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a b s t r a c t

TCP congestion control in datacenter networks is very different from in traditional network environ-
ments. Datacenter applications require TCP to provide soft real-time latency and have the ability to avoid
incast throughput collapses. To meet the special requirements of datacenter congestion control,
numerous solutions have been proposed, such as DCTCP, D2TCP, and D3. However, several deployment
drawbacks, including significant modifications to switch hardware, the Operating System protocol stack,
and/or upper-layer applications, as well as switch ECN requirements, which are not always available in
already existing datacenters, limit deployment of these solutions. To address these deployment
problems, in this paper, we proposed a delay-based TCP algorithm for datacenter congestion control,
namely DC-Vegas. DC-Vegas combines the performance advantages of DCTCP with the deployment
advantages of delay-based TCP Vegas. DC-Vegas can meet both soft real-time and incast avoidance
requirements of datacenters, requiring minimal deployment modification to existing datacenter hard-
ware/software (with only sender-side update and without ECN requirements). Experimental results
obtained using the real datacenter test bed and an ns-2 simulator demonstrate that DC-Vegas has similar
performance with the state-of-the-art Data Center TCP algorithm.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Traditional TCP congestion control algorithms designed for the
Internet environments have encountered many problems in datacen-
ter networks. One problem is introduced by Online Data Intensive
(OLDI) applications (Meisner et al., 2011), such as web search and
social network services, which operate under “soft” real-time con-
straints so that any need for transmission latency in datacenters is as
minimal as possible (Alizadeh et al., 2012a; Lee et al., 2012; Zhang
et al., 2014). The other problem is TCP throughput collapse caused by a
special network scenario in datacenters, namely incast. TCP flows in
incast scenarios may suffer serious throughput losses (Chen et al.,
2009). Incast scenarios widely exist in datacenter applications, such as
MapReduce (Wang et al., 2014b; He et al., 2014). To address the soft
real-time and incast problems, many improved solutions have been
proposed, including fine-grained retransmissions (Vasudevan et al.,
2009), ECNn (Wu et al., 2012), and ICTCP (Wu et al., 2010) for
mitigating the TCP incast problem, HULL (Alizadeh et al., 2012a), D3

(Wilson et al., 2011), Detail (Zats et al., 2012), and PDQ (Hong et al.,

2012) for reducing low transmission latency, as well as DCTCP
(Alizadeh et al., 2010), D2TCP (Vamanan et al., 2012), L2DCT (Munir
et al., 2015), RDT (Jingyuan et al., 2014) and WDCTCP (Wang et al.,
2013a) for both latency reduction and incast avoidance. Although
these solutions achieved excellent performance in laboratorial data-
center networks, there still exist some deployment barriers when
adopting them in “existing” datacenters that were already built all over
the world. For solutions such as D3 and PDQ that are based on custom
network protocols and not compatible with TCP, all TCP-based app-
lication layer software must be replaced, which is impractical in many
commercial systems. Algorithms such as DCTCP that rely on ECN
(Explicit Congestion Notification) marking for congestion detection, on
the other hand, will require ECN support, a capability which is not
universally available even today (Stewart et al., 2011; Bauer et al.,
2011). In addition, many solutions require significant modifications to
network hardware and/or the OS protocol stack; some even require
custom ASICs. Therefore, these existing solutions are very promising
for new datacenters, but for the datacenters that already exist, they are
not suitable.

In this paper, we propose a high-performance and low-deployment-
cost datacenter TCP algorithm named DC-Vegas. DC-Vegas was inspired
by an analysis of queue length distribution of delay-based TCP in
datacenter networks. The analysis revealed why the delay-based TCP

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jnca

Journal of Network and Computer Applications

http://dx.doi.org/10.1016/j.jnca.2015.03.010
1084-8045/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: jywang@buaa.edu.cn (J. Wang).

Journal of Network and Computer Applications 53 (2015) 103–114

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2015.03.010
http://dx.doi.org/10.1016/j.jnca.2015.03.010
http://dx.doi.org/10.1016/j.jnca.2015.03.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.03.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.03.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.03.010&domain=pdf
mailto:jywang@buaa.edu.cn
http://dx.doi.org/10.1016/j.jnca.2015.03.010


Vegas (Brakmo et al., 1994) algorithm performs well for reducing
transmission latency but poorly in incast scenarios. Based on this
insight, we design the DC-Vegas algorithm, which combines the low-
cost deployment advantage of TCP Vegas and the excellent perfor-
mance of DCTCP in datacenters. We deployed DC-Vegas in a production
datacenter test bed. The deployment only needed to update TCP
senders and did not require ECN support, application software and/or
network modifications. Experiments using the datacenter test bed
show that DC-Vegas (1) reduces queuing delays by two orders of
magnitude and reduces the deadlines missed rate of OLDI applications
by 80%; (2) significantly avoids incast collapse; and (3) maintains
graceful fairness and convergence. The ns-2 simulation experiments
show that the performance of DC-Vegas is similar to that of DCTCP.

The rest of this paper is organized as follows. Section 2 analyzes
why delay-based TCP Vegas performs well for reducing latency but
poorly in incast scenarios. Section 3 describes the algorithm details
of DC-Vegas and presents some analysis. Experimental results are
presented in Sections 4 and 5. The conclusions of this paper are
given in Section 7.

2. Delay-based TCP in datacenters

2.1. Performance of TCP Vegas in datacenters

Congestion detection mechanism is an important module of
TCP algorithms (Alrshah et al., 2014; Xu et al., 2011). The most
widely used congestion detection mechanism is loss-based detec-
tion, which is adopted by many popular TCP algorithms such as
TCP Reno (Jacobson, 1988) and CUBIC (Ha et al., 2008; Wang et al.,
2013b). Because packet losses occur only after packet queues have
built up, loss-based TCP in datacenters always introduces very
long queuing delay, and therefore causes degradation of user
experience.

The most popular congestion detection method in datacenters
is ECN (Explicit Congestion Notification), such as DCTCP, ECNn, and
D2TCP. However, ECN is not universally supported by datacenter
hardware, especially in datacenters currently in operation. Accord-
ing to the report of Bauer et al. (2011), only 60% end-to-end loops
in the Internet are ECN enabled, and as reported in Stewart et al.
(2011), finding a datacenter switch that supports ECN to test
performance of DCTCP is very difficult. Furthermore, ECN is an IP
level protocol, which requires all agents in an end-to-end loop to
be ECN enabled, so deploying ECN-based TCP in a non-ECN
equipped datacenter means a system-wide software and/or hard-
ware updating. Even though deploying DCTCP over an ECN ena-
bled datacenter, modifications on both sender side and receiver
side, as well as parameter setup of switches, are still unavoidable.
So the time cost and expense of such deployment is unb-
earable for production datacenters. As reported by Emerson Net-
work Power (State of the data center, 2011), more than 500
thousand datacenters were built before 2011 around the world.
Most of these datacenters are waiting for TCP updating because
most of ECN-based datacenter TCP solutions were proposed during
2011–2013.

An alternative for ECN is delay-based TCP congestion control
(Brakmo et al., 1994; Wei et al., 2006), which uses end-to-end
queuing delay as an indication of network congestion. Because
delay-based TCPs aim at keeping packet queue length in network
buffers under a reasonable level, queuing delay of delay-based TCP
is usually shorter than loss-based algorithms (Wang et al., 2014a).
Moreover, delay-based TCPs can proactively reduce their through-
put before packet losses appear; therefore, they have potential to
mitigate the TCP incast problem (Lee et al., 2012; Wu et al., 2010).
However, existing delay-based TCP algorithms cannot meet both
the low latency and incast avoidance requirements of datacenters.

In this section, we use TCP Vegas as a representative of delay-
based TCP algorithms to analyze its performance in datacenter
networks.

We conducted two sets of experiments on a production
datacenter of the Computer Network Information Center (CNIC)1

in the Chinese Academy of Sciences. First, we investigated queuing
delay of TCP Vegas in the datacenter. We let ten long-term TCP
flows pass between two hosts that were connected by 1 Gbps links
in the datacenter. According to Alizadeh et al. (2010), the typical
number of concurrent long-term TCP connections for a host in
datacenters is less than four; therefore, ten flows represented a
fairly crowded setting. Figure 1(a) plots the RTT (Round-Trip Time)
variations between the hosts when TCP Vegas and TCP Reno
algorithms were used. As shown in the figure, the queuing delay
of TCP Vegas was far smaller (by approximately two orders of
magnitude) than that of the loss-based TCP Reno algorithm.
Second, we investigated the performance of TCP Vegas in an incast
scenario. We used 47 hosts connected by a 1 Gbps switch, where
one host was designated the receiver, and the others were used as
senders. A subset of the senders simultaneously and repeatedly
sent 128 KB data blocks to the receiver. Figure 1(b) shows aggre-
gated throughput of the senders. Regardless of whether TCP Vegas
or Reno was used, the throughput of the senders collapsed when
the number of senders exceeded a threshold; this is a typical TCP
incast collapse phenomenon. The threshold for TCP Vegas was the
small value of 20, slightly bigger than TCP Reno and not satisfac-
tory in datacenter applications. The two experiments on TCP Vegas
in datacenter networks demonstrated that the TCP Vegas algo-
rithm is promising for latency-sensitive datacenter applications,
but performs poorly in incast scenarios.

2.2. Analysis of TCP Vegas in datacenters

TCP Vegas uses end-to-end queue length samples to detect
congestion. In each RTT, TCP Vegas estimates current queue length as

q¼ w
RTT

� ðRTT�RTTminÞ; ð1Þ

where w is the size of the congestion control window, RTT is the
sampled RTT, and RTTmin is the minimum observed RTT, which is used
as an estimate of network propagation delay. TCP Vegas adjusts the
window size in each RTT by comparing q with a threshold Kv. If
q4Kv, TCP Vegas considers the network congested and reduces the
window but instead increases the window if qoKv. In other words,
TCP Vegas uses a binary decision to detect network congestion.

The binary congestion detection of TCP Vegas works well for traffic
on the Internet but not for datacenter networks because network
queue behaviors on the Internet are very different from those in
datacenter networks. Figure 2 shows network buffer queue fluctua-
tion of datacenter networks and the Internet. Datacenter queue
fluctuation is observed between two servers of the CNIC datacenter
using 10 TCP Vegas flows, and the Internet queue fluctuation is
observed from an Amazona EC2 server to a computer in our
laboratory. For the sake of comparison, we normalize the queue
length samples using Qs=ðð

Pi ¼ S
i ¼ 1 QiÞ=SÞ, i.e., the ratio between the

current queue sample Qs and the average of all such values of S
samples. The value of S is 200,000 in our experiments, among which
1000 samples are plotted in Fig. 2. As shown in Fig. 2(a), there are
many impulses in the Internet queue fluctuation. A probable cause of
these impulses is network congestion; if so, TCP Vegas can easily
distinguish them from non-congestion network states by using
simple binary quantization. On the other hand, the queue length
variation of the datacenter, which is shown in Fig. 2(b), is very

1 http://english.cnic.cas.cn/
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uniform. It is very difficult to detect congestion in this type of queue
for the binary detection of TCP Vegas.

To analyze the congestion detection of TCP Vegas in depth, we
adopt a Hidden Markov Model (HMM) (Rabiner and Juang, 1986a)
with Gaussian observations to model TCP congestion detection
systems. The notations adopted by the HMM are listed in Table 1.
As illustrated in Fig. 3, a network has two (hidden) states, the
congestion state Sc and the non-congestion state Sn; the observa-
ble network buffer queue length of the congestion and non-
congestion states are Qc and Qn, respectively. For the sake of
modeling, we assume that Qc �N cðμc;σ

2
c Þ and Qn �N nðμn;σ

2
nÞ

follow a Gaussian distribution and that the queue length observa-
tion of the hidden states follows a Gaussian mixture distribution
kcN cþknN n.

We use the Baum–Welch algorithm (Welch, 2003) to calculate
parameters of the HMM, and use the queue fluctuation data in Fig. 2
as the training data. The PDF of learned N c , N n, and the queue
fluctuation data are shown in Fig. 4. As shown in the figures, the
distribution of the Internet queue has a long tail that is covered mostly
by N c, indicating the queue fluctuation impulses of the Internet,
which correspond to the PDF long tail, are indeed caused by network
congestion. Except for the long tail, the queue length distribution lies

underN n and is highly concentrated. For the queue distribution of the
Internet, threshold-based binary decisions can easily cut off the
network congestion-caused long tail, so the congestion detection of
TCP Vegas is reasonable for the Internet traffic. On the other hand, for
the datacenter network, the distribution shown in Fig. 4(b) is much
more uniform. N c and N n are significantly mixed, making it very
difficult to distinguish congestion states from non-congestion states if
using only a binary decision.

We further model the TCP Vegas algorithm using the Hidden
Markov Model framework. For the HMM illustrated in Fig. 3, the
congestion detection of a TCP algorithm can be modeled as
“decoding” the sequence P ¼ fpcð1Þ;…; pcðiÞg using the given obser-
vation sequence O¼ fQcð1Þ;…;QcðiÞg, where Q(i) is the ith sample
of the network queue length, and pc(i) is the probability that the
network is in Sc for Q(i). Thus, for a network containing M TCP
Vegas flows, the congestion detection model is

Input : Iv ¼ fqmð1Þ;…; qmðiÞ;…g;

Ouput : pvc ðiÞ ¼
1; qmðiÞ4Kv;

0; qmðiÞrKv;

(
ð2Þ

where qm is the queue length sample of the TCP Vegas flow m. We
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Fig. 1. TCP Vegas in datacenter networks. (a) Queuing delay and (b) the incast scenario.
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Fig. 2. Queuing length variation. (a) The Internet and (b) datacenter networks.

Table 1
Notations of the HMM.

Notations Definition

Sc, Sn The congestion state (hidden) and the non-congestion state (hidden)
Qc, Qn The observable queue length of the congestion and non-congestion states
Ov ;Odc ;Odcv Observations of the HMM for Vegas, DCTCP and DC-Vegas
pvc ; p

dc
c ;pdcvc

Probability of the network in state Sc for Vegas, DCTCP and DC-Vegas

pVc ðiÞ Probability of the network in state Sc for the Viterbi algorithm
Kv ;Kdc The congestion threshold of Vegas and DCTCP
Q(i) The ith sample of the network queue length
qmðiÞ The ith sample of the queue length for TCP session m
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assume qmðiÞ ¼Q ðiÞ=MþϵmðiÞ, where ϵmðiÞ is a random signal andPM
m ¼ 1 ϵ

mðiÞ ¼ 0.
We compare performance of model (2) with the Viterbi algo-

rithm (Rabiner and Juang, 1986b) to evaluate the congestion
detection of TCP Vegas. The Viterbi algorithm is a dynamic
programming algorithm for finding the most likely sequence of
hidden states of HMM. Input of the Vitertib algorithm is a
sequence of observed states and the output is the most likely
sequence of hidden states. We use the sequence of Q(i) as input of
the Vitertib algorithm, and get a sequence of probability that the
hidden network state for Q(i) belongs to congestion state, i.e., pVc ðiÞ.
Because the Viterbi algorithm is an optimized algorithm for HMM
hidden state sequence decoding, we use the Viterbi decoding
result pVc ðiÞ as an approximate “real” solution of network conges-
tion probability. For the i-th input qmðiÞ, if pvc ðiÞ�pVc ðiÞ40:5, i.e., the
congestion probability calculated by TCP Vegas is much bigger
than the “real” solution pVc ðiÞ, which means a severe overstating of
network congestion occurs. We treat the congestion report pvc ðiÞ as
a false alarm, i.e., a false congestion detection. On the contrary, we
treat the congestion report pvc ðiÞ as a false non-congestion if
pVc ðiÞ�pvc ðiÞ40:5, i.e., a congestion state leaking.

The false congestion and non-congestion rates of TCP Vegas
using the queue fluctuation data in Fig. 2 are shown in Fig. 5. As
shown in the figure, the false non-congestion rate of TCP Vegas in
the datacenter networks reaches 60%, which is significantly higher
than in the Internet. False non-congestion detections means
underestimation of network congestion. 60% network congestion
underestimation of TCP Vegas in datacenter networks causes the
congestion detection mechanism of TCP Vegas to be invalid in
datacenter networks. For incast scenarios, this problem becomes
more serious, because short TCP connections of incast servers do
not have enough time to collect more queue samples and re-detect
network states. That is why TCP Vegas performs poorly in incast
scenarios.

2.3. Motivation for the DC-Vegas algorithm

The congestion detection mechanism of the DC-Vegas algo-
rithmwas inspired by DCTCP. The DCTCP algorithm has three main
components (Alizadeh et al., 2010): (1) ECN marking at the switch:
the switch compares its packets queue length in buffers with a
threshold Kdc and marks the ECN bit in IP packet headers if the
queue length is greater than Kdc. (2) ECN-echo at the receiver: the
ECN flags in packets are then copied by the DCTCP receiver to
corresponding ACKs and echoed to the sender when packets
carrying the ECN flag are received. (3) Congestion detection at the
sender: the sender calculates the fraction of ACKed packets with
marked ECN flags in a window, i.e.,

Fdc≔
# of packets with ECN mark

Total # of packets in a window
;

and filtered by an exponential moving average (EMA) filter to find

αdc≔ð1�gÞ � αdcþg � Fdc;0ogo1: ð3Þ
Then, in each RTT, DCTCP increases the value of the congestion
control window by one when Fdc ¼ 0; otherwise, the window wdc

is reduced to

wdc≔wdc�wdc �
αdc

2
:

We also use the HMM defined in Section 2.2 to model DCTCP.
Because DCTCP switches mark the ECN bit of in-flight packets
when Q ðjÞ4Kdc, so expectation of Fdc is equivalent to the prob-
ability that ProbfQ ðjÞ4Kdc; 8 jg, where jA is in the indices set of all
Q(j) in the same RTT with Q(i). Hence, the congestion detection of
DCTCP at the sender side is

Input : Idc ¼ fQ ð1Þ;…;Q ðiÞ;…g;
Output : pdcc ðiÞ ¼ 1�PfQ ðjÞrKdc; 8 jg: ð4Þ
Similar to the TCP Vegas case, we calculated false non-congestion
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Fig. 3. HMM in TCP congestion detection.

0 2 4 6 8
0

5

10

15

20

Normalized queue length

PD
F 

of
 sa

m
pl

es
 (%

)

0 2 4 6 8
0

0.2

0.4

0.6

0.8

PD
F 

of
 H

M
M

 (%
)

Congestion
Non−congestion
Mixture
Samples

0.5 1 1.5
0

5

10

15

20

Normalized queue length

PD
F 

of
 sa

m
pl

es
 (%

)

0.5 1 1.5
0

2

4

6

8

PD
F 

of
 H

M
M

 (%
)

Congestion
Non−congestion
Mixture
Samples

Fig. 4. PDF of queuing length and HMM. (a) The Internet and (b) datacenter networks.

J. Wang et al. / Journal of Network and Computer Applications 53 (2015) 103–114106



and false congestion rates for DCTCP. As shown in Fig. 5, the false
rate of DCTCP is significantly lower than that of TCP Vegas,
especially the false non-congestion rate, which is critical for incast
congestion avoidance.

As mentioned previously, a major deployment drawback of the
DCTCP algorithm is the requirement for ECN support and both
sender and receiver modifications. On the other hand, deployment
of TCP Vegas only modifies TCP senders and does not need ECN.
However, the poor incast performance of TCP Vegas limits its
application in datacenter networks. It is desirable to combine the
deployment advantage of TCP Vegas and the performance advan-
tage of DCTCP in the same algorithm. To achieve this goal, we
replace Q in (4) of DCTCP with qm:

Input : Idcv ¼ qmð1Þ;…; qmðiÞ� �
;

Output : pdcvc ðiÞ ¼ 1�P qmðjÞrKdc

M
; 8 j

� �
; ð5Þ

where j is in the index set of all qmðjÞ in the same window with
qmðiÞ. The model is equivalent to the DCTCP detection model (4)
but replaces the global queue observation Qm with local queue
observation qm. The false congestion and false non-congestion
rates of the model (5) for the datacenter queue samples are plotted
in Fig. 5 as ‘DC-Vegas (DCN)’. The results show that the detection
accuracy of the model (5) is very close to DCTCP. This result
motivates us to design the DC-Vegas algorithm using the model (5)
as the congestion detection mechanism.

3. The DC-Vegas algorithm

3.1. Algorithm description

In DC-Vegas, when an ACK arrives, the sender first estimates
current network queue length q using Eq. (1) and then compares q
with a threshold Kdcv. When all packets in the same window are
acknowledged, DC-Vegas calculates

Fdcv≔
# of ACKs with q4Kdcv

Total # of ACKs in a window
ð6Þ

and applies an EMA filter to find αdcv≔ð1�gÞ � αdcvþg�
Fdcv; where 0ogo1. DC-Vegas uses αdcv to measure network
congestion level. Obviously, values of Fdcv closer to 1 indicate higher
congestion. According to the model defined in (5), if we let
Fdcv � Prob qðjÞ4Kdcv; 8 j

� �
, the congestion detection mechanism of

DC-Vegas in (6) follows the model (5).
DC-Vegas updates its window wdcv in each RTT according to the

network congestion level indicated by Fdcv. The specific algorithm
is

wdcv≔
wdcv�wdcv �

αdcv

2
if Fdcv40;

wdcvþ1 if Fdcv ¼ 0:

8<
:

Thus, when network congestion is at a low level, DC-Vegas reduces
its window by a small value; otherwise, the window is reduced
significantly to alleviate high network congestion. Similar to the
traditional TCP Reno algorithm, DC-Vegas halves its window when
a packet loss event is detected. Other parts of the standard TCP
algorithm framework, including slow start, fast recovery, and fast
retransmission, are left unchanged.

3.2. Analysis

We introduce an approximate model to analyze behaviors of
DC-Vegas. The analysis of DC-Vegas in this section uses the
modeling method of TCP Reno in Padhye et al. (1998). The
modeling method only considers the Congestion Avoid part of
TCP algorithms, and assumes that the window size is not limited
by the receiver's advertised flow control window. The round trip
time of the model is assumed to be independent of the window
size, and the time needed to send all the packets in a window is
assumed to be shorter than the round trip time. The model
assumes N long-term DC-Vegas flows sharing a single bottleneck
link with bandwidth B and RTT D. As shown in Fig. 6, variation of
the window w of a TCP DC-Vegas flow has a “sawtooth” shape, so
we define a period between two w size reductions as a Sawtooth
Period (STP). Notations used in the model are summarized in
Table 2.

DC-Vegas senders calculate Fdcv for a window of packets. The
average Fdcv of STPi is

Fi ¼
Wi

Yi
: ð7Þ

The window of STPi increases by one after each RTT and decreases
by a factor ð1�αi=2Þ when queue length is greater than Kdcv. We
therefore have

Yi ¼
XLi �1

k ¼ 0

1�αi�1

2

� �
Wi�1þk

h i

¼ 1�αi�1

2

� �
Wi�1Liþ

LiðLi�1Þ
2

: ð8Þ

In addition, the window size at the end of STPi is

Wi ¼ 1�αi�1

2

� �
Wi�1þLi�1: ð9Þ

From (7)–(9), expectations of the random variables Y, L, and F form
the following equation set:

E½F� ¼ E½α� ¼ E½W �
E½Y�

E½Y� ¼ E½L� ð2�E½α�ÞE½W �þE½L��1
2

� 	

E½L� ¼ E½W �E½α�
2

þ1

8>>>>>>><
>>>>>>>:

: ð10Þ
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From (10), we obtain

2
E½W � ¼ E½α�2 1�E½α�

4

� 	
þ2

E½α�
E½W ��

E½α�2
4E½W �

 !
: ð11Þ

Assuming that α is small enough, then E½α� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=E½W �

p
. Assuming

furthermore that the N flows are synchronized, which follows the
assumptions in Alizadeh et al. (2010), then

E½W � ¼ BD
N

þKdcv:

The expected window size oscillation period (OP) and amplitude
(OA) are

E½OP� ¼ E½OA� ¼ E½W �E½α�
2

� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E½W �

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BDþNKdcv

2N

r
:

Because we assume that the N flows are synchronized and
aggregated amplitude of synchronous TCP flows is equal to or
larger than aggregated amplitude of asynchronous, the amplitude
analysis here is the amplitude upper bounders.

Moreover, the expected queue length of a DC-Vegas flow is

E½Q � ¼ E½Y �
E½L� �

BD
N

� Kdcvþ1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BDþNKdcv

8N

r
:

A comparison of DC-Vegas and DCTCP is given in Table 3. As
shown in the table, the DC-Vegas algorithm is very similar to
DCTCP in terms of window variation and queue length. The
average queue length, oscillation period, and amplitude for the
DC-Vegas and DCTCP algorithms will be of identical form if we let
Kdc ¼N � Kdcv, which is very reasonable because Kdc of DCTCP is
observed by an ECN-enabled switch for a total of N flows, whereas
Kdcv of DC-Vegas is estimated by each sender. In other words,
DC-Vegas therefore can be regarded as a distributed DCTCP.

On the other hand, DC-Vegas also can be regarded as a higher-
precision TCP Vegas algorithm. Through adopting a finer granu-
larity and more accurate congestion detection, DC-Vegas becomes
more suitable for datacenter networks than is traditional TCP
Vegas. Moreover, DC-Vegas adopts an AIMD (Additive Increase and
Multiplicative Decrease) window size adjustment, which has

faster network congestion back-off speed than AIAD (Additive
Increase Additive Decrease) of traditional Vegas. This feature is
very important for small-buffer networks such as datacenter
networks. In summary, DC-Vegas is an optimized hybrid of DCTCP
and TCP Vegas.

3.3. Parameter settings

The maximum queue length qmax of DC-Vegas is Kdcvþ1. The
expected minimum value of the queue occupancy sawtooth
pattern is given by

qmin ¼ qmax�OA¼ Kdcvþ1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BDþNKdcv

2N

r
: ð12Þ

To ensure networks are fully utilized even when there is only one
DC-Vegas flow in the network, we let Qmin40 and N¼1; there-
fore, the setting of Kdcv should be Kdcv4 ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8BD

p
�3Þ=4. For the

parameter g, we use the same method as DCTCP to compute g in
our implementation, that is, go1:386=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðBDþKdcÞ

p
.

3.4. Granularity requirement of RTT measurement

Accurate RTT measurement is an important issue for delay-
based TCP algorithms. DC-Vegas measures network queue length
through q¼ T=Packet_Size� ðRTT�RTTminÞ. Therefore, to achieve
“one packet” queue length measurement precision, RTT measure-
ment precision must satisfy

GrPacket_Size
T

: ð13Þ

Table 4 lists the RTT measurement precision requirements of
several typical networks. The highest precision requirement is
1:13 μs for 10 Gbps links, which is available for both Linux, for which
the RTT measurement precision is 1 μs, andWindows OS, for which is
100 ns (Wu et al., 2010). In fact, RTT precision of (13) in DC-Vegas can
be further relaxed because DC-Vegas only needs to know whether
q4K . The actual queue precision requirement is “K packets” but not
“one packet”. As shown in Table 4, the highest RTT precision
requirement for “K packets” is 23:8 μs for typical network settings,
which can be easily achieved by mainstream OSs.

4. Evaluation on a production datacenter test bed

We used a subset of the machines in the CNIC datacenter as a
test bed to evaluate DC-Vegas. In the test bed, 47 machines were
connected by a Dell Force10 S50N datacenter switch that does not
have ECN. The bandwidth between the switch and the machines
was 1 Gbps. The OS of the machines was Red Hat Enterprise Linux

Fig. 6. Window size variation during a STP.

Table 2
Notations of STP.

Notation Definition

STPi The ith sawtooth period (STP)
Wi The w size at the end of STPi
αi The α of STPi
qi The max queue length of STPi
Yi The number of packets sent in STPi
Li The RTT round where qi4K in STPi

Table 3
Comparison of DC-Vegas and DCTCP.

Algorithms E½Q � OP/OA

DC-Vegas
Kdcvþ1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BDþNKdcv

8N

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BDþNKdcv

2N

r
DCTCP (Alizadeh et al., 2010) Kdc

N
þ1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BDþKdc

8N

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BDþKdc

2N

r

Table 4
The RTT measurement granularity requirements.

Precision 10 Gbps 1 Gbps 0.1 Gbps

1 packet (μs) 1.13 11.3 113
K packets (μs) 23.8 67.9 339
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Server release 5.3 with kernel version 2.6.18. The switch and the
machines used their default setup settings. The CPU, memory and
storage space of the machines were not bottlenecks in the exper-
iments. Unless otherwise noted, the experiments used the para-
meter settings listed in Section 3.3. We could not include algo-
rithms such as DCTCP due to the lack of ECN in the test bed.

4.1. Basic properties

We first evaluated the throughput of DC-Vegas on long-term flows
when the recommended value of parameter Kdcv was used. Two
machines in the test bed, one as a sender and the other as a receiver,
were used in the experiment. The bandwidth between the sender and
receiver was 1 Gbps, and the average propagation delay of the link was
approximately 50 μs. According to Section 3.3, Kdcv ¼ 6 for this net-
work condition. In the experiment, the sender was allowed to send
data as quickly as it could. The results show that DC-Vegas achieved
more than 90% bandwidth utilization when KZ5. Moreover, we
further tested DC-Vegas under a 10 Gbps and 50 μs delay setup by
connecting two machines using 10 Gbps NICs directly. The recom-
mended parameter is Kdcv ¼ 21 for this condition. The experimental
results show that DC-Vegas achieved more than 90% bandwidth
utilization when KZ16. The results indicate that long-term DC-Vegas
flows with the recommended Kdcv can fully saturate datacenter
network bandwidth. The recommended Kdcv is a reasonable setup.

Next, we tested the influence of DC-Vegas on network bottleneck
links. In the experiment, one machine in the test bed was used as a
receiver and the other machines were used as senders. We let several
senders established TCP connections to the receiver and sent data as
quickly as they could. The end-to-end RTT and the packet loss rate of
the TCP flows in the bottleneck experiment were sampled for cases
with 2 and 32 senders. The cumulative distribution function (CDF) of
RTT and packet loss for different algorithms are plotted in Fig. 7. As
shown in Fig. 7(a), the RTTs of 2 and 32 DC-Vegas flows were stable at
approximately 80 μs and 500 μs, respectively, while the Vegas flows
were stable at approximately 80 μs and 1000 μs. In contrast, RTTs
incurred by the Reno flows were two orders of magnitude greater
than were incurred by both DC-Vegas and TCP Vegas. As shown in
Fig. 7(b), the packet loss rate incurred by DC-Vegas was significantly
lower than TCP Reno and Vegas. As shown in Table 3, DC-Vegas has
very low expected in-flight queue length, so it can keep bottleneck
buffers at a very low occupancy rate, and then avoid long queuing
delay and packet loss, which is why DC-Vegas has low RTT and packet
loss in this experiment.

4.2. Performance in datacenter scenarios

In this subsection, the incast performance and queuing delay of
DC-Vegas in datacenter networks was evaluated. Most of the

experimental setups in this subsection follow previous datacenter
TCP studies (Alizadeh et al., 2010; Wu et al., 2010; Vasudevan et al.,
2009; Vamanan et al., 2012).

4.2.1. Incast
In the incast experiments, several servers in the test bed synchro-

nously and periodically sent small data chunks to a receiver. The total
amount of data sent by all of the servers in each round was fixed and
uniformly divided among the servers as in Alizadeh et al. (2010); Wu
et al. (2010) and Vasudevan et al. (2009). Figure 8 shows the results
when the total data size was set to 1 MB and 4MB; the number of
servers varied from 2 to 46. For each data size and each number of
servers, the experiment was repeated 1000 times. Both the means and
the standard deviations of the servers' aggregate throughput are
plotted in the figures. As shown in Fig. 8, when the number of senders
was small and TCP Reno and Vegas did not experience incast collapse,
the throughput of DC-Vegas was slightly lower. As the number of
senders increased, TCP Reno and Vegas experienced incast-caused
throughput collapse, DC-Vegas still achieved a stable high throughput.
On average, network utilization achieved by DC-Vegas is much higher
than that achieved by the other two algorithms. In addition, we test
the performance of 1-win TCP, which fixes its window size at 1, as a
reference. According to the analysis in Hwang et al. (2012), when the
sender number is large, the performance of 1-win TCP can be
considered an approximation of the TCP performance upper bound
in incast scenarios. The results in Fig. 8 show that the throughput of
DC-Vegas is very close to the upper bound approximated by 1-win TCP
when the number of senders was greater than 20. These experimental
results indicate that DC-Vegas is an effective algorithm for TCP incast
collapse avoiding.

An all-to-all incast scenario was used in our experiments to
investigate the behavior of DC-Vegas when incast congestion
occurred simultaneously on multiple switch ports. In the all-to-
all experiments, 41 machines were used. Each machine requested
25 KB of data from the remaining 40 machines (totaling 1 MB of
data) simultaneously, resulting in 40 simultaneous incasts. The
throughput CDF of experiments repeated 1000 times is shown in
Fig. 9. As shown in the figure, the capacity of the 41 ports was
nearly fully utilized for DC-Vegas, while TCP Reno and Vegas
performed very poorly. 95% and 89% of the TCP Reno and Vegas
connections experienced at least one timeout, respectively. The
corresponding percentage for the DC-Vegas connections was only
0.6%. Moreover, performance of 1-win TCP was also tested in the
all-to-all incast scenario. The results in Fig. 9 show that the
performance of DC-Vegas is very close to the 1-win TCP.

According to the analysis given in Section 3.2, DC-Vegas is a
distributed DCTCP, and its congestion behaviors are very close to
DCTCP, which is why DC-Vegas achieves excellent incast collapse
avoidance performance in experiments of this subsection.
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4.2.2. Queuing delay
In datacenter networks, extensive queuing delay incurred by long-

term flows may cause severe performance impairment to delaying
sensitive small flows of OLDI applications. We used four machines of
the test bed, with one used as a receiver and the other three as
senders, to investigate the interaction between throughput-sensitive
long-term flows (elephant flows) and delay-sensitive short-term flows
(mouse flows) for DC-Vegas in datacenter networks. As reported in
Alizadeh et al. (2010), the 75th percentile of mouse flows coexist with
two elephant flows; therefore, we let two elephant flows, which send
packets as fast as they can, start from two of the senders, with the
other sender establishing a mouse connection to transmit 20 KB data
blocks to the receiver. Figure 10 shows the CDF for transmission times
of 1000 data blocks. As shown in the figure, the transmission times of
DC-Vegas and TCP Vegas weremuch lower than TCP Reno. Table 5 lists
the average aggregate throughput of the two elephant flows. As
shown in the table, the mouse flow for DC-Vegas and TCP Vegas did
not affect the throughput of elephant flows. On the contrary, the
elephant flows of TCP Reno were degraded by the mouse flow. The
standard deviation of the elephant flows' aggregate throughput is also
given in Table 5. The transmission is more stable with DC-Vegas than
with the other algorithms.

Further experimental results of DC-Vegas queuing delay tests are
given in Figs. 11 and 12. In these experiments, one of the machines
was designated as the client, with 40 other machines as servers. A
mouse flow and an elephant flow were established between each
server and the sole client. The client repeatedly downloaded a 100MB
file using the elephant flow and a 100 KB/1 MB small file using the
mouse flow from each server. The time interval between two down-
loads using elephant flows was 1 s, and it was 100 ms for mouse
flows. We set 5 ms and 50ms deadlines for mouse flow downloading
100 KB and 1MB files, respectively. The deadline missing rates of
different algorithms for different fan-in servers are shown in Fig. 11.
The missed deadline rate is markedly reduced in the DC-Vegas
case, which could significantly improve the user experience of OLDI

applications (Wilson et al., 2011; Vamanan et al., 2012). Figure 12 plots
the aggregated throughput of elephant flows for different algorithms.
The figure shows that DC-Vegas achieved above-80% network capacity,
or approximately full utilization (plus the throughput of mouse flows),
implying that the improved throughput for the mouse flows using DC-
Vegas did not come at the cost of the elephant flows.

As analyzed in Section 2, the stable state queue length of DC-
Vegas is very low. This feature forbids elephant flows in the
experiments from building long in-flight packets queue in net-
work buffer. Moreover, the multiplicative window size decrease of
DC-Vegas ensures elephant flows to make timely backoff when a
mouse flow arrived. These two features enable DC-Vegas to per-
form well in the experiments of this section.

4.3. Fairness and convergence

To investigate fairness and convergence of DC-Vegas in data-
center networks, we tested DC-Vegas in a sequential starting/
stopping experiment. In the experiments, six hosts in the test bed
were used, with one as the receiver and the others as senders. TCP
flows from the senders to the receiver were started and stopped
sequentially at 150-s intervals. Figure 13 shows the time series of
throughput variations of different algorithms in the sequential
starting/stopping experiments. As the figures show, DC-Vegas
quickly converged to a fair sharing point as flows joined and left.
TCP Vegas converged to fairness quickly with high-level variations.
The fairness and convergence of Reno were much worse than were
those of the two delay-based algorithms. In datacenter networks,
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Table 5
Mean and standard deviation of elephant flows throughput.

Indicator Reno Vegas DC-Vegas

Mean (Mbps) 514 865 861
Deviation (Mbps) 162 38 21
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the loss-based TCP Reno algorithm introduces many burst packet
losses which are very detrimental to fairness and convergence. In
contrast, DC-Vegas and TCP Vegas do not introduce high queuing
delay or packet loss during their data transmissions and therefore can
achieve improved fairness and convergence. Moreover, low queuing
packet length also can improve the fairness and convergence of
DC-Vegas. These factors enable DC-Vegas to achieve excellent fairness
and convergence in experiments of this subsection.

4.4. RTT noise

Delay-based TCPs are more susceptible to latency noise than
loss-based and ECN-based. The RTT noise harm the congestion
measurement accuracy in two ways: (1) Impulse noise: RTT
impulse caused by random noise sometimes are one or two orders
of magnitude larger than regular RTT samples, so it can lead to
serious congestion false alarms. (2) Uniform noise: Random noise
that uniformly distributes over all timelines can cause a system-
level harm to delay-based TCP congestion detection. When we
designed DC-Vegas, we took the drawback of delay-based TCP into
consideration, and introduced features to protect DC-Vegas from

RTT noise: First of all, DC-Vegas uses the fraction of over-threshold
queuing delay samples, Fdcv, to indicate network congestion level.
This congestion indication mechanism can filter influences of large
impulse noise. Moreover, DC-Vegas uses an exponential moving
average to smooth Fdcv, which can further weaken influences of
uniform RTT noise. Figure 14 shows a throughput stability com-
parison of TCP Vegas and DC-Vegas over a 100 Mbps bandwidth
link. RTT of the link follows a normal distribution with 10 ms mean
and 100 standard deviation. As shown in the figure, the robustn-
ess of DC-Vegas against RTT noise is much better than that of
TCP Vegas.

5. NS-2 simulation experiments

The experiments described in Section 4 were conducted in a
real datacenter test bed which does not support ECN, so algo-
rithms such as DCTCP could not be deployed. To compare DC-
Vegas with state-of-the-art datacenter algorithms such as DCTCP,
we tested the performance of DC-Vegas using the ns-2 simu-
lator in this section. The ns-2 code for DCTCP was taken from
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http://www.stanford.edu/alizade/Site/DCTCP.html. In all experi-
ments, the RTT of the link was 50 μs, and the buffer size was
equal to one-half the network bandwidth delay product (BDP).

First, DC-Vegas was compared with DCTCP, TCP Vegas and Reno in
incast scenarios. Sixty TCP servers synchronously sent a volume of data
to a client through a 1 Gbps/10 Gbps link. The total traffic volume size
was 1MB for the 1 Gbps link experiments and 10MB for the 10 Gbps
experiments. The experimental results in Fig. 15 show that DC-Vegas
performed comparably to DCTCP and much better than others. Then,
for low latency applications, 40 mouse flows and 40 elephant TCP
flows shared a link of 1 Gbps/10 Gbps bandwidth. The mouse flows
sent 100 KB (for 1 Gbps simulations) or 1MB (for 10 Gbps) files 1000
times, while the elephant flows sent data as quickly as they could. The
transmission deadline of the experiment was set at 5 ms for the 1 Gbps
experiments and 50ms for 1 Gbps. The rates of missed deadlines are
plotted in Fig.16, again showing very similar performances of DC-Vegas
and DCTCP, both of which were observably better than others. Finally,
we evaluated DC-Vegas in the multi-bottleneck topology shown in
Fig. 17, which was used in Alizadeh et al. (2010). There are two
bottlenecks in the configuration: the 10 Gbps link passed by S1 and S2
flows, and the 1 Gbps switch passed by S2 and S3 flows. Table 6 lists
the throughput, fairness, and timeout packet loss rate of different
algorithms. As shown in the table, the performances of DCTCP and DC-
Vegas were still very similar. As shown in Section 2, the congestion
control behavior of DC-Vegas is very close to DCTCP and can be
regarded as a distributed version of DCTCP. This feature causes the
performance of DC-Vegas in the ns-2 testbed which is very close to
performance of the state-of-the-art Data Center TCP algorithm.

6. Related work

In recent years, many solutions have been proposed to address
the challenges of using TCP in data center networks (Kushwaha
and Gupta, 2014; Lin et al., 2013). These solutions can be classified
into two categories: TCP-based solutions and non-TCP solutions.

TCP-based solutions: Fine-grained TCP retransmissions (Vasudevan
et al., 2009) are proposed to reduce the incast penalty of timeouts by
using microsecond granularity retransmission timers, which can
reduce the timeout waiting time when incast congestion occurs, but
cannot avoid incast congestion and address the long queuing delay
problem. Data Center TCP (DCTCP) (Alizadeh et al., 2010) is an ECN-
based TCP congestion control algorithm proposed to avoid incast
timeout and achieve low queuing delay, which achieves very good
performance in data center netowrks. ECNn (Wu et al., 2012) tries to
achieve a performance comparable with DCTCP by only modifying
switch ECN marking strategy. Deadline-aware Data Center TCP
(D2TCP) (Vamanan et al., 2012) adds deadline awareness to DCTCP
using a gamma correction function. L2DCT (Munir et al., 2015) intro-
duces Least Attained Service (LAS) scheduling into DCTCP to reduce
completion times of short flows. DCTCP, ECNn, D2TCP, and L2DCT make
important contributions for data center congestion control, but all
require ECN, which are not always available in existing production
data centers. ICTCP (Wu et al., 2010) proposes a receiver driven TCP
congestion control algorithm to avoid incast congestion happened in
the last-hop of a TCP session. The ICTCP uses delay-based congestion
detection, and only modifies TCP protocol stack on the receiver side.
The benefit of DC-Vegas as compared with ICTCP is that DC-Vegas can
avoid incast congestion happened on any bottleneck link of a network,
while ICTCP only works for last hop congestion. Lee et al. (2012)
recommend delay-based congestion detection as a future direction for
data center congestion control. Although they did not give any specific
algorithms, their work is very inspiring.

Non-TCP solutions: Krevat et al. (2007) discuss potential app-
lication-level approaches for resolving the incast problem in the paper.
FQCN avoids incast throughput collapse of TCP using Quantized
Congestion Notification (QCN) by improving the fairness of multiple
flows sharing a bottleneck. HCF proposed a switch-based approach to
prevent data centers from incast throughput collapse. HULL (Alizadeh
et al., 2012a) is a new network congestion control architecture that
tradeoffs a little network bandwidth for ultra-low latency. The design
targets of HULL are for ultra-low latency applications such as high-
frequency trading and RAM-Cloud, which have microsecond-level
latency requirements. HULL uses phantom queues for congestion
detection, ECN-based congestion control, and custom packet pacing
hardware to achieve this performance. DeTail (Zats et al., 2012) avoids
missed deadline application flows by reducing the flow completion
time tail. DeTail constructed a cross-layer network stack that involves
quick congestion detection at the link layer and lower-congestion
paths routing at the network layer to achieve its target. The approach
used in pFabric (Alizadeh et al., 2012b) is TCP-compatible and provides
near-optimal performance in terms of completion time for high-
priority flows and network utilization. pFabric achieves the target by
redesigning data center fabric. D3 (Wilson et al., 2011) introduces
deadline awareness into data center congestion control, and analo-
gously, PDQ (Hong et al., 2012) introduces preemptive scheduling,
which are very important contributions for data center congestion
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control. However, both D3 and PDQ require modifications to the
switch and are incompatible with TCP, presenting difficulties for
deployment in existing data centers.

Although these TCP/non-TCP solutions achieved very important
contributions for datacenter congestion control, when these are
deployed in existing production data centers, ECN requirements,
modifications to the switch software/hardware, network protocol
stacks, and/or application software are unavoidable, leading to
high deployment cost and complexity.

The deployment complexity of congestion control technologies
in datacenters attracted the attention of researchers in recent years.
In the paper (Goswami et al., 2014), Bharti and Pattanaik implement
traffic shaping mechanism in the edge switch at source that acts
proactively and prevents the propagation of ill effects due to
sustained burst. In the paper, Bharti and Pattanaik (2014) propose
a dynamic distributed flow scheduling mechanism for effective link
utilization and load balancing. These papers provide good technique
for congestion mitigation as the technique is relatively simple to
implement and yet it is quite impactful.

7. Conclusions

In this paper, DC-Vegas, a new delay-based TCP algorithm
for datacenter congestion control, is proposed. DC-Vegas can
achieve a performance comparable to state-of-the-art datacenter

TCP algorithms and requires only minimal system modifications,
i.e., only the update of TCP senders. Receiver side modifications,
ECN support, and/or updates to other parts of datacenter networks
are unnecessary, which is very valuable for existing production
data centers. Experiments conducted in a production datacenter
test bed as well as ns-2 simulations confirmed the performance
(including throughput, latency, fairness, and convergence) of the
proposed algorithm.
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