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1 Understanding Urban Dynamics via
2 Context-Aware Tensor Factorization
3 with Neighboring Regularization
4 Jingyuan Wang , Junjie Wu , Ze Wang, Fei Gao, and Zhang Xiong

5 Abstract—Recent years have witnessed the world-wide emergence of mega-metropolises with incredibly huge populations.

6 Understanding residents mobility patterns, or urban dynamics, thus becomes crucial for building modern smart cities. In this paper, we

7 propose a Neighbor-Regularized and context-aware Non-negative Tensor Factorization model (NR-cNTF) to discover interpretable

8 urban dynamics from urban heterogeneous data. Different from many existing studies concerned with prediction tasks via tensor

9 completion, NR-cNTF focuses on gaining urban managerial insights from spatial, temporal, and spatio-temporal patterns. This is

10 enabled by high-quality Tucker factorizations regularized by both POI-based urban contexts and geographically neighboring relations.

11 NR-cNTF is also capable of unveiling long-term evolutions of urban dynamics via a pipeline initialization approach. We apply NR-cNTF

12 to a real-life data set containing rich taxi GPS trajectories and POI records of Beijing. The results indicate: 1) NR-cNTF accurately

13 captures four kinds of city rhythms and seventeen spatial communities; 2) the rapid development of Beijing, epitomized by the CBD

14 area, indeed intensifies the job-housing imbalance; 3) the southern areas with recent government investments have shown more

15 healthy development tendency. Finally, NR-cNTF is compared with some baselines on traffic prediction, which further justifies the

16 importance of urban contexts awareness and neighboring regulations.

17 Index Terms—Urban dynamics, tensor factorizations, urban planning, spatio-temporal pattern, GPS trajectory

Ç

18 1 INTRODUCTION

19 AS reported by the World Bank,1 at the end of 2016 more
20 than 53 percent population of the world, i.e., about 3.7
21 billion people, lived in cities; about 36 mega-metropolises
22 worldwide had a population of more than 10 million. Huge
23 urban populations bring great challenges such as traffic
24 jams, educational/medical resource scarcity, environmental
25 pollution, etc. Understanding the behavioral patterns of
26 residents in a city, or urban dynamics for short, therefore
27 becomes an important yet urgent demand for urban plan-
28 ning and public policy making from a smart city perspec-
29 tive. Fortunately, the widely adopted mobile crowd sensing

30(MCS) technologies [1], such as GPS, mobile phones, and
31location-based services, give us an unprecedented opportu-
32nity to access to enormous and perhaps unbounded human
33mobility data, which combined with urban infrastructure
34data offer a “rich ore” for discovery of urban dynamics.
35In general, mining urban dynamics from MCS data has
36three requirements. The first one is to model multi-source
37heterogeneous data, which consist of mobility records of resi-
38dents such as the origins and destinations, the travel time,
39the purposes, and the surroundings hidden in different data
40sources such as GPS trajectories, urban contexts, and city
41maps. The second requirement is to capture long-term evolu-
42tions, which is critically important for urban planners to
43understand the evolving rules of cities so as to make proper
44urban planning. The last one is to find urban dynamics with
45good interpretability—an obscure urban dynamic is useless to
46decision making in real-world application scenarios. Despite
47of rich literature in applying matrix/tensor factorizations to
48model urban heterogeneous data, most of them aim to gener-
49ate patterns to improve the predictive accuracy of traffic vol-
50umes [2], [3], [4], but leave pattern explanation to luck. It is not
51until recently that a few works begin to take the understand-
52ing of urban dynamics as the primary research task, and the
53representative ones include the earlier rNTD model using
54Tucker factorizations [5], the city spectrum modeling using
55CP factorizations [6], and still some using single source
56data [7], [8], [9] or for discovering urban functional zones
57only [10], [11]. These excellent works, however, cannot meet
58all the above-mentioned requirements simultaneously.
59In this paper, we propose aNeighbor-Regularized context-
60aware Non-negative Tensor Factorization model (NR-cNTF)

1. http://data.worldbank.org/
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61 to discover explainable and evolving urban dynamics from
62 multi-source heterogeneous urban data. In the NR-cNTF
63 model, we introduce the concepts of data space and pattern
64 space and describe the relations between urban data and
65 urban dynamics. The Tucker factorization is then introduced
66 with the POI-based (Point-Of-Interests) urban contexts to fac-
67 torize the Origin-Destination-Time (ODT) tensor into spatial,
68 temporal, and spatio-temporal patterns of good interpretabil-
69 ity. Moreover, a neighboring regularization that incorporates
70 geographically neighboring relations is introduced into our
71 model to further improve the explainability of spatial pat-
72 terns. Finally, a simple yet effective pipeline initialization
73 approach is designed to capture the long-term evolutions of
74 urban dynamics.
75 We conduct extensive experiments on a real-life data set
76 that contains the GPS trajectories of over 20,000 taxies and
77 over 400,000 POI records of Beijing from 2008 to 2015. The first
78 scenario of the experiments is to verify the ability of NR-cNTF
79 in disclosing true urban dynamics and obtain managerial
80 insights via NR-cNTF. The results indicate that: 1) NR-cNTF
81 accurately captures four kinds of mobility rhythms and sev-
82 enteen spatial communities of Beijing; 2) the rapid develop-
83 ment of Beijing in the CBD area, is indeed at the expense of
84 severer job-housing imbalance and therefore is unsustainable
85 in a long run; 3) the southern areas of Beijing are experiencing
86 unprecedented growth with the recent government invest-
87 ments, and most importantly they have shown more healthy
88 development tendency. The second scenario of the experi-
89 ments is to testify the prediction power of NR-cNTF, which is
90 compared with some baselines on traffic prediction. The
91 results demonstrate the superiority of NR-cNTF in tensor
92 completion, which further justifies the importance of adopt-
93 ing urban contexts and neighboring regulations inNR-cNTF.

94 2 PROBLEM FORMULATION

95 In this section, we formulate urban dynamics discovery as a
96 context-aware tensor factorization problem. Table 1 lists the
97 math variables to be used, which are divided into two cate-
98 gories, i.e., data-space variables and pattern-space variables,
99 according to their observability. Variables in the data space

100 are observable from real-world human mobility, while vari-
101 ables in the pattern space are latent but crucial for under-
102 standing urban dynamics.
103 Throughout the paper, we use lowercase symbols such as
104 a, b to denote scalars, bold lowercase symbols such as a, b
105 for vectors, bold uppercase symbols such as A, B for matri-
106 ces, and calligraphy symbols such as AA, BB for tensors.
107 Data-Space Variables.The primary variable in data space is a
108 data tensor. Assume there are M urban zones in a city, and N
109 time slices in a day. Let rxyz denote the resident travel intensity
110 from an origin zone x 2 f1; . . . ;Mg to a destination zone
111 y 2 f1; . . . ;Mg within a time slice z 2 f1; . . . ;Ng. A third-
112 order tensor RR 2 RM�M�N is then defined by having rxyz as
113 the ðx; y; zÞ element. Intuitively,RR contains the original infor-
114 mation about urban dynamics, which can be obtained from
115 urban vehicle and resident trajectory data. Another variable
116 in data space is an urban-context similarity matrix W 2 RM�M .
117 The ðp; qÞ element ofW, i.e., wpq, is a coefficient that describes
118 the similarity between urban zones p and q using, e.g., points
119 of interest (POI) data.

120Pattern-Space Variables. The variables in pattern space
121include a core tensor and three pattern projection matrices.
122Assume there are I origin spatial patterns (OSP), J destina-
123tion spatial patterns (DSP), andK temporal patterns (TP) hid-
124den inside the data tensorRR. We defineO 2 RM�I as a spatial
125projection matrix that projects M origin zones into I OSP’s.
126Similarly, D 2 RM�J is defined as another spatial projection
127matrix that projects M destination zones into J DSP’s. The
128matrix T 2 RN�K is a temporal projection matrix that projects
129N time slices to K TP’s. The elements of O, D and T are
130denoted as oxi, dyj and tzk, respectively, indicating the projec-
131tion intensities from the urban zones x, y and time slice z to
132OSP i, DSP j and TP k, 1 � i � I, 1 � j � J , 1 � k � K. We
133define a third-order tensor CC as a core tensor that describes the
134dynamics of resident travels among temporal and spatial pat-
135terns. The ði; j; kÞ element of CC, i.e., cijk, denotes the intensity
136of resident travels fromOSP i toDSP jwithin TP k.

1372.1 Construction of Data Tensor

138We here explain how to construct the data tensor RR using
139real-life GPS trajectory data of Beijing Taxies. To this end, we
140first segment the Beijing city map into M urban zones. In the
141literature, quite a fewmethods including the grid based, mor-
142phology based, road networks based, and administrative
143boundaries based methods [12], [13] can fulfill this task. Here
144we adopt a Traffic Analysis Zones (TAZ) map provided
145by Beijing Municipal Committee of Transport2 to segment
146Beijing into M ¼ 651 zones. Finally, since resident behaviors
147in city life are often cyclical every day, we divide one day into
148N ¼ 24 time slices (one hour per slice). The above procedure
149determines the threemodes ofRR.
150We then compute the element values of RR. Note that the
151taxi GPS data are often organized as a set of quintuples in the
152form as hvid; time; longitude; latitude; statei, where vid is
153the unique ID of a taxi, ðlongitude; latitudeÞ is the location of
154the taxi, and state informs whether the taxi is carrying any
155passengers at time time. We first obtain all taxi-based passen-
156ger travels by removing the records with “no passengers”
157state. Then an origin-destination-time record is constructed for
158each travel by picking up the first and last records of the travel
159and then extracting the origin and destination coordinates
160and the travel starting time.We collect the travel ODT records
161of all workdays in a month as a data set. The monthly total
162amount of travels that depart from TAZ x in time slice z and

TABLE 1
Notation Definition

Space Variable Definition

RR the data tensor
Data rxyz the ðx; y; zÞ element ofRR
Space W the urban context matrix

wpq the ðp; qÞ element ofW

CC the pattern tensor
cijk the ði; j; kÞ element of CC

Pattern O;D;T the pattern projection matrices
Space ox;dx; tx the xth row vectors ofO;D;T

o:i;d:i; t:i the ith column vectors ofO;D;T
oxi; dxi; txi the ðx; iÞ elements ofO;D;T

2. http://www.bjjtw.gov.cn/
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163 arrive at TAZ y is recorded as ~rxyz. As reported in [14], the
164 travel volumes between different urban zones usually follow
165 a long-tail distribution. Therefore, we adopt the log function
166 to rescale ~rxyz as

rxyz ¼ log 1þ ~rxyz
� �

; (1)
168168

169 which is finally used as the ðx; y; zÞ element ofRR.

170 2.2 Definition of Pattern Tensor

171 Variables in pattern space include CC,O,D, and T, where CC is
172 the core tensor that models the dynamic relations among
173 spatio-temporal patterns in the pattern space, and O, D and
174 T are the matrices that project the data tensor RR into the
175 core tensor CC. To better understand this, we give formal def-
176 initions to the spatial and temporal patterns as follows.

177 Definition 1 (Spatial Pattern). A spatial pattern is a vector
178 containing the membership score of each urban zone to this pat-
179 tern. Assume there are I spatial patterns andM urban zones. The
180 ith spatial pattern is denoted as a vector v:i ¼ ðv1i; . . . ; vMiÞ>,
181 where vmi is the membership score of themth zone to the ith spa-
182 tial pattern. The spatial projection matrix V that projects M
183 urban zones to I spatial patterns is then defined as V ¼
184 ½v:1; . . . ; v:I �.
185 The xth row vector of V, denoted as vx, is a vector that
186 depicts the membership scores of urban zone x to I different
187 spatial patterns. We assign x to spatial pattern i if
188 i 2 argmax1�j�Ivxj. In this way, we can cluster all urban
189 zones into the I spatial patterns. This implies that a spatial
190 pattern is essentially a spatial community consisting of urban
191 zones that function similarly in urban dynamics. For example,
192 most of residents in a residential community leave in the
193 morning and return in the evening. In contrast, for a business
194 community, people arrive in the morning and leave in the
195 evening. Spatial patterns can be further divided into origin
196 spatial patterns and destination spatial patterns. The projec-
197 tion matrix V is denoted as O for OSP’s and D for DSP’s for
198 differentiation. While O and D share the same M urban
199 zones, theymight have different numbers of spatial patterns.

200 Definition 2 (Temporal Pattern). A temporal pattern is a
201 vector containing the membership score of each time slice

202within a day to this pattern. Assume there are K temporal pat-
203terns and N time slices in a day. The kth temporal pattern is
204denoted as a vector t:k ¼ ðt1k; . . . ; tNkÞ>, where tnk is the mem-
205bership score of the nth time slice to the kth temporal pattern.
206The temporal projection matrix T that projects N times slices
207intoK temporal patterns is then defined as T ¼ ½t:1; . . . ; t:K �.
208In essence, a temporal pattern describes a temporal rhythm
209of urban dynamics, which might correspond to an event
210that occurs recurrently everyday, e.g., the morning peak
211and evening peak in a city. Accordingly, the vector t:k indi-
212cates the dynamic intensity of the rhythm kwithin a day.
213Next, we define a pattern tensor to describe the interrela-
214tionships among spatio-temporal patterns.

215Definition 3 (Pattern Tensor). A tensor CC 2 RI�J�K is a
216third-order pattern tensor, if its ði; j; kÞ element cijk indicates
217the intensity of resident travels from OSP i to DSP j in TP k,
2181 � i � I; 1 � j � J; 1 � k � K.

219Human behaviors in city life usually have synchronism,
220which can be described by urban dynamic patterns in CC. For
221example, intuitively, residents living in a residential com-
222munity commute to business regions synchronously in
223every morning peak of workdays. So an element cijk has a
224high value when the origin spatial pattern i corresponds to
225a residence community, the destination spatial pattern j cor-
226responds to a business community, and the temporal pat-
227tern k corresponds to a morning-peak rhythm.

2282.3 Definition of Urban Context

229Travel behaviors of residents not only have relations with
230urban spatial and temporal patterns but also have close rela-
231tions with the so-called urban context [11], [15]. Urban con-
232text refers to the surroundings inside an urban zone that
233can affect the travel behaviors of that zone. One typical type
234of urban context is the so-called points of interests including
235residential buildings, office buildings, shopping malls, etc.
236We have the following definition.

237Definition 4 (Urban-Context Similarity Matrix). Amatrix
238W 2 RM�M is called an urban-context similarity matrix, whose
239ðp; qÞ element wpq is a coefficient that measures the POI context
240similarity between zones p and q, 1 � p; q �M.

241In general, W is a nonnegative and symmetric matrix,
242which could be used to validate the effectiveness of the spa-
243tial patterns found purely from trajectory data. For example,
244it is intuitive that the travel patterns of urban zones with a
245mass of office buildings should be very similar, but differ
246sharply from that of zones filled with residential buildings.

2472.4 Problem Definition

248We here formulate the urban dynamics discovery problem as a
249tensor factorization problem. The model framework is given
250in Fig. 1, where the ODT data tensor RR, pattern tensor CC,
251and projection matricesO,D, and T have the following rela-
252tionship:

RR ¼ CC �o O�d D�t Tþ EE; (2)
254254

255where EE 2 RM�M�N is a random error tensor, and �n

256denotes the tensor n-mode product. Eq. (2) implies that the

Fig. 1. Model framework of cNTF.
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257 resident travel dynamics hidden inside data tensorRR can be
258 well explained by the latent dynamic patterns given by pat-
259 tern tensor CC. The matrices O, D, and T express the projec-
260 tion relations betweenRR and CC.
261 Note that while RR is observable from resident travels
262 data, the pattern tensor CC as well as the projection ma-
263 trices O, D and T are unknown variables. Hence, our
264 task is:

265 � To infer CC;O;D and T fromRR;
266 � To understand urban dynamics using CC,O,D, T.
267 The urban-context similarity matrix W offers additional
268 information to tensor factorization. Recall the row vector ox
269 of the projection matrix O, which contains the membership
270 scores of urban zone x to all the OSP’s. It is intuitive that
271 similar urban zones should exhibit similar spatial patterns.
272 Hence, we can measure the similarity of zones x and y by
273 simply having oxo

>
y . Analogously, we can also measure the

274 similarity of zones x and y by employing the information of
275 DSP’s in D, i.e., dxd

>
y . Since W evaluates the similarity

276 between x and y as wxy according to the urban context, we
277 finally have the following relationships betweenW and pro-
278 jection matricesO andD

W ¼ OO> þ EO; and W ¼ DD> þ ED; (3)

280280

281 where EO and ED are random error matrices. Note that in
282 Eq. (3), W is an observable variable and O and D are latent
283 ones. In other words, we can use urban context to fine-tune
284 OSP’s and DSP’s inO andD, respectively.
285 In summary, Eqs. (2) and (3) together define a context-
286 aware Non-negative Tensor Factorization (cNTF) problem.
287 Our task is to infer urban dynamics given cNTF.

288 2.5 Extension to Long-Term Evolution

289 Long-term evolution is an important characteristic of urban
290 dynamics, which refers to the evolution of urban spatial,
291 temporal and spatio-temporal patterns over time. For exam-
292 ple, temporal rhythms of resident travels in a city might
293 change with the developments of public transport, econom-
294 ics, migration, etc.
295 We use tensor sequence to describe the evolution of urban
296 dynamics in both data and pattern spaces. In the data space,
297 we define RRjLl¼1 ¼ fRR1; . . . ;RRLg as a data tensor sequence of
298 length L, whereRRl is the data tensor of the lth year. Suppose
299 we factorizeRRl intoOl,Dl,Tl and CCl according to Eqs. (2) and
300 (3), then we have the pattern tensor sequence CCjLl¼1 ¼
301 fCC1; . . . ; CCLg, and the corresponding projection matrix
302 sequencesOjLl¼1,DjLl¼1 andTjLl¼1, respectively.
303 The problem is, for any two subsequent years l and lþ 1,
304 the patterns inferred from RRl might not be comparable to
305 that from RRlþ1, for they are inferred separately to optimize
306 the objectives in Eqs. (2) and (3). Therefore, another task of
307 this study is to infer the long-term evolution of urban
308 dynamics given a data tensor sequence.

309 3 MODEL

310 In this section, we reformulate the cNTF problem from a
311 probabilistic perspective, which results in the exact objec-
312 tive function for urban dynamics discovery.

3133.1 Probabilistic Non-Negative Tensor Factorization

314We assume the random error of observation EE follows a
315Gaussian distribution: Nð0; s2

RÞ, then the conditional distri-
316bution over the observed entries inRR is defined as

P ðRRjCC;O;D;T; s2
RÞ

¼
YM
x¼1

YM
y¼1

YN
z¼1
NðrxyzjCC �o ox �d dy �t tz; s

2
RÞ:

(4)

318318

319

320In order to obtain more evident patterns, we should intro-
321duce sparse priors to the variables in pattern space. As a result,
322we adopt zero-mean Laplace priors for projectionmatrices

P ðOjsOÞ ¼
YM
x¼1
Lðoxj0; sOIIÞ;

P ðDjsDÞ ¼
YM
y¼1
Lðdyj0; sDIJÞ;

P ðTjsT Þ ¼
YN
z¼1
Lðtzj0; sT IKÞ;

(5)

324324

325and assume zero-mean Laplace priors for the pattern tensor

P ðCCjsCÞ ¼
YI
x¼1

YJ
y¼1

YK
z¼1
Lðcxyzj0; sCÞ: (6)

327327

328Then the posterior distribution of the pattern space varia-
329bles is given by

P ðCC;O;D;TjRR; s2
R; sC; sO; sD; sT Þ

¼ P ðRRjCC;O;D;T; s2
RÞP ðCCjsCÞP ðOjsOÞP ðDjsDÞP ðTjsT Þ

P ðRRjs2
RÞ

;

(7)
331331

332and the log posterior distribution is then calculated by

ln P ðCC;O;D;TjRR; s2
R; sC; sO; sD; sT Þ

/ � 1

2s2
R

X
xyz

ðrxyz � CC �o ox �d dy �t tzÞ2

� 1

sO

X
x

koxk1 �
1

sD

X
y

kdyk1 �
1

sT

X
z

ktzk1

� 1

sC

X
xyz

jcxyzj:

(8)

334334

335Therefore, to obtain the Maximum A Posteriori (MAP) esti-
336mation of O, D, T and CC is equivalent to minimizing the
337object function

~J ¼ 1

2s2
R
kRR� CC �o O�d D�t Tk2F

þ 1

sO
Ok k1þ

1

sD
kDk1 þ

1

sT
kTk1 þ

1

sC
kCCk1;

(9)

339339

340where k:kF is the Frobenius-norm, k:k1 is the L1-norm.
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342 We here introduce urban contextual factors into the proba-
343 bilistic non-negative tensor factorization model. We use a
344 Beijing POI dataset, with the categories given in Table 2.

345 3.2.1 Computing Urban Contextual Factors

346 Fig. 2 shows a clear positive correlation between POI quan-
347 tity and the resident travel volume (including inflow and
348 outflow) for all urban zones of Beijing. Moreover, urban
349 zones in the same community have similar categories of
350 POI’s (see Section 3 of Supplementary Materials3, which can
351 be found on the Computer Society Digital Library at http://
352 doi.ieeecomputersociety.org/10.1109/TKDE.2019.2915231,
353 for the details). Therefore, we use quantity and categories of
354 POI’s in an urban zone to describe urban contextual factors.
355 Suppose altogether we haveH POI categories, and denote
356 nph as the number of POI’s in category h for urban zone p. The
357 fraction of the hth category POI in the zone p is defined as

cph ¼ nphPP
p¼1 nph

; (10)

359359

360 The fraction of all category of POI in the zone p is then
361 defined as

np ¼
PH

h¼1 nphPP
p¼1
PH

h¼1 nph

; (11)

363363

364 We use the vector up ¼ ðcp1; . . . ; cph; . . . ; cpH; npÞ> to describe
365 the POI context of the zone p.
366 Given the POI context vectors, the similarity of two
367 urban zones p and q can be computed as

wpq ¼ up � uq

kupk � kuqk ; (12)

369369

370 which is the ðp; qÞ element ofW.

371 3.2.2 Incorporating Urban Contextual Factors

372 Context-aware regularization is an effective tool to fusion
373 contextual information into tensor and matrix factoriza-
374 tions [16], [17]. We introduce urban contextual factors as
375 context-aware regularization using a maximum a posteriori
376 method. Assume the elements of EO and ED in Eq. (3) follow
377 zero-mean Gaussian distributions, then we have

P ðWjO; s2
WOÞ ¼

YM
p¼1

YM
q¼1
Nðwpqjopo>q ; s2

WOÞ; (13)

379379

380and

P ðWjD; s2
WDÞ ¼

YM
p¼1

YM
q¼1
Nðwpqjdpd

>
q ; s

2
WDÞ: (14)

382382

383Let V ¼ fs2
R; s

2
WO; s

2
WD; sO; sD; sT ; sCg. Given the data ten-

384sor RR and urban context matrix W, the posterior distribu-
385tion ofO,D, T and CC is given by

P ðO;D;T; CCjRR;W;VÞ
/ P ðRRjO;D;T; CC;VÞP ðWjO;VÞP ðWjD;VÞ

P ðOj0;VÞP ðDj0;VÞP ðTj0;VÞP ðCCj0;VÞ;
(15)

387387

388and the log posterior distribution is

lnP ðO;D;T; CCjRR;W;VÞ
/ � 1

2s2
R

X
xyz

ðrxyz � CC �o ox �d dy �t tzÞ2

� 1

2s2
WO

X
pq

ðwpq � opo
>
q Þ2 �

1

2s2
WD

X
pq

ðwpq � dpd
>
q Þ2

� 1

sO

X
x

koxk1 �
1

sD

X
y

kdyk1 �
1

sT

X
z

ktzk1

� 1

sC

X
ijk

jcijkj:

(16)

390390

391

392To maximize the posterior distribution is equivalent to
393minimizing the sum-of-squared errors function with hybrid
394quadratic regularization terms, i.e.,

min
O;D;T;CC

J ¼ kRR� CC �o O�d D�t Tk2F
þ akW�OO>k2F þ bkW�DD>k2F
þ g Ok k1þdkDk1 þ �kTk1 þ "kCCk1

s:t:s:t: O � 0;D � 0;T � 0; CC � 0;

(17)

396396

397where a ¼ s2RR
s2
WO

, b ¼ s2RR
s2
WD

, g ¼ 2s2RR
sO

, d ¼ 2s2RR
sD

, � ¼ 2s2RR
sT

, " ¼ 2s2RR
sCC

.

398Note that we introduce non-negativity constraints on the
variables so as to avoid perplexing negative travel volumes.

Eq. (17) indeed formulates the cNTF problem defined in

Section 2.4.

TABLE 2
Information of POI Categories

ID POI category ID POI category

1 food & beverage Service 8 education and culture
2 hotel 9 business building
3 scenic spot 10 residence
4 finance & insurance 11 living service
5 corporate business 12 sports & entertainments
6 shopping service 13 medical care
7 transportation facilities 14 government agencies

Fig. 2. Validation of urban context correlations.

3. The companion file with the supplementary materials of this
paper.
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of399 3.3 Neighboring Regularization

400 Let SPi ¼ fx : vxi ¼ max1�j�Ivxjg denote the ith urban com-
401 munity corresponding to the spatial pattern v:i in the spatial
402 projection matrix V. For the urban zones in SPi, it is natural
403 to expect that: i) they are geographically neighboring to
404 each other, and ii) their resident mobility behaviors are sim-
405 ilar to one another and different from that in other commu-
406 nities. These, however, have not been considered in the
407 above-mentioned cNTF model.
408 To address these, we here introduce the so-called Neigh-
409 boring Regularization (NR), which is inspired by the condi-
410 tional random field based image segmentation method
411 in [18]. Specifically, wemodel urban community discovery as
412 an image segmentation problem; that is, the community
413 labels of urban zones are modeled as a Markov random field
414 GðV;EÞ, where nx 2 V is the community label of urban zone
415 x, and exy 2 E is an undirectional dependency between urban
416 zone x and y. For the latent nx, we have an observable matrix
417 Rx:: for the origin order ofRR, orR:y: for the destination order.
418 Without loss of generality, in what follows, we use the
419 origin order as an example to introduce the neighboring
420 regularization. Suppose GðV;EÞ and Rx::, x 2 f1 . . .Mg, sat-
421 isfy the conditional random field hypothesis. Similar to the
422 classical image segmentation task in [18], the optimization
423 objective for community discovery is to maximize a poten-
424 tial function as

z ¼
XM
x¼1

cu
xðnxÞ þ

XM
x¼1

X
y2Mx

cp
xyðnx; nyÞ; (18)

426426

427 where Mx is the set of neighbor zones of zone x. cu
xðnxÞ is

428 the unary potential of the CRF in zone x when the commu-
429 nity label of x is set to nx, which is defined as

cu
xðnxÞ ¼ �log

oxnxPI
i¼1 oxi

: (19)

431431

432 cp
xyðnx; nyÞ is the pairwise potential between zones x and y

433 when the community labels of x and y are set to nx and ny,
434 respectively; that is

cp
xyðnx; nyÞ ¼

0; if nx ¼ ny;
gðx; yÞ; otherwise:

�
(20)

436436

437 Note that gðx; yÞ is a function of the difference between Rx::

438 and Ry::, which is defined as a Gaussian kernel as follows:

gðx; yÞ ¼ exp � Rx:: � Ry::

�� ��2
F

2s2
NR

 !
; (21)

440440

441 where sNR is a parameter suggested in [18]. This actually
442 introduces a penalty for the zones that are adjacent and

443have similar resident mobility behaviors but are assigned to
444different communities.
445In a nutshell, Eq. (18) introduces the spatial community
446discovery problem, which could be regarded as a neighbor-
447ing regularization to cNTF, and thus form the so-called NR-
448cNTFmodel.

4493.4 Modeling Long-Term Evolution

450We here introduce a simple yet effective way to model the
451long-term evolution of spatio-temporal patterns. Let RRl and
452Wl denote the data tensor and POI similarity matrix in the
453lth year, and Gl ¼ CCl;Ol;Dl;Tlf g denote the set of latent pat-
454terns learnt from the lth year’s data, l ¼ 1; 2; . . . ; L.
455As described in Section 2.5, to factorize every RRl inde-
456pendently for GjLl¼1 is often inappropriate for generating
457incomparable patterns in successive years. The Dynamic
458Tensor Analysis (DTA) scheme suggested in [19], [20] can-
459not fulfill our task either for using RRl as well as historical
460data tensors to obtain a “hybrid” Gl, which is not the genu-
461ine Gl we aim to analyze in practice.
462We here propose a simple Pipeline Initialization based
463Tensor Sequence Analysis (PI-TSA) method. In PI-TSA, the
464factorization results in Gl are expressed as

Gl ¼ fNR�cNTF RRl;Wl;Gl�1ð Þ; (22)
466466

467where fNR�cNTF denotes the optimization algorithm for NR-

468cNTF. Fig. 3 further illustrates PI-TSA via a flow chart. As

can be seen, the key of PI-TSA is to set the initial values of

the lth year’s optimization as the outputs in the (l-1)th step

(i.e., Gl�1). In this way, the patterns in the (l-1)th year can be

“inherited” by the patterns in the lth year, and only the

information of RRl and Wl is used for pattern discovery in
the lth year.

469Algorithm 1. Block Coordinate Descent Procedure

470Require: Data sets RR;Wf g, parameters g; d; �; "f g
471Initialization: CCð0Þ;Oð0Þ;Dð0Þ;Tð0Þ

� �
472for s ¼ 1; 2; . . . do
473Update CCðsÞ by solving the problem (23a).
474UpdateOðsÞ by solving the problem (23b).
475UpdateDðsÞ by solving the problem (23c).
476Update TðsÞ by solving the problem (23d).
477Apply Algorithm 2 toOðsÞ.
478Apply Algorithm 2 toDðsÞ.
479if convergence then

480return CCðsÞ;OðsÞ;DðsÞ;TðsÞ
� �

.

481end if
482end for

4834 INFERENCE

4844.1 Basic Optimization

485We adopt the Block Coordinate Descent-Proximal Gradient
486(BCD-PG) algorithm [21], [22] to solve the cNTF problem in
487Eq. (17). While this function is not jointly convex with
488respect to CC, O, D, and T, it is block multiconvex with each
489one when the other three are fixed. Therefore, as shown in
490Algorithm 1, we adopt a Block Coordinate Descent (BCD)

Fig. 3. Pipeline initialization for tensor sequence analysis.
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491 procedure, which starts from an initialization on Gð0Þ, and
492 then iteratively updates GðsÞ, s ¼ 1; 2; . . . ; by

CCðsÞ ¼ arg min
CC

J CC;Oðs�1Þ;Dðs�1Þ;Tðs�1Þ
� �

þ gkCCk1; (23a)494494

495

OðsÞ ¼ arg min
O

J CCðsÞ;O;Dðs�1Þ;Tðs�1Þ
� �

þ dkOk1; (23b)
497497

498

DðsÞ ¼ arg min
D

J CCðsÞ;OðsÞ;D;Tðs�1Þ
� �

þ �kDk1; (23c)500500

501

TðsÞ ¼ arg min
T

J CCðsÞ;OðsÞ;DðsÞ;T
� �

þ "kTk1: (23d)
503503

504

505 Let g1; g2; g3; g4
� �

denote CC;O;D;Tð Þ for concision. Using
506 a Proximal Gradient (PG) method, the algorithm updates
507 the ith variable of G in the sth round as

g
ðsÞ
i ¼ arg min

gi�0

@J g
ðsÞ
<i ; ~g

ðsÞ
i ;g

ðs�1Þ
>i

� �
@gi

;gi � ~g
ðsÞ
i

* +

þ ti

2
gi � ~g

ðsÞ
i

��� ���2
F
þ �ikgik1

¼ max 0; ~g
ðsÞ
i �

1

ti

@J g
ðsÞ
<i ; ~g

ðsÞ
i ;g

ðs�1Þ
>i

� �
@gi

� �i

ti

8<
:

9=
;;

(24)

509509

510 where h�i denotes the inner product,gðsÞ<i denotes fgðsÞ1 . . . g
ðsÞ
i�1g,

511 and g
ðs�1Þ
>i denotes fgðs�1Þiþ1 . . . g

ðs�1Þ
4 g. The variable ~g

ðsÞ
i is a lin-

ear extrapolated point as follows:

~g
ðsÞ
i ¼ g

ðs�1Þ
i þ v

ðsÞ
i g

ðs�1Þ
i � g

ðs�2Þ
i

� �
; (25)

where v
ðsÞ
i is an extrapolation weight set according to [22].

512 The parameter ti in (24) is a Lipschitz constant of
@J gið Þ
@gi

with
respect to gi, namely

@J gi1

� �
@gi1

�
@J gi2

� �
@gi2

������
������
F

� tikgi1 � gi2kF ;8 gi1 ; gi2 ; (26)

and �i is the regularization parameter of gi. Specifically,

513 the gradients of J with respect to each component are

calculated as

@J
@CC ¼ 2

�
CC �o O>O

� ��d D>D
� ��t T>T

� �
�RR�o O

> �d D
> �t T

>
�
;

@J
@O
¼ 2

�
O CC �d D>D

� ��t T>T
� �� �

oð ÞCC>oð Þ
� RR�d D

> �t T
>� �

oð ÞCC>oð Þ � a W�OO>
� �

O
�
;

@J
@D
¼ 2

�
D CC �o O>O

� ��t T>T
� �� �

dð ÞCC>dð Þ
� RR�o O

> �t T
>� �

dð ÞCC>dð Þ � b W�DD>
� �

D
�
;

@J
@T
¼ 2

�
T CC �o O>O

� ��d D>D
� �� �

tð ÞCC>tð Þ
� RR�o O

> �d D
>� �

tð ÞCC>tð Þ
�
;

(27)

where XX xð Þ denotes the mode-xmatricization of tensor XX .

5144.2 Neighboring Regularization Optimization

515Algorithm 2 shows the optimization process of neighboring
516regularization. Without loss of generality, we still take the
517origin order for illustration. In each cNTF optimization iter-
518ation, Algorithm 2 regularizes the projection matrix O
519through the following steps:

5201) Calculate Unary Potentials: We first normalizeO as

o0xi ¼
oxiPI
j¼1 oxj

: (28)

522522

523Then the unary potential of oxi is c
u
xðiÞ ¼ �log o0xi.

5242) Calculate Pairwise Potentials: We then calculate the
525average pairwise potential of nx ¼ i to ny 2 fjjj 6¼ ig
526as

Qxi ¼
X
j6¼i

X
y2Mx

Pyj � cp
xyði; jÞ; (29)

528528

529where Mx is the set of neighbor zones for zone x. Pyj

530in Eq. (29) is a probability of vy ¼ j, which is defined
531as

Pyj ¼
expð�cu

yðjÞÞ
Zy

¼ o0yj; (30)

533533

534where 1=Zx denotes the partition function.
5353) Update the Projection Matrix: Finally, we calculate the
536total potential of oxi as

zxi ¼ cu
xðiÞ þQxi: (31) 538538

539

540The regularized element is then defined as

~oxi ¼ expð�zxiÞ �
XI
j¼1

oxj: (32)

542542

543For the sth round of iteration in Algorithm 1, we define

544DNR ¼ ~o
ðsÞ
xi � o

ðsÞ
xi , and DcNTF ¼ o

ðsÞ
xi � o

ðs�1Þ
xi . Algorithm 2 then

545updates o
ðsÞ
xi as

o
ðsÞ
xi ¼ maxf0; oðs�1Þxi þ DcNTF þ DNRg; if DcNTF � 0;

o
ðs�1Þ
xi þmaxf0;DcNTF þ DNRg; otherwise:

(

(33)

546Note that ~o
ðsÞ
xi � o

ðsÞ
xi ) DNR � 0, so the update of oxi in

547Eq. (33) is in the same direction with the gradient of o
ðs�1Þ
xi .

548Algorithm 2 therefore ensures that the reconstruction error
549in each iteration is always the same or lower than that in the
550previous iteration.

551Algorithm 2.Neighboring Regularization Optimization

552Unary Potentials: o0xi  oxiPI

j¼1 oxj
; cu

xðiÞ  �log o0xi:

553Pairwise Potentials: ~Qxi  
P

j6¼i
P

y2Mx
cp

xyði; jÞo0yj:
554Update the Projection Matrix.
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of555 5 EXPERIMENTAL RESULTS

556 In this section, we conduct extensive experiments to evalu-
557 ate the effectiveness of our methods in learning urban
558 dynamics and gaining managerial insights for urban plan-
559 ning. We also compare our methods with some baselines on
560 traffic prediction, which justifies the modeling of urban con-
561 texts and neighboring regulation in NR-cNTF.

562 5.1 Experimental Setup

563 5.1.1 Data Sets

564 Three types of data sets were used in our experiments
565 including taxi trajectory data, POI data, and Traffic Analysis
566 Zone data. The taxi trajectory data set contains the GPS tra-
567 jectories of 20,000 Beijing taxis collected in November 2008
568 and November 2015, from which we extracted more than 6
569 million trips of taxi passengers to present the daily mobility
570 behaviors of residents in Beijing. The POI data set contains
571 more than 400 thousands POI records of Beijing in the years
572 of 2008 and 2015. The Traffic Analysis Zone data set, offered
573 by Beijing Municipal Commission of Transportation,
574 divides the Beijing area within the 5th Ring Road into 651
575 zones. Using the three data sets, we built two data tensors
576 ð651� 651� 24Þ and two POI context matrices ð651� 651Þ
577 for the years of 2008 and 2015, respectively. In the experi-
578 ments, we only use data of workdays to construct the data
579 tensor RR, so the discovered patterns reflect resident mobil-
580 ity in workdays. Peoples leisure patterns in holiday could
581 be very different from their workday patterns. We have con-
582 ducted extra experiments on holiday data, and included the
583 results to Supplementary Materials, available online, for read-
584 ers with interests.

585 5.1.2 Setting of Dimensionality of Pattern Space

586 The goal of the NR-cNTF model is to find an I � J�
587 K-dimensional pattern space. How to set I; J;K appropri-
588 ately, however, is a “tricky” issue. If the dimensionality is too
589 small, we might omit some urban dynamics; if too large, we
590 might obtainmany trivial patterns (for the extreme case, if the
591 dimensionality of the pattern space is the same as the data
592 space, the patternswill bemeaningless).
593 In our experiments, we set the parameters carefully so as
594 to make a tradeoff between the reconstruction error and the
595 dimension reduction. The reconstruction error is evaluated
596 by Root Mean Square Error (RMSE) defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

x¼1
PM

y¼1
PN

z¼1 rxyz � r̂xyz
� �2

M �M �N

s
; (34)

598598

599where r̂xyz is the (x; y; z) element of the reconstructed data
600tensor. We repeated experiments 10 times with I ¼ J rang-
601ing from 5 to 30 and K ranging from 2 to 10. Fig. 4 gives the
602resultant average reconstruction errors with different
603parameters, where RMSE reduces sharply at the very begin-
604ning but slows down when I; J � 20 and K � 4. We there-
605fore set I ¼ J ¼ 20 andK ¼ 4 as defaults.

6065.1.3 Setting of Tradeoff Parameters

607InNR-cNTF, the tradeoff parameters a and b are for adjusting
608the strength of urban context terms, and g, d and � for adjust-
609ing the strength of sparsity regularization terms. In our exper-
610iment, we set the tradeoff parameters using a traverse
611approach. We vary a and b from 0 to 0.05 and g, d and � from
6120.1 to 10, respectively, aiming to choose the parameters with
613the best performances. Fig. 5 exhibits the experimental recon-
614struction errors with different tradeoff parameters, where
615each point is averaged on 10 runs. As can be seen, the best per-
616formance appears when a ¼ b ¼ 0:01 and g ¼ d ¼ � ¼ 2:5,
617which become the default settings.

6185.2 Discovery of Temporal Patterns

619Here, we describe the temporal patterns discovered from
620Beijing taxi traffic in 2008 and 2015. To facilitate comparison,
621we first introduce a normalization scheme to the projection
622matrix T. Specifically, for the kth pattern, we define a mask

623matrix as Yk 2 RN�K , where the element ykxi ¼ 1when i ¼ k,
624and 0 otherwise. We use the mask matrix to construct a data
625tensor as

~R~Rk ¼ CC �o O�d D�t T	 Yk
� �

: (35)
627627

628In Eq. (35), the elements of T corresponding to the patterns

629:k are multiplied by zero, so ~R~Rk
only contains the compo-

nents of the pattern k. Therefore, the physical meaning of

630~R~Rk
is a component tensor corresponding to the kth temporal

631pattern of the data tensor RR. Using ~R~Rk
, we define the energy

of the temporal pattern k as

uk ¼ k ~R~Rkk1
M �M �N

¼
PM

x¼1
PM

y¼1
PN

z¼1 j~rkxyzj
M �M �N

: (36)

The physical meaning of the energy uk is a normalized size
of the components corresponding to the temporal pattern k.

632In the experiments, we define the re-scaled pattern coeffi-
633cient ~tzk as

~tzk ¼ tzkPN
n¼1 tnk

� uk: (37)
635635

Fig. 4. Performance with varying dimensionality of pattern space.
Fig. 5. Performance with varying POI and L1 regularization coefficients.
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637 pattern k at the time slice z. The vector ~t:k is the distribution
638 of uk over the N time slices, and

PN
z¼1 ~tzk ¼ uk. We compare

639 the re-scaled pattern coefficients of different years to dem-
640 onstrate the changes of temporal patterns of resident mobil-
641 ity from 2008 and 2015.
642 Fig. 6 shows the four temporal patterns, which indeed
643 correspond to four rhythms of urban traffic:

644 � P1: Morning Peak, with an active range roughly from
645 6:00 to 11:00.
646 � P2: Midday, with an active range roughly from 9:00 to
647 18:00.
648 � P3: Evening Peak, with an active range roughly from
649 16:00 to 24:00.
650 � P4: Night, with an active range roughly from 20:00 to
651 3:00 of the next day.
652 To further reveal the evolution of temporal patterns from
653 2008 to 2015, we plot comparative diagram for each pattern
654 of the two yeas in Fig. 7. The first observation is that the
655 intensity of the morning pattern was decreased significantly
656 from 2008 to 2015 (see Fig. 7a), whereas the evening pattern
657 seems much more stable (see Fig. 7c). We believe the reduc-
658 tion of the morning peak via taxies is due to the rapid devel-
659 opment of the metro system in Beijing. During the period
660 from 2008 to 2015, the Beijing metro increased the mileage
661 from 198 to 631 km, which is particularly suitable for the
662 time-rigid morning commute but has less impact to the
663 evening commute with relatively flexible time.
664 Another observation is that the intensity of the midday
665 pattern was increased during the seven years (see Fig. 7b).
666 The main part of travel volume in the midday pattern con-
667 sists of business travels from one workplace to another,
668 whose destinations are random in essence and therefore
669 cannot count heavily on public transportation systems like
670 metros. Moreover, the fast-rising income in China in recent
671 years might also contribute to the more spending on the rel-
672 atively expensive taxi service.

673The most interesting observation is that the peak time of
674the night pattern in 2015 came about two hours later than
675that in 2008 (Fig. 7d). This implies that residents tend to
676have more travels in the midnight in recent years. The rea-
677sons behind this could be complicated, which might include
678some lifestyle changes in Beijing, such as the more colorful
679nightlife or the higher overtime working pressures.
680To sum up, the NR-cNTF model well captures the tempo-
681ral patterns hidden inside the Beijing taxi traffic. The evolu-
682tion of these patterns further unveils the development of
683Beijing metros and the changes of lifestyle.

6845.3 Discovery of Spatial Patterns

685Here, we explore the spatial patterns discovered by NR-
686cNTF. Given any origin or destination pattern v:i (see Defi-
687nition 1 in Section 2.2), we first obtain the corresponding
688urban community SPi (see Section 3.3). We adopt the “crisp
689partition” assumption so that an urban zone will be
690assigned to one and only one urban community. As a result,
691among the I ¼ J ¼ 20 patterns in our experiment, we obtain
69217 urban communities, and the rest three are empty and
693omitted. Note that we only use destination spatial patterns
694for illustration below. The origin spatial patterns have the
695similar results, we don’t put them in the paper for concision.
696Figs. 8a and 8b visualize the urban communities corre-
697sponding to the destination spatial patterns found in 2008 and
6982015, respectively. As can be seen, each urban community
699(filled with a same color) identified by NR-cNTF contains
700urban zones geographically adjacent to at least one zone in
701the same community, which agrees with our intuition about
702functional zoning of a city. In contrast, Fig. 8c shows the 2008
703urban communities found by cNTF without neighboring reg-
704ulation, whose functionalities are less clear due to the geo-
705graphical discontinuity. For the convenience of discussion,
706we numbered the communities in Fig. 8b from 1 to 17.
707A general observation from Fig. 8 is that the spatial com-
708munities of Beijing radially surround the center of Beijing.
709This character of spatial communities has close relations with
710the trunk road network structure of Beijing. Fig. 10a shows
711there are four concentric ring roads surrounding the center of
712Beijing. As reported in [23], the ring roads provide a basic
713framework for the city’s overall spatial pattern. Affected by
714the ring roads, we can see that the communities discovered in
715Fig. 8 also constitute two concentric circles surrounding the
716center of the Beijing city. Specifically, the communities C1-
717C10 form the outer circle, and C11-C17 form the inner circle.
718Fig. 10b plots the trunk road network of Beijing over the com-
719munities, fromwhich we can see that many boundaries of the

Fig. 6. Temporal patterns in 2008 and 2015.

Fig. 7. The temporal patterns comparison between 2008 and 2012.
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720 communities overlap with the trunk roads, indicating that the
721 spatial patterns of residential mobility in Beijing are deeply
722 shaped by the urban trunk road network.
723 Another observation from Fig. 8 is the interesting evolu-
724 tion of some urban communities in recent years. Let us take
725 a closer look on community C7 located in the south of Bei-
726 jing, which has an obvious expansion trend from 2008 to
727 2015. That is, some urban zones that belonged to C6 in 2008
728 were “absorbed” by C7 in 2015. To understand this, we
729 should trace back to the so-called South Beijing Develop-
730 ment Plan (SBDP) issued in 2008, which is a government
731 investment plan in south areas of Beijing, with an executive
732 period from 2010 to 2015 and a total investment of nearly
733 62.9 billion USD (more information about SBDP could be
734 found in Supplementary Materials, available online). The pur-
735 pose of SBDP is to narrow the development gap between
736 the lagging-behind southern region and other areas of the
737 city. It is interesting that the communities C6 and C7 are
738 just in the investment region of the plan (see Fig. 2 in Supple-
739 mentary Materials, available online, for the evidence). The
740 evolution of C6 and C7 from 2008 to 2015 essentially reflects
741 the great impact of huge economic investments to the real-
742 life development of a city.
743 To sumup, the above results justify the effectiveness of our
744 NR-cNTF model in uncovering latent and geographically

745adjacent spatial patterns, as well as their inconspicuous evo-
746lutions in recent years.

7475.4 Discovery of Urban Dynamics Among Patterns

748Here, we use the core tensor CC to explore the urban dynam-
749ics, i.e., the interactions among spatial and temporal pat-
750terns. We first observe the slice C::k of CC, which reveals the
751traffic intensity from every origin communities to every des-
752tination ones given the temporal pattern k, i.e., a community
753level origin-destination (OD) matrix in rhythm k.
754Fig. 9 visualizes the community OD-matrices in the
755morning peak, midday, evening peak and night rhythms of
7562008 and 2015. A darker color indicates a higher traffic
757intensity. As can be seen, most energies of the OD-matrices
758are concentrated in their diagonal lines, implying that most
759of taxi travels in Beijing actually happened within the same
760community with relatively short distances. Moreover, the
761travel demands across communities have a tidal phenome-
762non. That is, in the morning peak, people flowed out from
763many communities (i.e., residential areas) and flowed in a
764few ones (i.e., working areas), and the situation was just the
765reverse in the evening peak and night rhythms. This implies
766that while the residential areas in Beijing are very dispersed,
767the workplaces are relatively concentrated. Indeed, it seems
768from Fig. 9e that C10, C13 and C17 are the three “most

Fig. 8. Destination spatial patterns in 2008 and 2015.

Fig. 9. Dynamic patterns in 2008 and 2015.
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770 known as the Zhongguancun area,4 Beijing Central Business
771 District (CBD),5 and Beijing Financial Street,6 respectively.
772 From this aspect, NR-cNTF indeed generates high-quality
773 patterns for urban dynamics understanding.
774 We then explore the evolution of traffic intensities from
775 2008 to 2015 in Beijing. For the comparison purpose, we first
776 concentrate the energies of projection matrices into the core
777 tensor as c0ijk ¼ cijk �

P
x oxi �

P
y dyj �

P
z tzk. The total inten-

778 sity of inter-community traffic for a community x is then
779 calculated as Iinterx ¼Pi6¼x

P
k c
0
ixk þ

P
j6¼x
P

k c
0
xjk, and the

780 intra-community traffic intensity for x is given by
781 Iintrax ¼Pk c

0
xxk. Along this line, we can quantify the daily

782 increments of inter- and intra-community traffic intensities
783 from 2008 to 2015, as shown in Fig. 11.
784 From Fig. 11a, it is obvious that the inter-community traf-
785 fic increased from 2008 to 2015 for almost all communities,
786 with C10 (Zhongguancun area), C13 (CBD area) and C17
787 (Financial Street area) being the most significant ones. In
788 particular, as shown in Fig. 11b, the Zhongguancun area, a
789 technology hub of Beijing and well-known as the “Chinese
790 Silicon Valley”, gains a highest growth ratio during the
791 seven years, which coincides with the developing priority
792 of Beijing with high-tech industries preference.
793 Fig. 11c depicts the intra-community traffic intensity of
794 each community from 2008 to 2015. It is interesting that C7
795 and C15 emerged as the top-2 communities with highest
796 growth in internal traffic. Recall that these two communities
797 are located in the south of the Beijing city, and have bene-
798 fited from the 30 billion dollar investment of the South Bei-
799 jing Development Plan. The significant growth of internal
800 traffic implies that these two communities are gaining
801 more active economics, and perhaps are enjoying more sus-
802 tainable developing pattern—residents can work and rest
803 interchangeably within a small distance. This indeed reco-
804 mmends a potential solution to mitigating the “big city
805 disease” of Beijing: to promote industries and housing in a
806 same community or close ones. This job-housing balance
807 thinking, however, was not the primary choice of Beijing in
808 the past several decades. The development of the CBD area,
809 which we will discuss below, is just the epitome.
810 In Fig. 12, we study the dynamic patterns of a particular
811 community: the CBD area (C13), which is the central business
812 district of Beijing and shapes the lifestyle of the city deeply. In

813the figure, the color of a community indicates the traffic inten-
814sity of that community from or to the CBD community: the
815redder the stronger, and the arrows indicate traffic directions
816between communities. As shown in Fig. 12, CBD is a pure
817business area, with residents flowing in in the morning and
818flowing out in the evening. Similar situations can be found
819from the Zhongguancun (C10) and the Financial Street (C17)
820communities. This indeed reflects the severe job-housing
821imbalance in Beijing, which contributes a lot to the city disease
822such as traffic congestion. Nevertheless, it is more interesting
823to find the pattern evolution of CBD from 2008 to 2015. From
824Figs. 12a and 12b, we can find the nearly symmetric incoming
825and outgoing flows between the CBD community and the
826communities surrounding CBD in 2008. This symmetry, how-
827ever, disappeared in 2015, where the outflows from CBD in
828the evening spread over more communities than that in the
829morning (see Figs. 12c and 12d). We believe it is Fig. 12d
830rather than Fig. 12c that revealed all the housing communities
831for CBD. The possible reason is, for residents living in remote
832communities, the long-term, timely and economicway commut-
833ing to CBD in the morning is to take metro rather than taxi.
834From this angle, we can conclude that the job-housing imbal-
835ance gets even worse with the rapid development of the CBD
836area from 2008 to 2015.
837To sum up, the evolution of urban dynamics indicates
838the rapid development of Beijing city in recent years. The
839development pattern, however, is still worrying for the job-
840housing imbalance status quo, although the southern area
841has showed some positive changes.

8425.5 Quantitative Evaluation

843In this section, we evaluate our NR-cNTF model by compar-
844ing its data tensor reconstruction error with that of some
845baseline models, for further explaining why NR-cNTF can
846work well for understanding the Beijing city. Following the
847tradition of tensor factorization based studies [4], [20], the
848Root Mean Square Error defined in Eq. (34) is used as an indi-
849cator of quality.
850In the experiments, we define a sampling tensor
851SS 2 RM�M�N , in which the element sxyz ¼ 1 when the traffic
852volume form zone x to zone y in time slice z was sampled,
853otherwise un-sampled. We then rewrite the objective func-
854tion in Eq. (17) as

arg min
CC;O;D;T�0

J ¼ kSS 	 RR� CC �o O�d D�t Tð Þk2F
þ akW�OO>k2F þ bkW�DD>k2F
þ g Ok k1þdkDk1 þ �kTk1 þ "kCCk1:

(38)

856856

857The reconstruction error between RR and the reconstructed
858tensor R̂R ¼ CC �o O�d D�t T is calculated using Eq. (34).
859We compare the reconstruction error of NR-cNTF with
860that of the following baseline methods:

861� Tucker: Non-negative Tucker Factorization, of which
862the objective function is

arg min
CC;O;D;T

SS 	 RR� CC �o O�d D�t Tð Þk k2F
þ g Ok k1þdkDk1 þ �kTk1 þ "kCCk1:

(39)

864864

865Compared with our method, Tucker does not con-
866sider urban context and neighboring regularization.

Fig. 10. The urban communities and trunk roads in Beijing.

4. https://en.wikipedia.org/wiki/Zhongguancun
5. https://en.wikipedia.org/wiki/Beijing_central_business_district
6. https://en.wikipedia.org/wiki/Beijing_Financial_Street
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867 � CP: Non-negative CP Factorization, which supposes
868 a joint latent space for each mode by solving an
869 objective function as

arg min
O;D;T

SS 	 RR�
X
m

o:m 
 d:m 
 t:m
 !�����

�����
2

F

;

þ g Ok k1 þ dkDk1 þ �kTk1;
(40)

871871

872 where operator 
 represents the vector outer product.
873 In the CP factorization, the latent factor dimensionality
874 for both the spatial and temporal patterns are the
875 same. As a result, we set the number of latent factors
876 m ¼ 4 or m ¼ 20. The former is the same as the num-
877 ber of temporal patterns for NR-cNTF, and the latter is
878 in accordancewith that of spatial patterns.
879 � rCP: Regularized Non-negative CP Factorization,
880 which is a CP factorization with the urban context-
881 aware regularization. The objective function is

arg min
O;D;T

SS 	 RR�
X
m

o:m 
 d:m 
 t:m
 !�����

�����
2

F

þ a W�OO>
�� ��2

F
þ b W�DD>

�� ��2
F

þ g Ok k1þdkDk1 þ �kTk1:

(41)

883883

884

885 In our experiments, we compared the methods on the
886 data tensor of 2015. The sampling rate varied from 50 to 90
887 percent. The average RMSE values of ten times repeated
888 experiments are reported in Table 3. From the table, we
889 have the following observations:

890 � Both NR-cNTF and cNTF performed much better
891 than the baseline methods, indicating the general
892 superiority of the proposed methods.
893 � NR-cNTF performed nearly the same as cNTF, indi-
894 cating that the neighboring regularization improves

895the interpretability of spatial patterns at the very low
896cost of model deviation from real-world data.
897� NR-cNTF/cNTF performed generally better than
898Tucker, indicating the distinct value of urban con-
899texts for tensor factorization.
900� NR-cNTF/cNTF/Tucker performed generally better
901than rCP4/CP4/rCP20/CP20, implying the advan-
902tage of employing Tucker rather than CP based
903methods. This is not unusual, since the core tensor
904generated by Tucker factorization contains impor-
905tant information about urban dynamic patterns and
906improves the model interpretability.
907In summary, besides the superior interpretability,
908NR-cNTF also shows excellent performance in quantitative
909evaluation on tensor factorization, by employing core tensor,
910neighboring regulation, and urban contexts. As a natural
911corollary, NR-cNTF could be used for urban traffic volume
912prediction when the elements of a data tensor are only par-
913tially available.

9146 RELATED WORK

915Mining knowledge from human mobility data generated in
916urban areas has attracted many researchers’ interests in

TABLE 3
Tensor Reconstruction Performance by RMSE

50% 60% 70% 80% 90%

NR-cNTF 0.351 0.344 0.343 0.342 0.341
cNTF 0.350 0.345 0.343 0.342 0.341
Tucker 0.357 0.356 0.353 0.351 0.350
rCP-20 0.351 0.349 0.349 0.347 0.347
rCP-4 0.403 0.401 0.400 0.398 0.396
CP-20 0.353 0.352 0.349 0.348 0.346
CP-4 0.405 0.403 0.401 0.401 0.400

Fig. 11. Inter- and intra-community traffic intensities.

Fig. 12. Dynamic patterns from and to the CBD community.
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917 recent years [24], [25]. Various types of “social sensors”,
918 such as cell phones [26], GPS terminals [25], and smart bus/
919 metro cards [27], have been adopted to record mobility
920 information of urban residents, based on which many
921 successful applications have emerged for intelligent trans-
922 portation [28], [29], [30], environmental protection [31],
923 urban planning [10], urban emergency [32], etc. An excellent
924 survey from an urban computing perspective can be found
925 in [24], while [25] provides a survey from a social and
926 community dynamics perspective.
927 Among the abundant methods for human mobility data
928 mining, tensor factorization/decomposition, like CANDE-
929 COMP/PARAFAC (CP) [33] and Tucker factorizations [34],
930 gains particular interests for its distinct ability in modeling
931 multi-aspect heterogeneous big data. Indeed, in city scenar-
932 ios data samples are always involved with many aspects,
933 such as time, space, human, urban contexts and so on, and
934 therefore are very suitable for tensor factorization based
935 data mining methods [24]. Typical applications of tensor
936 factorization could be classified into two categories. The
937 first category is to reconstruct tensors for predicting
938 unknown values in multi-aspect data sets, such as complet-
939 ing missing traffic data [2], inferring urban gas consump-
940 tion [3], predicting travel time [4], recommending social
941 tags [35], movies [36] and sightseeing locations [37], [38],
942 and so on.
943 In recent years, more and more works focused on mining
944 explainable latent factors from multi-aspect urban data sets,
945 which form the second category of applications. The focal
946 point here is to use tensor factorization to discover latent
947 lower-dimensional factors from higher-dimensional multi-
948 aspect data sets. For instance, Metafac [39] used CP factori-
949 zations to extract latent community structures from various
950 social networks, and [40] proposed a multi-view data clus-
951 tering and partitioning method based on Tucker factoriza-
952 tion. Our study in this paper also falls in this category, with
953 some most related works as follows.
954 The study [7] used a non-negative matrix factorization, i.e.,
955 a second-order tensor factorization, to model taxi trip data,
956 and discovered the latent factors corresponding to three
957 rhythms of resident’s daily life. Similarly, matrix factoriza-
958 tions were used for understanding the operational behaviors
959 of taxicabs in cities [8]. In the inspiring work, [5] adopted a
960 regularized non-negative Tucker decomposition (rNTD) to
961 discover residents’ mobility patterns in Beijing from an ori-
962 gin-destination-time tensor. Following this idea, [9] proposed
963 a probabilistic tensor factorization method to find mobility
964 patterns of public transaction system passengers from an
965 origin-destination-time-type tensor. CitySpectrum [6] used
966 CP factorizations to mine joint time-day-location patterns of
967 residents after the Great East Japan Earthquake. Some more
968 complex algorithms includeNTCoF [41], which is a non-nega-
969 tive tensor co-factorization algorithm for urban events detec-
970 tion from bike trip and check-in data, and HTM [42], which is
971 a hybrid tensor model and uses ACS-tucker decomposition to
972 detect events from traffic data. In recent years, many dynamic
973 tensor factorization algorithms were proposed for time series
974 and streamdatamining. For instance, Dynamic TensorAnaly-
975 sis [19] extended Tucker factorization to process dynamic and
976 stream high-order data, the Facets model [43] combined
977 dynamic graphical models with tensor factorizations for

978mining co-evolving high-order time series, and FEMA [20]
979was a flexible evolutionary tensor factorization algorithm to
980mine dynamic behavioral patterns ofmulti-facet data sets.
981Despite of the wide existence of related works mentioned
982above, our study in this paper has its own uniqueness.
983Unlike the previous works, we focus on understanding
984urban dynamics from multiple aspects, including spatial,
985temporal, as well as spatio-temporal interactions, with still
986a pursue to long-term evolution patterns. The results indeed
987bring some important managerial insights and suggestions
988to city development of Beijing. The proposed NR-cNTF
989model takes Tucker factorization as a basic framework,
990which compared with CP and matrix factorization based
991models [6], [7], [8], [42] has better interpretability for adopt-
992ing a core tensor to model relations among latent factors.
993Compared with the existing Tucker factorization based
994methods [2], [9], [24], NR-cNTF incorporates urban contexts
995and neighboring regulation, which improve both the accu-
996racy and interpretability of Tucker factorization greatly.
997Moreover, we proposed a pipeline initialization approach
998to analyze the evolution of urban dynamics across several
999years, which is simple yet practical.

10007 CONCLUSION

1001In this paper, we proposed a POI context-aware nonnega-
1002tive tensor factorization model with neighboring regulation
1003(NR-cNTF) for urban dynamics discovery. A simple pipe-
1004line initialization method was also introduced to NR-cNTF
1005to facilitate evolution analysis of the dynamics. Experiments
1006on Beijing taxi trajectory and POI data demonstrated the
1007high-quality of the spatial, temporal and spatio-temporal
1008patterns generated by NR-cNTF for city-disease diagnosing
1009and urban planning. The comparative studies with some
1010baselines on traffic prediction further justified the advan-
1011tage of NR-cNTF in adopting urban contexts and neighbor-
1012ing regulation.
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