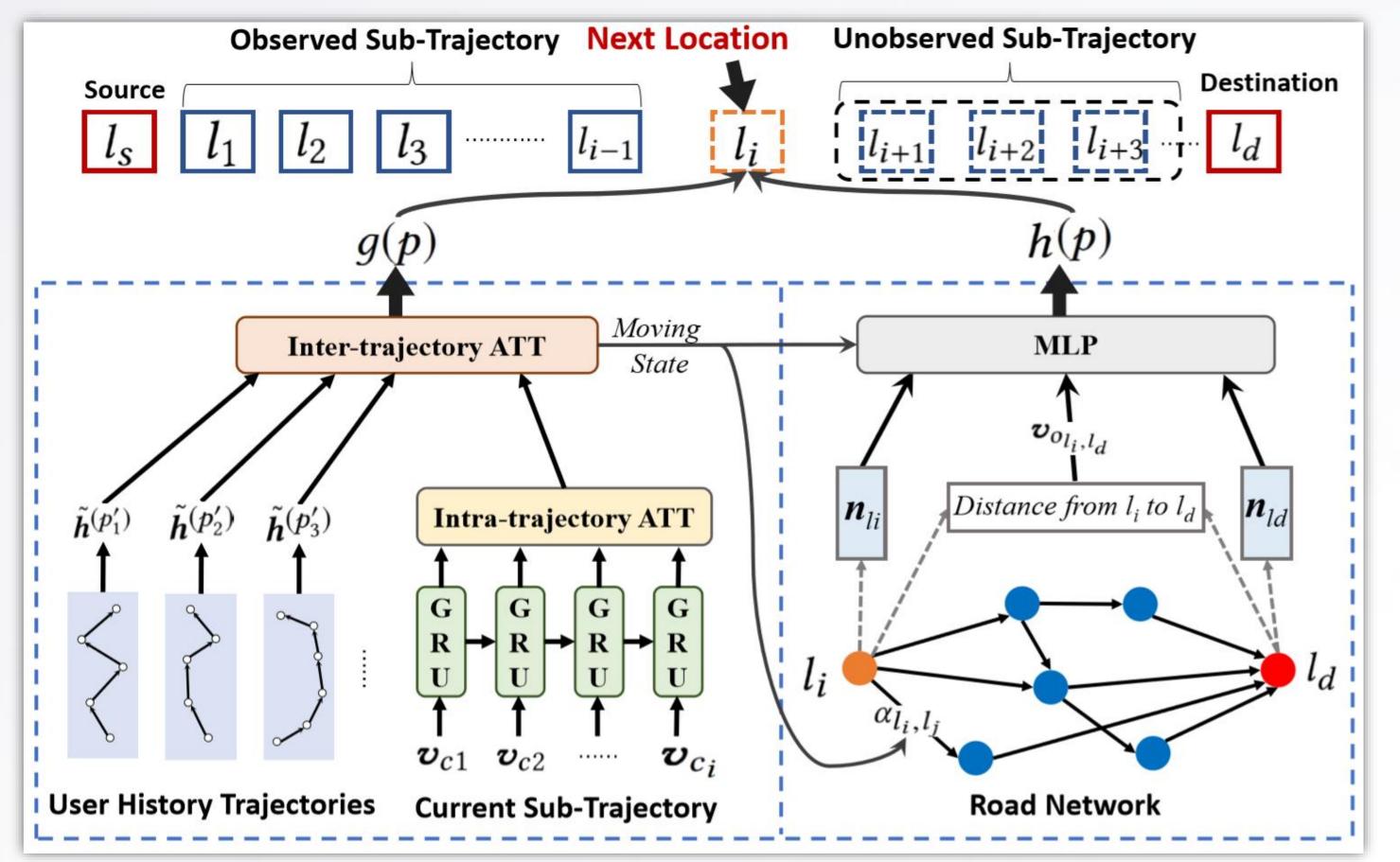
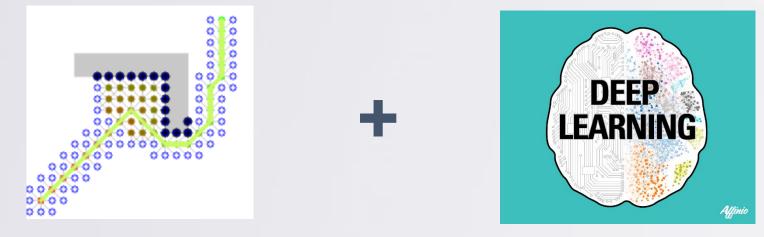
Empowering A * Search Algorithms with Neural Networks for Personalized Route Recommendation

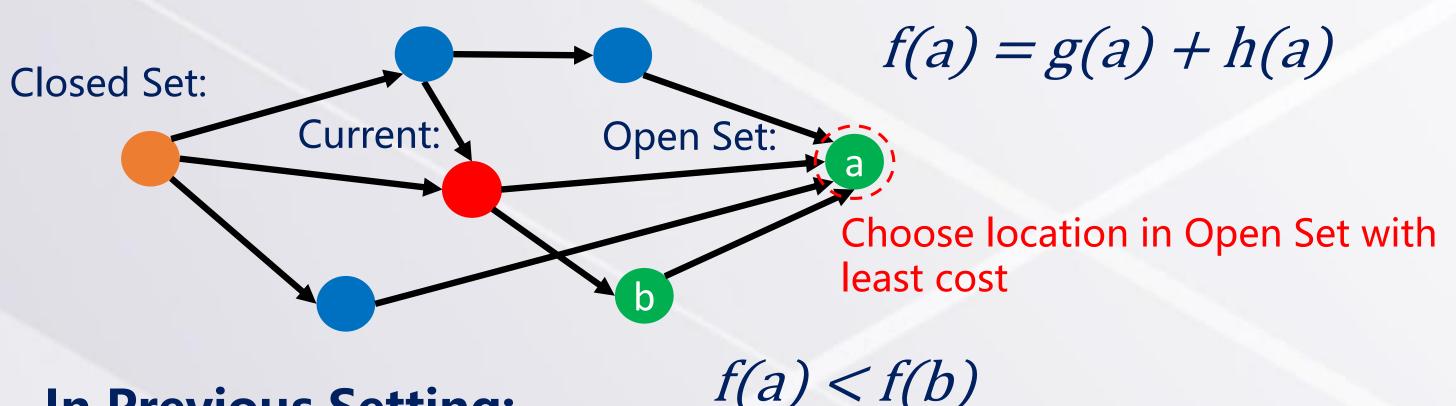

Jingyuan Wang, Ning Wu, Xin Zhao, Fanzhang Peng, Xin Lin Beihang University, Beijing, China

Motivation


- Heuristic Search: a basic recommendation method
- Design cost function manually, and search an optimal path according to it.
- Difficult to utilize various kinds of context information in the search process.
- Neural Network: a rising recommendation method
 - Focus on one-step or short-term location prediction.
- Sequential neural models have been widely used for modeling sequential trajectory data.

Neural network is a promising way to capture complex pattern in auxiliary data.

NASR Model Architecture


Neuralized A-Star based personalized Route recommendation

A Review of A* Search Algorithm

A* Search Algorithm

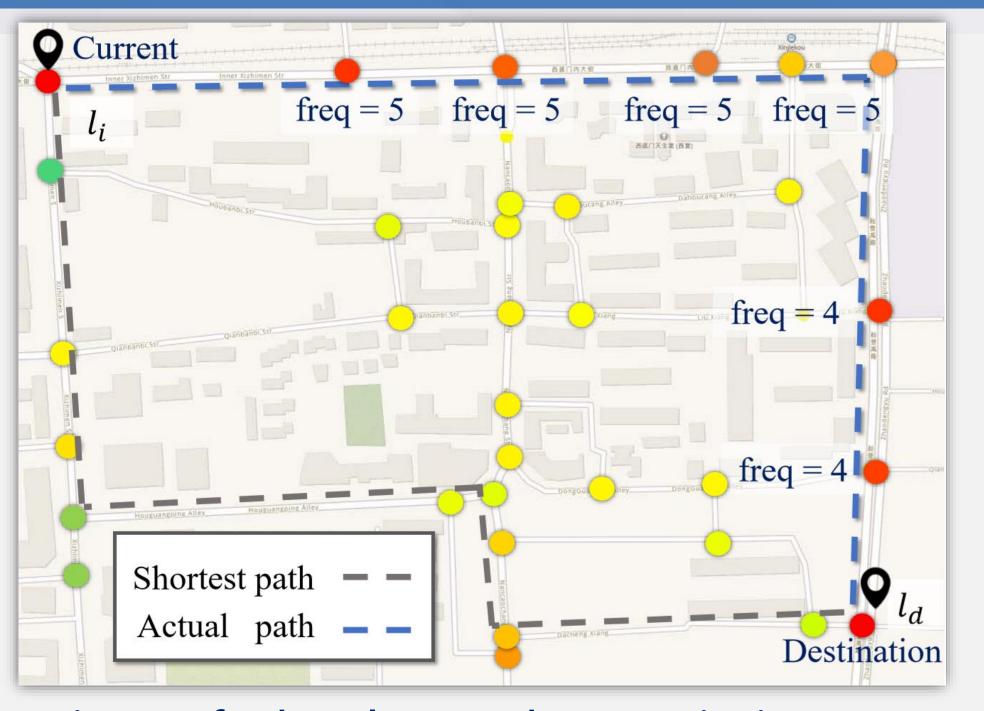
Find the path with least cost.

Cost function consists of two part: observable cost g() and estimated cost h()

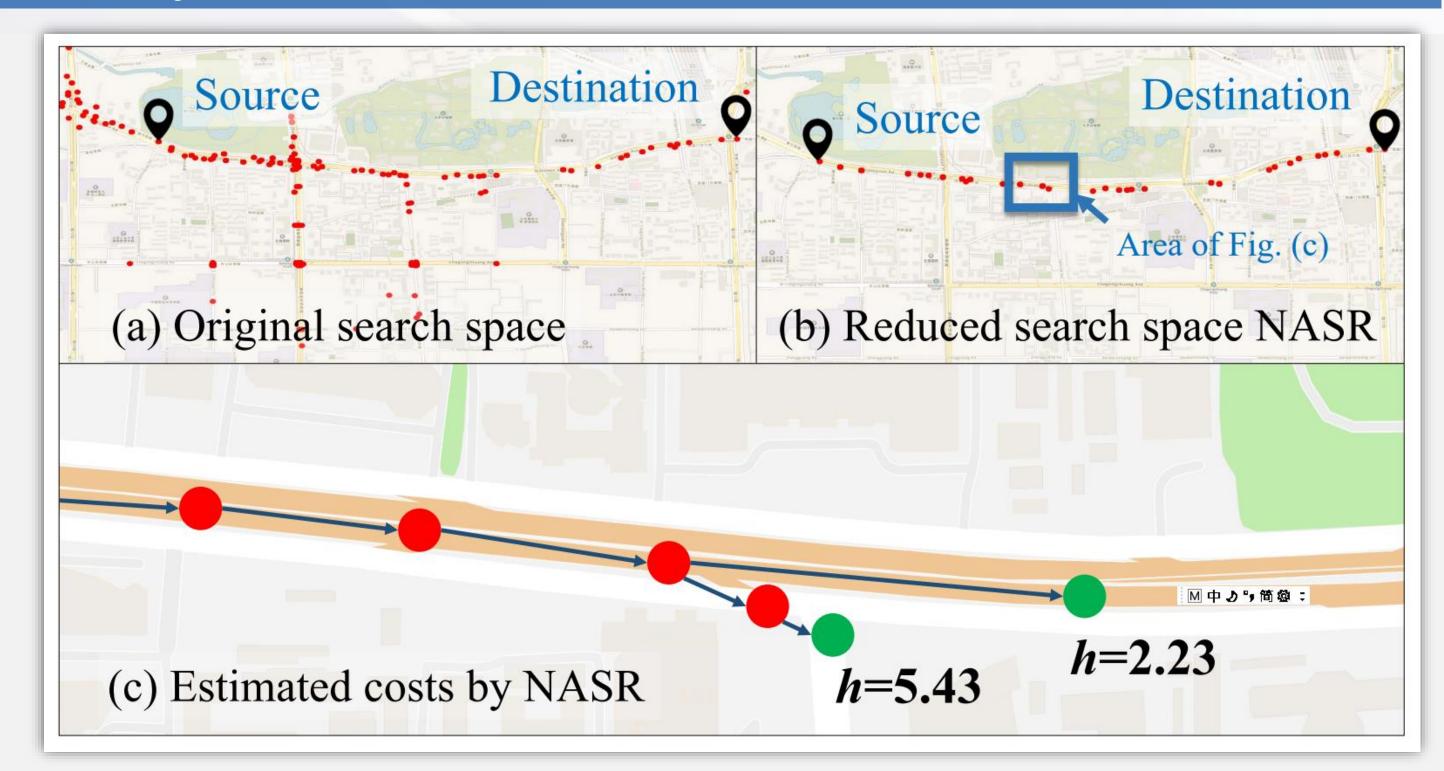
The overall architecture of the NASR model.

Performance

Performance Comparison using Four Metrics on Three Datasets


Datasets	Metric	Precision						Recall					
	Length	RICK	MPR	CTRR	STRNN	DeepMove	NASR	RICK	MPR	CTRR	STRNN	DeepMove	NASR
Beijing Taxi	Short	0.712	0.347	0.558	0.491	0.742	0.821	0.723	0.372	0.164	0.384	0.756	0.848
	Medium	0.638	0.253	0.276	0.446	0.642	0.757	0.651	0.261	0.067	0.350	0.654	0.773
	Long	0.586	0.169	0.194	0.359	0.562	0.684	0.589	0.173	0.045	0.214	0.575	0.709
Porto Taxi	Short	0.697	0.359	0.701	0.442	0.721	0.804	0.705	0.381	0.358	0.372	0.726	0.832
	Medium	0.622	0.271	0.416	0.403	0.619	0.729	0.634	0.293	0.106	0.326	0.628	0.754
	Long	0.565	0.184	0.305	0.340	0.547	0.657	0.578	0.198	0.036	0.218	0.568	0.671
Beijing Bicycle	Short	0.652	0.303	0.587	0.559	0.673	0.788	0.670	0.313	0.272	0.330	0.685	0.802
	Medium	0.568	0.217	0.603	0.461	0.582	0.715	0.574	0.226	0.142	0.304	0.589	0.724
	Long	0.503	0.129	0.613	0.297	0.487	0.641	0.519	0.139	0.045	0.206	0.492	0.663
Datasets	Metric	F1-score						EDT					
	Length	RICK	MPR	CTRR	STRNN	DeepMove	NASR	RICK	MPR	CTRR	STRNN	DeepMove	NASR
Beijing Taxi	Short	0.717	0.359	0.253	0.431	0.749	0.834	4.594	8.287	9.082	7.551	4.362	3.376
	Medium	0.644	0.257	0.108	0.392	0.648	0.765	8.273	16.321	23.110	14.725	8.730	5.728
	Long	0.587	0.171	0.073	0.268	0.568	0.703	11.283	25.873	27.493	22.705	12.059	8.314
Porto Taxi	Short	0.701	0.370	0.474	0.404	0.723	0.818	4.801	8.104	6.935	8.790	4.496	3.563
	Medium	0.628	0.282	0.169	0.360	0.623	0.741	8.619	15.032	18.294	13.368	<mark>◎ ∩2</mark> ∩ 刚英 力, 简缀:	5.949
	Long	0.571	0.191	0.065	0.266	0.557	0.687	11.379	21.349	31.745	19.603	12.297	8.572
Beijing Bicycle	Short	0.661	0.308	0.372	0.414	0.679	0.795	5.183	8.924	7.784	7.092	4.629	3.719
	Medium	0.571	0.221	0.229	0.367	0.585	0.720	8.972	17.497	20.966	14.503	9.039	6.253
	Long	0.511	0.134	0.084	0.243	0.489	0.671	11.891	22.028	57.997	21.324	12.692	8.794

In Previous Setting:


 $g(l_s \to l_i) = -\sum_{i=0}^m \log \Pr(l_{i+1} | l_s \to l_i, q, u)$ $h(l_i \to l_d) = Euclid(l_i, l_d)$

Our proposed model NASR is able to combine both the benefits of heuristic search and neural networks, and hence it performs best among the comparison methods.

Qualitative Analysis

Visualization of the learned association scores using improved graph attention networks. The colored circles denote locations in the road network. A darker color

Visualization of the search procedure with the estimated costs by the NASR model. In (c), red points have been

