in real
world. In Fig. 4(a), we present all the identified structural regions in
the Beijing dataset. Each color corresponds to a unique structural
region. By zooming into a selected part of the entire road network,
we present its enlarged view in Fig. 4(b). There are eight regions
in total, corresponding to different colors. Interestingly, not all
the regions are in a block shape. One can see that the region in
dark violet indeed undertakes transportation function that connects
other block-shaped regions.

Similarly, we present three sample functional zones (marked
in different colors) and the magnified view of a functional zone
in Fig. 4(c) and Fig. 4(d), respectively. The two ring-shaped zones
correspond to the Beijing 2nd and 3rd ring roads, while the third
functional zone in green is educational zone. By zooming into it, we
can found that it contains many schools (marked with the house
icon). These examples have shown that our generated regions and
zones are indeed meaningful in real world, capturing structural or
functional characteristics for the city.

Finally, we examine the representations for road segments. Fig-
ure 4(e) presents an example with two similar road segments (with
the same type and labels) on a same main road, denoted by si and sj .
We select GAT [19] as a reference method. For both GAT and our
model, we can compute the attention coefficient between any two
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road segments. Given si and sj , we only highlight the neighbors
with a large attention value (i.e., lager than 0.8). We use different
colors to discriminate the neighbors identified by the two methods.
It is clear to see that GAT mainly focuses on very close neighbors
in spatial position, while our model indeed captures influencing
road segments in a long range. For si and sj , the identified common
neighbors mainly fall on the main road itself, which drive si and sj
to have similar representations in our model.

6 CONCLUSIONS
In this paper, we studied how to effectively represent road net-

works for general-purpose use in intelligent transportation systems.
We proposed a hierarchical graph neural network by characteriz-
ing the hierarchy “functional zones”→ “structural regions”→ “road
segments”. We carefully devised two useful reconstruction loss func-
tions to capture both structural and functional characteristics. A
hierarchical update mechanism was also given tailored to our net-
work architecture. Extensive experiment results on three real-world
datasets for four tasks demonstrated the effectiveness and robust-
ness of the proposed model.

Typically, road network is likely to change with time. As future
work, we will consider extending our model to learn time-varying
representations. Currently, we utilize trajectory data as supervi-
sion signal for network reconstruction. We will investigate how to
explicitly incorporate trajectory data in the representation model.
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