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Abstract

Mitigating traffic congestion on urban roads, with paramount importance in urban develop-
ment and reduction of energy consumption and air pollution, depends on our ability to fore-
see road usage and traffic conditions pertaining to the collective behavior of drivers, raising
a significant question: to what degree is road traffic predictable in urban areas? Here we
rely on the precise records of daily vehicle mobility based on GPS positioning device in-
stalled in taxis to uncover the potential daily predictability of urban traffic patterns. Using the
mapping from the degree of congestion on roads into a time series of symbols and measur-
ing its entropy, we find a relatively high daily predictability of traffic conditions despite the ab-
sence of any priori knowledge of drivers' origins and destinations and quite different travel
patterns between weekdays and weekends. Moreover, we find a counterintuitive depen-
dence of the predictability on travel speed: the road segment associated with intermediate
average travel speed is most difficult to be predicted. We also explore the possibility of re-
covering the traffic condition of an inaccessible segment from its adjacent segments with re-
spect to limited observability. The highly predictable traffic patterns in spite of the
heterogeneity of drivers' behaviors and the variability of their origins and destinations en-
ables development of accurate predictive models for eventually devising practical strategies
to mitigate urban road congestion.

Introduction

The past decades have witnessed a rapid development of modern society accompanied with an
increasing demand for mobility in metropolises [1-4], accounting for the conflict between the
limits of road capacity and the increment of traffic demand reflected by severe traffic conges-
tions [5-7]. Induced by such problem, citizens suffer from the reduction of travel efficiency
and the increase of both fuel consumption [8] and air pollution [9] related with vehicle emis-
sion. For instance, in recent years, a number of major cities in China have frequently experi-
enced persistent haze, raising the need of better traffic management to mitigate congestion that
is likely one of the main factors for the pollution [10, 11]. Despite much effort dedicated to ad-
dress the problems of traffic jam [12], urban planning [13, 14], traffic prediction [15-17], as
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well as subway and bus system design [18, 19], we still lack a comprehensive understanding of
the dynamical behaviors of urban traffic. The difficulty stems from two factors: the lack of sys-
tematic and accurate data in conventional researches based on travel surveys and the diversity
of drivers’ complex self-adaptive behaviors in making routing choice decision [20, 21]. Fortu-
nately, “big data” as the inevitable outcome in the information era opens new routes to reinvent
urban traffic systems and offer solutions for increasingly serious traffic jams [22]. In this light,
mobile phone and LBS data have been employed to explore road usage patterns in urban areas
[23-26]. However, to eventually implementing control on road traffic, predicting traffic condi-
tions is the prerequisite, which prompts us to wonder, to what degree traffic flow on complex
road networks is predictable with respect to high self-adaptivity of drivers and without any pri-
ori knowledge of their origins and destinations.

In this paper, we for the first time explore the predictability of urban traffic and congestion
by using comprehensive records of Global Position System (GPS) devices installed in vehicles.
The data provide the velocity and locations of a large number of taxis in real time, enabling in-
vestigation and quantification of the predictability of segments in main roads in an urban road
network. In particular, we establish a mapping from the degree of congestion on a segment of
road into a time series of symbols, which allows us to exploit tools in the information theory,
such as entropy [27] and Fano’s inequality [28] to measure the predictability of traffic condi-
tion on a segment of road. Our methodology is inspired by the seminal work of Song et al. who
incorporate information theory into time series analysis to measure the limited predictability
of individual mobility [29]. Our main contribution is that we extend the tools of time series
analysis to the collective dynamics of road traffic rather than at individual level, by mapping
the vehicle records from GPS into road usage so as to offer the predictability of traffic condi-
tions at different locations. In contrast to the traditional way based on origin-destination analy-
sis [30], our approach relies only on short-time historical records of traffic conditions without
the need of priori knowledge of drivers’ origins and destinations and their associated naviga-
tion strategies. Our accessibility of such individual-level information is inherently limited by
the diversity in population, job switching, moving and urbanization. Our research yields a
number of interesting findings, including relatively high daily predictability of traffic condi-
tions in the three Ring Roads in Beijing [31] despite quite different travel patterns on the week-
ends compared to working days, the non-monotonic dependence of the predictability on
vehicle velocity and the recoverability of the traffic condition of an inaccessible segment by the
information of its adjacent observable segments. Thus we present a general and practical ap-
proach for understanding the predictability of real time urban road traffic and for devising ef-
fective control strategies to improve the roads’ level of service.

Results

We explore the predictability of traffic conditions by using the GPS records of more than
12000 taxis in Beijing, China, (see Methods for data description and processing). We focus on
the three Ring Roads, the 2nd, 3rd and 4th Rings in Beijing by mapping the states of vehicles
into the traffic conditions on the roads. The three rings bear the most heavy traffic burden in
Beijing and the data records pertains to them with high frequency are sufficient for quantifying
their traffic conditions. In particular, we divide each ring into a number of segments with given
segment length AL, and measure the traffic condition of each segment by the average velocity of
vehicles. To simplify our study, we discretize the average velocity of the segments in the range
from Okm/h to the speed limit 100km/h with a certain speed level interval AV, e.g., 10km/h.
Thus, the mapping gives rise to a time series of discrete states of speed for each road segment,
which allows us to do some analysis of discrete time series to reveal intrinsic traffic patterns.
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Fig 1. Transition probability of speed states. (a)-(c) Transition probability between different speed states in the 2nd (a), 3rd (b) and 4th (c) Ring Roads of
Beijing. The speed V between 10km/h and 70km/h is divided into 6 states with equal speed interval AV = 10km/h. Due to rare observations for V < 10km/h
and V > 70km/h, they are set to be two states respectively, without any further partitions. For each Ring Road, the result is obtained by averaging over all
road segments with equal length AL = 1km. We see that for each state, remaining unchanged and shifting to its adjacent states constitute a very large

proportion, implying a potential stable regulation in the traffic patterns.

doi:10.1371/journal.pone.0121825.g001

The dynamical behavior of a whole ring can then be quantified by that of all segments of it.
Fig 1 shows the transition probabilities between different ranges of speed, say, speed states. We
find that on average, a speed state is more likely to remain unchanged or shift to its nearby

states rather than change to a distant state. These observations imply the existence of a poten-

tially stable transition pattern that may facilitate the prediction of traffic conditions and con-
gestion from historical records.

We exploit information entropy [27] to quantify the uncertainty of speed transition and the
degree of predictability characterizing the time series of the speed at each segment. By follow-
ing Ref. [29], we assign three entropy measures to each road segment’s traffic pattern: (i)
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Random Entropy $¢. Random entropy is defined as S = log, N, where N; is the number of
distinct states, or speed levels, reached by road segment i. (ii) Temporal-uncorrelated Entropy
Si». Temporal-uncorrelated entropy is defined as §** = — Z]N:’l P;(7)log,p;(7), where py(j) is
the probability that the state j is reached by the road segment i. (iii) Actual Entropy S;. Actual
entropy is defined as _ZT;CT,.P(T,-')Ing [P(T})], where T; = {X}, X, . . ., X1} denotes the se-

quence of states that road segment i reaches in observation. P(T}) is the probability of finding
the time-ordered subsequence T; in the state transition sequence of segment i. It is noteworthy
that the random entropy S reflects the degree of predictability of a road segment’s state tran-
sition based on the assumption that each state is visited with equal probability. For the tempo-
ral-uncorrelated entropy S, it takes the heterogeneity in the probability into account, but
omits the order of the transition. In contrast, the actual entropy S; by considering both hetero-
geneous probability and temporal correlation offers more realistic characterization of the
traffic patterns.

The sufficient data with high record frequency on the three ring roads allow us to calculate
the actual entropy S; that in principle requires a continuous record of a road segment’s momen-
tary state. As shown in Fig 2(a), we can see remarkable difference between P(S) and p(srndy,
s peaks at about 2.6, indicating that on average each update of the speed
state represents 2.6 bits per hour new information. In other words, the new speed level could
be found in average 2 ~ 6 states. In contrast, the fact that P(S) of the actual entropy peaks at
S = 0.9 demonstrates that the real uncertainty in a segment’s speed state is 2°° ~ 1.87 rather
than 6.

The entropy of a segment’s speed allows us to measure the predictability IT that a suitable
predictive algorithm can correctly predict the segment’s future speed state. In analogy with
Ref. [29], the predictability measure is subject to Fano’s inequality. Specifically, if the speed
level of a single road segment is updated in N states with the time, then its predictability IT <
I1T™*(S, N), where IT™* could be acquired by solving

§ = H(ITMaX)) 4 (1 — [IMaX))]og (N — 1),

To be concrete,

where H(IT™™) represents the binary entropy function, namely
H(MIMaX) — _[[MaX og ([IM3X) _ (1 — [IM3X)]og, (1 — [1MX),

For a road segment with IT™ = 0.1, we could predict its state transition accurately only in 10%
of the cases. An equivalent statement is that 10% is the upper bound of probability for any algo-
rithms attempting to predict the segment’s speed state transition. Since we calculates IT™*
base on §™"4, §" and §, the result is encouraging. We found that under the condition
AL = 1km and AV = 20km/h, the predictability of the 2nd Ring Road segments is narrowly
peaked approximately at 0.83, indicating that it is theoretically possible to predict the transition
of speed status in 83% of the cases. This high predictability with bounded distribution indicate
that, despite the diversity of drivers’ origins, destinations, their routing decisions and adaptive
behaviors, strikingly the traffic patterns as a collective behavior of a large number of drivers are
of high degree of potential predictability exclusively based the historical records of daily traffic
patterns in the absence of any individual level information. We have also explored the maxi-
mum predictability [1"" and IT" based on $*™ and $™", as shown in Fig 2(b). We see that
both maxima in P(IT"") and P(IT"*"%) are much lower than that of P(IT™®), manifesting that
I1™** is a much better predictive tool than the other two and the temporal order of traffic pat-
terns contains significant information for precisely predicting future patterns.

We further explore how the settings of the road segment length AL and speed level interval
AV affect the predictability. As shown in Fig 3, except very small AV and very short AL, quite

PLOS ONE | DOI:10.1371/journal.pone.0121825  April 7, 2015 4/12



@ PLOS | one

Predictability of Urban Traffic

. grnd 14| . [rrend
4- -- glnc fod 71 "'; - Hunc

. 10 | e
3 ‘ —~
) il = s
| S - v
aft
1 'o' ~ 4 | E L 81
a" :‘\ E 2 AR & I' ‘\‘
—" ." ‘\ . 2 ," B
0 ; U LTS 0 : == ; ALEDRCY AN
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.2 0.4 0.6 0.8 1.0
Entropy II

Fig 2. Distributions of entropy and probability . (a) The distribution of the random entropy S, the uncorrelated entropy S and the entropy S; of road
segments in the 2nd Ring Road in Beijing. (b) The distribution of the M9, the M“"® and the M™®* across all road segments. The road segments are of

identical length AL = 1km and the interval of speed state is AV = 10km/h. The 3rd and 2th Ring Roads show similar results of P(S) and P(I1) to that of the 2nd
Ring Roads.

doi:10.1371/journal.pone.0121825.9002

high average predictability is observed. This provides strong evidence for the generally high
predictability of traffic conditions of the three ring roads. The relatively low predictability for
extreme cases is ascribed to the relatively big fluctuations in the average speed resulting from
insufficient records. For example, for a road segment with very short length, the probability of
finding a taxi in it within a certain time interval will be low. In other words, in this scenario, the
data records of taxis will become insufficient to capture the actual average speed in the seg-
ment, accounting for the big fluctuation of speed and inaccurate reflection of the traffic pattern
in the segment. Similarly, for small AV, the insufficient data subject to each speed state is inca-
pable of characterizing the real situation, leading to the specious low predictability. Neverthe-
less, based on our findings, insofar as the records are adequate to measure traffic conditions,

the traffic patterns are highly predictable, regardless of the settings of the road segment length
and speed interval.
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Fig 3. Predictability of the three Ring Roads. (a)-(c) The dependence of the maximum value N™** on AL and AV for the 2nd (a), the 3rd (b) and the 4th (c)
Ring Road. The color bars represent the values of M™#*. The results for each Ring Road are the average over all road segments in the Ring Road.

doi:10.1371/journal.pone.0121825.9003
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Fig 4. Local predictability and average speed. (a) The local predictability of road segments in the three Ring Roads. (b) The local average speed of road
segments in the three Ring Roads. In (a), the color bar represents the maximum value N™® of road segments and In (b), the color bar represents the average
speed of road segments.

doi:10.1371/journal.pone.0121825.g004

Although the traffic patterns of the three ring roads on average are highly predictable, there
are certain variations between different segments. Fig 4(a) shows the local predictability of
each segment on the map. We find that the local predictability is correlated with the average
local speed (Fig 4(b)), prompting us to investigate the correlation between them. Interestingly,
we observe a non-monotonic correlation between the local predictability and average speed
with the lowest predictability arising at intermediate speed, as shown in Fig 5(a) and 5(b). As a
result, we also find that it is most difficult to predict the traffic conditions of the 3rd ring road,
due to its intermediate average speed compared to the 2nd and 4th ring roads. A heuristic ex-
planation for this phenomenon can be provided with respect to the variational direction of
speed. Suppose that in a segment all the vehicles are fully stopped because of heavy congestion.
One minute later, remaining stopped or starting to pull away are the only two possible
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Fig 5. Relationship between predictability and average speed. (a) Predictability as measured by N™#* as a function of the average speed for the three
Ring Roads. (b) Box plots of the predictability in different ranges of the average speed. (c) The predictability and the average speed of each entire Ring Road.
The results are obtained for AL = 1Km and AV = 10km/h. the highest and lowest values outside the boxes represent 9% and 91% of the rank of predicted
values, respectively, the upper and lower bound of the boxes represent 25% and 75% of the rank of predicted values, respectively, and the bars inside the
boxes characterize the median value.

doi:10.1371/journal.pone.0121825.9005
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situations. Let’s consider another extreme case in which all vehicles are moving along the speed
limit of a road without any congestion. One minute later, there are also only two possible sce-
narios, i.e., their speeds remain unchanged or reduce because of some suddenly emerged con-
gestion. In contrast to the extreme cases, for a car with intermediate speed, it may accelerate,
decelerate or keep its current speed some time later, relying on what happens in the near future.
As demonstrated in the Fig 1, the variational direction of speed with the biggest volume for the
4th ring is between 50 60km/h to 60 70km/h. The volume of the biggest direction is obviously
bigger than the direction with the second biggest volume, which is between 40 50km/h to 50
60km/h. The direction with the biggest volume for the 3rd ring is between 40 50km/h to 50
60km/h. The volume of the biggest direction is very close to the direction with the second big-
gest volume, which is between 30 40km/h to 40 50km/h. The speed transition probability of
the 4th ring is more concentrated than that of the 3rd ring road. Thus, it is easier to predict the
speed transition of the 4th ring. Therefore, due to higher variant possibilities of intermediate
speed compared to that of low and high speed, the traffic condition of a segment with interme-
diate average speed is relatively most difficult to be predicted.

To gain a deeper understanding of the predictability of traffic patterns, we explore the effect
of commuter demand on daily traffic predictability in terms of the comparison between week-
days and weekends. It is intuitive that the commuter demand during weekdays may induce
quite different traffic patterns and congestion distributions compared to that on weekends.
However, to our surprise, despite the obvious difference, we find that the daily traffic patterns
in a week are of very similar predictability, nearly regardless of the commuter demand, as
shown in Fig 6. These striking results suggest that both weekdays and weekends have their spe-
cific inherent patterns encoded in the historical records, accounting for the relatively high and
similar predictability. In other words, although weekdays and weekends have different inherent
patterns, their predictability are as high as each other.

Next, we explore the probability of inferring the state of a segment from the state series of
its adjacent segments. This problem is related to the observability that in the control theory is
defined as if a system’s state can be fully recovered from a set of observable quantities [32]. To
the urban road traffic, inferring traffic conditions at some locations from the observation of the
other segments has important applications in monitoring and controlling traffic in real time
from a limited number of speed detectors. In analogy with the predictability, we calculate the

inference probability Iofa segment based on the information entropy and the Fano’s inequali-
ty. However, different from the predictability, here the information entropy is calculated by
S; = =2 _wer P(R)10g, [P(R))], where R; = {X), X, . . ., X1} denotes the states observed within a

single time interval of L road segments connected in a sequence, and P(R)) is the probability of
finding the subsequence R; in this sequence. Similarly, by solving

S = H([I™) + (1 fﬁmax)logz (N — 1), we obtain an upper bound IT™* which captures the
inference probability of the traffic pattern of a road segment from its observable
adjacent segments.

As shown in Fig 7, we see that the inference probability increases as the amount of segments
increases for all the three ring roads. This phenomenon can be heuristically explained as fol-
lows. For sufficiently short segment lengths (sufficient number of segments), the average vehi-
cle speed in a segment will be sufficiently close to that in its adjacent segments, enabling an
accurate inference of the segment’s state by trivially using that in its neighborhood. The incre-
ment of segment length induces more difference between adjacent segments, rendering the in-
ference more difficult. As a result, the inference probability is an increase function of the
amount of segments. More importantly, our results provide a quantitative understanding of
the inference probability in terms of the number of segments, which is valuable for determining
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doi:10.1371/journal.pone.0121825.9006

the density of speed detectors installed so as to infer the traffic conditions of the entire road in
real time with a certain accuracy. In addition, we also find that the inference probability of the
3rd ring road exhibits the lowest values compared to the 2nd and 4th ring roads, which is the
same as the predictability rank of the three ring roads, i.e., the 3rd ring road is of the lowest
predictability. This suggests that the average vehicle speed plays similar roles in both predict-

ability and inference probability, which deserves deeper explorations.

Discussion

In summary, using the GPS records of vehicles to capture the traffic patterns on urban roads in
the combination of entropy and Fano’s inequality demonstrates that daily traffic patterns in
the three major ring roads in Beijing are highly predictable by relying only on short-time his-
torical records, without any priori knowledge of drivers’ origins and destinations, driving hab-
its, navigation strategies, and adaptive behaviors. We have also found that despite the
apparently different traffic patterns on weekdays from that on weekends, where the former is

PLOS ONE | DOI:10.1371/journal.pone.0121825  April 7, 2015
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highly affected by commuter demand, their traffic patterns exhibit similarly high predictability.
This result indicates that each day has its specific inherent regularity and traffic pattern en-
coded in the historical records. Another striking finding is that the local predictability is non-
monotonically correlated with the average velocity and the lowest predictability arises at inter-
mediate velocity. Consequently, the traffic conditions of the 3rd ring road due to its intermedi-
ate average velocity compared to the 2nd and 4rd ring roads, is most difficult to be predicted.
We have provided a heuristic explanation for this counterintuitive phenomenon. Furthermore,
the probability of inferring the traffic pattern of an inaccessible road segment from the state se-
ries of its adjacent segment is explored by using entropy and Fano’s inequality, which is impor-
tant for monitoring the traffic condition of the entire road network with respect to the limits of
our ability to observe every location in real time.

All of these findings are valuable for the development of predictive models and algorithms
for achieving actual predictions of traffic conditions in real time based solely on short-time his-
torical records, without the need of individual-level information that in principle is impossible
to be fully accessed. Relying on the successful prediction of traffic patterns, it is feasible to im-
plement effective control to release and prohibit congestion by exploiting traditional ap-
proaches in traffic engineering [33] and the recently developed controllability theory for
complex networks [34, 35]. Urban road network as a typical complex networked system exhib-
its a variety of dynamical behaviors, such as the phantom jam and the diffusion of congestion
[12]. Thus, it is imperative to control the road network as a whole in virtue of the controllability
framework rather than controlling a single road or area individually. Our approach gains new
insight into mitigating increasingly severe congestion in urban areas by combining “big data”
and the tools in information theory and for time series analysis. Further effort, we hope, will be
inspired toward predicting traffic patterns and devising effective strategies to alleviate traffic
congestion in urban areas.
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Materials and Methods

We use OpenStreetMap [36] to extract all roads in the spatial range of Beijing from available
database. We then retrieve the trajectories of vehicles. The data set that we used contains the
trajectories of 20000 taxies recorded every minutes within a month in Beijing. For each record,
the location (the latitude and longitude), the direction, the state (whether there are any passen-
gers in the taxi), the time stamp and the velocity updated in every minutes are included. Be-
cause of the inevitable error in the GPS locating process, all the records are preprocessed to
match the GPS trajectories to the road by exploiting the ST-Matching algorithm [37]. After
that, each GPS record is mapped to a road segments of OpenStreetMap.

The GPS data we used in this paper are Floating Car Data (FCD). FCD is a method to deter-
mine the traffic speed on the road network. It is based on the collection of localization data,
speed, and direction of travel and time information from mobile phones or GPS devices in ve-
hicles being driven [38]. The FCD are the essential source for traffic information and for most
intelligent transportation systems of many cities. The FCD collection in Beijing is based on ma-
ture taxi system of Beijing. There are more than 70 thousand taxis running in Beijing, which ac-
counts for 25% of total traffic of roads in Beijing.

To be concrete, ST-Matching algorithm of Ref. [37] is implemented via four steps: (i) Candi-
date Preparation. Firstly, for each GPS record point, the ST-Matching algorithm retrieves a set
of candidate road segments within a fixed radius r, which is set to be 20 meters. For the points
without any candidates within , the algorithm discards them as invalid records. (ii)Spatial
Analysis. The algorithm next evaluates the given candidate segments by using “observation
probability” and “transmission probability” to express the geometric and topological informa-
tion of each candidate segments and the spatial relationship between them. This step gives rise

to the spatial analysis function F,(c;_, — ¢}), which is simply the product of the observation

probability and transmission probability. In this function, ¢ represents the sth candidate seg-
ment of the ith GPS sampling record. This function measures the probability that the the ith re-
cord is on ¢}, given an assumed real segment mapping of the (i—1)th record, that is c]_,. (iii)
Temporal Analysis. The ST-Matching algorithm exploits the temporal analysis function

F,(¢!_, — ¢) to further incorporate the temporal features into the map-matching process. This
step is available for the situation that only spatial analysis could not handle. Specifically, if the
trajectory of a vehicle lies between a freeway and a service road, and it moves in a relatively
high speed, then more likely it is that the vehicle is on the freeway. (iv) Result Matching. Finally,
after F (¢, , — ¢) and F,(c; , — ¢) is computed, the algorithm uses the ST-function to evalu-
ate each candidate segments, thatis F(c! | — ¢;) = F,(¢!_, — ¢) x F(c., —¢),2<i<n.
Thus, the problem is converted to finding a path with the highest ST-function value, given the
candidates for all sampling points.

A GPS record is a triple like <longitude, latitude, time>. For given segment length and time
level setup, the road segments travel speed was calculated using following steps: 1) Divide the
ring roads into several segments using the given segment length. For the AL = 1km, the 2nd
ring road were divided into 33 segments, the 3rd ring road into 49 and the 4th ring road into
66. 2) Use the ST-Matching algorithm to match all GPS records on the road segments. In this
step, each GPS record was appended with a segment ID field. 3) For given time level, calculate
the average speed of GPS records with same segment ID in each time level, and then we got the
travel speed of every road segment for each time level.

After the map-matching process, each point is assigned with an attribute which represents
the road segment that the point is on. Based on the work before, we could generate the time se-
ries of each road segment’s speed states.
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