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1 Deep Trajectory Recovery with Fine-Grained
2 Calibration using Kalman Filter
3 Jingyuan Wang , Ning Wu, Xinxi Lu, Wayne Xin Zhao,Member, IEEE, and Kai Feng

4 Abstract—With the development of location-acquisition technologies, there are a huge number of mobile trajectories generated and

5 accumulated in a variety of domains. However, due to the constraints of device and environment, many trajectories are recorded at

6 low sampling rate, which increases the uncertainty between two consecutive sampled points in the trajectories. Our task is to recover

7 a high-sampled trajectory based on the irregular low-sampled trajectory in free space, i.e., without road network information. There

8 are two major problems with traditional solutions. First, many of these methods rely on heuristic search algorithms or simple

9 probabilistic models. They cannot well capture complex sequential dependencies or global data correlations. Second, for reducing

10 the predictive complexity of the unconstrained numerical coordinates, most of the previous studies have adopted a common

11 preprocessing strategy by mapping the space into discrete units. As a side effect, using discrete units is likely to bring noise or

12 inaccurate information. Hence, a principled post-calibration step is required to produce accurate results, which has been seldom

13 studied by existing methods. To address the above difficulties, we propose a novel Deep Hybrid Trajectory Recovery model,

14 named DHTR. Our recovery model extends the classic sequence-to-sequence generation framework by implementing a

15 subsequence-to-sequence recovery model tailored for the current task, named subseq2seq. In order to effectively capture

16 spatiotemporal correlations, we adopt both spatial and temporal attentions for enhancing the model performance. With the attention

17 mechanisms, our model is able to characterize long-range correlations among trajectory points. Furthermore, we integrate the

18 subseq2seq with a calibration component of Kalman filter (KF) for reducing the predictive uncertainty. At each timestep, the noisy

19 predictions from the subseq2seq component will be fed into the KF component for calibration, and then the refined predictions will be

20 forwarded to the subseq2seq component for the computation of the next timestep. Extensive results on real-world datasets have

21 shown the superiority of the proposed model in both performance and interpretability.

22 Index Terms—Trajectory recovery, sequence to sequence model, spatiotemporal attention, kalman filter

Ç

23 1 INTRODUCTION

24 WITH the popularization of GPS-enabled mobile devi-
25 ces, a huge volume of trajectory data from users
26 has become available in a variety of domains. These
27 recorded trajectories provide an important kind of data
28 signal to analyze, understand and predict mobile behav-
29 iors. Many studies have shown that trajectory data is
30 useful to improve the user-centric applications, includ-
31 ing POI recommendation [1], urban planning [2], and
32 route optimization [3].

33However, due to the constraints of device and environ-
34ment, many trajectories are recorded at a low sampling rate.
35As shown in previous studies [4], the low-sampled trajecto-
36ries can not detail the actual route of objects, and increase
37the uncertainty between two consecutive sampled points in
38the trajectories. The high uncertainty significantly influences
39related research that uses trajectory data, including trajec-
40tory clustering [5], trajectory indexing [6], and trajectory
41classification [7]. Trajectory recovery also has an important
42impact on real-world applications, such as trip planning [8],
43movement behavior study [9], [10] and traffic condition pre-
44diction [11]. Hence, it is very important to develop effective
45algorithms to recover high quality trajectories based on raw
46low-sampled data.
47Overall, the task of trajectory recovery has been stud-
48ied in two different settings based on whether the map
49information, such as road networks, is available or not
50for use [9]. Under the first setting, the trajectory locations
51are usually mapped to road segments [4], [12], [13], [14]
52or Point-Of-Interests (POI) [15], [16], [17], [18], [19].
53Then, the original trajectory recovery task will be simpli-
54fied with such prior knowledge. While, under the second
55setting, the map information is not available as input,
56called free space trajectory recovery [9]. Comparing the two
57settings, the latter is more challenging to solve but also
58more common in practice. This work focuses on the sec-
59ond setting.
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60 For solving the task of trajectory recovery, many efforts
61 have been made in the literature. However, there are two
62 potential problems with existing studies on the studied task.
63 First, many of these methods rely on heuristic search algo-
64 rithms or simple probabilistic models. They mainly model the
65 adjacent transition patterns between locations, including
66 depth-first search algorithm [4], [8], [20], absorbing Markov
67 chain [21], andGibbs sampling [12].While, complex sequential
68 dependencies or global data correlations can not be well cap-
69 tured by these methods. Second, for reducing the predictive
70 complexity of the unconstrained numerical coordinates, most
71 of the previous studies have adopted a common preproce-
72 ssing strategy by first mapping the space into discrete units,
73 e.g., cells [8], [20] or anchor points [21], [22], [23]. Then, their
74 focus becomes how to develop effective recovery algorithms
75 over the discrete units. As a side effect, using discrete units is
76 likely to bring noise or inaccurate information. Hence, a post-
77 calibration step is usually required to produce more accurate
78 results. While, previous methods mainly adopt simple heuris-
79 tic calibrationmethods, e.g., identifying frequent locations in a
80 cell [8], [20] or simply using the centric coordinates of the
81 cell [21], [22], [23]. They have neglected the importance of post-
82 calibration in refining the coarse unit-level prediction results.
83 With the revival of neural networks, deep learning pro-
84 vides a promising computational framework for solving
85 complicated tasks. Many studies try to utilize the excellent
86 modeling capacity for better learning effective characteris-
87 tics from trajectory data. Especially, sequential neural mod-
88 els, i.e., Recurrent Neural Networks (RNN), are widely
89 used for modeling sequential trajectory data [24], [25], [26].
90 Although these studies have improved the capacity of
91 modeling complex sequential transition patterns to some
92 extent, they only focus on next-step or short-term location
93 prediction in a local time window. While, our task requires
94 that the approach should be able to effectively model and
95 utilize the global, comprehensive information from the
96 entire trajectory. In addition, these studies still directly pro-
97 duce the cell-level predictions, and do not incorporate a
98 principled post-calibration component in their models for
99 deriving more accurate estimations. Hence, it is difficult to

100 directly apply existing neural network based trajectory
101 models to the task of free space trajectory recovery.
102 To address the above difficulties, we propose a novelDeep
103 Hybrid Trajectory Recovery model, named DHTR. Our recov-
104 ery model substantially extends the classic sequence-
105 to-sequence generation framework (i.e., seq2seq) by imple-
106 menting a subsequence-to-sequence recoverymodel tailored
107 for the current task, named subseq2seq. In order to effectively
108 capture global spatiotemporal correlation, we adopt both
109 spatial and temporal attentions for enhancing themodel per-
110 formance. With the attention mechanisms, our model is able
111 to characterize long-range correlations among trajectory
112 points. Furthermore, we integrate the subseq2seq compo-
113 nent with a Kalman Filter (KF) to calibrate noisy cell predic-
114 tion as accurate coordinates. KF is widely used to deal with a
115 series of measurements observed over time, containing sta-
116 tistical noise and other inaccuracies. Different from conven-
117 tional denoising applications that uses KF as an isolated
118 postprocessing [27], we integrate the subseq2seq and KF in a
119 joint deep hybrid model. Specifically, at each timestep, the
120 noisy predictions from the subseq2seq component will be

121fed into the KF component for calibration, and then the
122refined predictionswill be forwarded to the subseq2seq com-
123ponent for the computation of the next timestep. In this man-
124ner, our final model is endowed with the merits of both
125components, i.e., the capacities of modeling complex
126sequence data and reducing predictive noise.
127Our contribution can be summarized as:

128� We propose a novel deep hybrid model by integrat-
129ing subseq2seq with KF for trajectory recovery. To
130our knowledge, it is the first time that deep learning
131is integrated with KF for the studied task. By using a
132hybrid of neural networks and KF, our model is
133endowed with the benefits of both components, i.e.,
134the capacities of modeling complex sequence data
135and reducing predictive noise.
136� As one of our major technical component, we extend
137the classic seq2seq framework as the subseq2seq for
138solving the current task. The subseq2seq approach
139utilizes the elaborately designed spatiotemporal
140attention mechanisms, which enhances the capacity
141of modeling complex data correlations.
142� We construct the evaluation experiments using three
143real-world taxi trajectory datasets. Extensive results
144on the three datasets have shown the superiority
145of the proposed model in both effectiveness and
146interpretability.

1472 RELATED WORKS

148Our work is closely related to the studies on trajectory
149recovery and trajectory data mining. For trajectory recovery,
150we further divide the related works into two categories,
151using or not using road networks.

1522.1 Trajectory Recovery with Road Networks

153Given the information of road networks, previous studies
154usually consider trajectory reconstruction as a route infer-
155ence problem of mobile objects, persons or vehicles, moving
156in a road network. The structure of road networks is used as
157the prior knowledge or constraint of the route inference
158algorithms. For example, Hsieh et al. propose to recom-
159mend time-sensitive trip routes, consisting of a sequence of
160locations associated with time stamps [16], [17]. Luo et al.
161study a new path finding query which finds the most fre-
162quent route during user specified time periods in large-scale
163historical trajectory data [14]. In [4], a history based route
164inference system (HRIS) has been proposed, which includes
165several novel algorithms to perform the inference effec-
166tively. Wu et al. propose a novel route recovery system in a
167fully probabilistic way which incorporates both temporal
168and spatial dynamics and achieve a state of art result [13].
169Banerjee et al. employ Gibbs sampling by learning a Net-
170work Mobility Model (NMM) from a database of historical
171trajectories to infer the whole trajectories [12]. To fully uti-
172lize the road network information, some studies involve a
173preprocessing step calledmap matching [28], [29], [30], which
174aligns location coordinates onto the road segments.
175However, these studies highly rely on the structure of road
176networks, which cannot work well in free space.
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177 2.2 Free Space Trajectory Recovery

178 Compared with the above works, free space trajectory
179 recovery has no road network information as input. They
180 usually try to identify the spatiotemporal patterns among
181 adjacent location points, and reconstruct the trajectory using
182 search based algorithms.
183 For example, Chen et al. propose a Maximum Probability
184 Product algorithm to discover the most popular route
185 (MPR) from a transfer network based on the popularity
186 indicators in a breadth-first manner [21]. Wei, Liu et al.
187 build a routable graph from uncertain trajectories, and then
188 answers a user’s online query (a sequence of point loca-
189 tions) by searching top-k routes on the graph [8], [20]. These
190 algorithms mainly consider simple adjacent transitions and
191 correlations in a small region. They cannot model long-
192 range or global correlations among location points in a
193 trajectory.
194 Especially, our work is also related to the works on trajec-
195 tories similarity, since they usually involve trajectory recov-
196 ery as an individual step before measuring the similarity.
197 Su et al. propose an anchor-based calibration system that
198 aligns trajectories to a set of anchor points [22]. Further-
199 more, Su et al. propose a spatial-only geometry-based cali-
200 bration approach that considers the spatial relationship
201 between anchor points and trajectories [23].

202 2.3 Deep Learning for Trajectory Data Modeling

203 Recent years have witnessed the progress of deep learning
204 in modeling complex data relations or characteristics. In
205 specific, Recurrent Neural Network together with its variant
206 Long Short-Term Memory (LSTM) have been widely used
207 for modeling trajectory data. Zheng et al. propose a hierar-
208 chical RNN to generate Long-term trajectories [24]. Wu
209 et al. introduce a novel RNN model constrained by the road
210 network to model trajectory [25]. Feng et al. design a multi-
211 modal embedding recurrent neural network with historical
212 attention to capture the complicated sequential transi-
213 tions [26]. Chang et al. employ the RNN and GRU models
214 to capture the sequential relatedness in mobile trajectories
215 at different levels [31]. Liu et al. extend RNN and propose a
216 novel method called Spatial Temporal Recurrent Neural
217 Networks to predict the next location of a trajectory [32]. Al-
218 Molegi et al. propose a novel model called Space Time
219 Features-based Recurrent Neural Network (STF-RNN) for
220 predicting people next movement based on mobility pat-
221 terns obtained from GPS devices logs [33]. Most of these
222 works mainly focus on modeling the sequence of location
223 IDs rather than the numerical coordinate information.
224 To our knowledge, there are very few studies that apply
225 deep learning for trajectory recovery. Our work enhances
226 the capacity of modeling complex trajectory sequences with
227 neural networks, and further calibrates the predictions
228 using the classic Kalman filter for reducing data noise. With
229 the integration of Kalman filter, our predictive uncertainty
230 is highly controlled.

231 3 PRELIMINARIES

232 In this section, we first introduce the notations throughout
233 the manuscript, and then formally define our task.

234Definition 1 Location. A location or a location point is associ-
235ated with a pair of coordinate values in the given geographical
236space, measured by its latitude and longitude hx; yi.
237Definition 2 Region cell.We assume that the entire geograph-
238ical space is divided into a set of region cells (cell for short),
239denoted by C. Each cell c 2 C is a square space with the length
240of l, and corresponds to a centric location with the coordinates
241of hxc; yci.
242In practice, it is a common preprocessing technique to
243transform the continuous measurements into discrete cells
244as either main input [8], [21] or auxiliary data [22]. Using
245cells is able to reduce the complexity of directly modeling
246numerical coordinate sequence to some extent, since it is
247easier to perform the computation over a discrete set of cell
248IDs. We follow the procedure proposed in [20] for dividing
249free geographical space into disjoint cells.

250Definition 3 Trajectory point. A trajectory point a (or b)
251from an moving object is a timestamped location and modeled
252by a quadruple hx; y; s; ci, where a:x is the longitude, a:y is the
253latitude, a:s is the timestamp, and a:c is the cell that point a is
254assigned to.

255Here, longitude and latitude are real numbers, a time-
256stamp is accurate to seconds, and a cell is denoted by an
257integer ID.

258Definition 4 Sampling interval. A sampling interval " is the
259time difference between two consecutive sampled points for a
260moving object, which usually depends on the device accurarcy.

261Definition 5 "-sampling trajectory. A "-sampling trajectory
262t (trajectory for short) is a time-ordered sequence of n uniformly
263sampled points from the same moving object using the sampling

264interval ". Formally, we have t ¼ a
ðtÞ
1 ! a

ðtÞ
2 ! . . .! aðtÞn .

265Given a "-sampling trajectory t, we have a
ðtÞ
iþ1:s� a

ðtÞ
i : s ¼

266" for 1 � i � n� 1 and aðtÞn :s� a
ðtÞ
1 :s ¼ ðn� 1Þ". For simplic-

267ity, we omit the superscript of t in the notations of a
ðtÞ
i and

268use ai in the following content.

269Definition 6 "-sampling sub-trajectory. Given a "-sam-
270pling trajectory t, a corresponding sub-trajectory ~t (sub-trajec-
271tory for short) is a m-length subsequence of t. We have
272~t ¼ b1 ! b2 ! . . .! bm, where bk ¼ ajk , 1 � j1 � � � � �
273jm � n andm < n.

274Note that although the trajectory is uniformly sampled,
275the locations in a sub-trajectory may not be uniformly dis-
276tributed in timestamps. With the above definitions, ~t can be
277equally written as aj1 ! aj2 ! . . .! ajm . We use the differ-
278ent notations (i.e., ai and bk) for discriminating between a
279trajectory and its corresponding sub-trajectories. Here, jð�Þ
280can be considered as a mapping for transforming the cur-
281rent indices of a sub-trajectory into the original indices of
282the complete trajectory. It is easy to see that a trajectory can
283correspond to multiple sub-trajectories by using different
284mappings. Since the original trajectory is generated by uni-
285formly sampling at each time interval ", we will have
286bkþ1:s� bk:s ¼ ðjkþ1 � jkÞ".
287Problem Statement. Given a "-sampling trajectory dataset
288and a sub-trajectory ~t, we would like to reconstruct or
289recover the corresponding trajectory t. That is to say, for
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290 each missing trajectory point ai (i.e., ai 2 t but ai =2 ~t), we
291 will infer its corresponding longitude ai:x and latitude ai:y
292 at time ai:s. The sampling interval " and time ai:s are
293 assumed to be given as input. Such an assumption is ratio-
294 nal since most of the measuring instruments sample the tra-
295 jectory points regularly according to some fixed sampling
296 interval. As aforementioned, the locations in a sub-trajec-
297 tory may not be uniformly distributed in timestamps.
298 Hence, our task is very challenging when road network is
299 not available.

300 4 THE PROPOSED MODEL

301 In this section, we present the proposed Deep Hybrid Trajec-
302 tory Recoverymodel, named as DHTR.

303 4.1 Overview

304 We first present an overview of the proposed model. Our
305 model contains three major parts. The first is an elaborately
306 designed subsequence-to-sequence (subseq2seq) neural network
307 model. The subseq2seq component is developed on the clas-
308 sic seq2seq model [34]. The second part is an attention
309 mechanism, which is used to enable the subseq2seq to cap-
310 ture the complex spatiotemporal correlations. Our attention
311 mechanism considers both spatial and temporal influence
312 among locations in an entire trajectory and therefore named
313 as Spatiotemporal Attention. For reducing the complexity of
314 directly modeling numerical coordinate sequences, the sub-
315 seq2seq component captures the sequential relatedness at
316 the cell level. In order to refine the coarse cell-level predic-
317 tions, we enhance the subseq2seq model (See Section 4.4.1)
318 with a novel post-calibration component based on Kalman
319 filter in the third part. Instead of using a pipeline post-proc-
320 essing approach, we integrate the subseq2seq component
321 and the KF component in a joint deep hybrid model, which
322 combines the merits of both components.
323 We detail DHTR in an asymptotical way. In Section 4.2,
324 we introduce the subseq2seq model for trajectory recovery.
325 In Section 4.3, we incorporate the Spatiotemporal Attention
326 into subseq2seq. Then, Section 4.4.1 provides the enhance-
327 ment of the proposed model with the integration of Kal-
328 man filter.

329 4.2 A Subseq2Seq Model for Trajectory Recovery

330 Instead of directly predicting the numerical coordinate val-
331 ues, we first infer the corresponding cell of a missing trajec-
332 tory point. In this manner, a sequence of trajectory points
333 can be considered as a sequence of cell IDs. As shown
334 in [24], it is more reliable and easy to model cell ID sequence
335 than the original numerical sequence. Once the cell of a tra-
336 jectory point can be inferred, we will use the the centric
337 coordinate of the predicted cell to recover the missing loca-
338 tion. In this way, our major task is how to recover the corre-
339 sponding cell sequence using partial observations.

340 4.2.1 Motivation

341 In the standard seq2seq model [34] for sequence genera-
342 tion, it consists of two major parts, namely encoder and
343 decoder. The encoder is to map the input sequence to a
344 fixed-sized vector using one RNN, and then the decoder is

345to generate the target sequence based on the vector from
346the encoder with another RNN. For capturing long range
347temporal dependencies, improved variants such as the
348Long Short-Term Memory have been widely used [35]. In
349the decoding procedure, the decoder generates the symbol
350conditioned on the representation of the input sequence
351and the previous segment of the output sequence using the
352softmax function.
353Our main idea is to cast the recovery task into a
354sequence-to-sequence task, where the input sequence is the
355sub-trajectory and the output sequence is the reconstructed
356complete trajectory. Different from standard seq2seq tasks,
357our input is highly related to the corresponding output. The
358input sub-trajectory is a subsequence of the output trajec-
359tory. Hence, we name the approach subsequence to sequence
360model, abbreviated as subseq2seq.
361The subseq2seq model consists of two parts: an encoder
362and a decoder, which is same as the standard seq2seq
363model. In the subseq2seq, the encoder inputs a sub-trajec-
364tory ~t and the decoder predicts the corresponding complete
365trajectory t. The structure of the subseq2seq model is illus-
366trated in Fig. 1. Next, we describe the two parts of the sub-
367seq2seq model in detail.

3684.2.2 The Encoder for Modeling Observed

369Sub-Trajectories

370In this part, our input (i.e., the observed cell sequence) will
371be encoded into a fixed-length vector. We adopt the Bidirec-
372tional Long Short Term Memory (BiLSTM) [36] as the
373encoder. The major benefit of BiLSTM is that it can capture
374both forward and backward temporal dependencies, while
375unidirectional RNN models can only capture the forward
376temporal dependencies. Such a benefit is specially important
377to our task, since a missing trajectory point will be closely
378related to both preceding and following trajectory points.
379Given an input sequence ~t ¼ b1 ! b2 ! . . .! bm, the for-
380ward LSTM reads the input embedding of cells as it is
381ordered and calculates a sequence of forward hidden states
382ðs1s1!; . . . ; smsm

�!Þ, while the backward LSTM reads the input
383embedding in the reverse order and calculates a sequence
384of backward hidden states ðs1s1 ; . . . ; smsm

 �Þ. The output at time-
385step j is the composition of sjsj

! and sjsj
 . We implement the

Fig. 1. The subseq2seq model. The encoder uses a BiLSTM to encode a
subsequence as vector representation ssm. The decoder uses a LSTM
which takes as input a region constraint vector rri and the previous loca-
tion. As an example, a missing location a4 is bounded by the space
spanned by a3 and a5, which is modeled as an embedding vector rr4.
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386 composition as the vectorized sum, and have the final repre-
387 sentation ssj ¼ sjsj

!þ sjsj
 for the jth state of the input sequence.

388 4.2.3 The Decoder for Reconstructing Missing

389 Trajectories

390 Compared with the standard seq2seq application, our task
391 has two unique characteristics, and we need to make suit-
392 able adaptations for the decoder according to our task.
393 First, the input is a subsequence of the output sequence
394 in our task. In our model, for a known point from the input
395 sequence, we apply the similar idea of “copy mechanism”
396 from the NLP field [37] to directly generate the copy at the
397 corresponding output slot. As shown in Fig. 1, in the pro-
398 posed model, the copy mechanism is formulated as follows

ai ¼ âi; jk < i < jkþ1 (an unobserved point);
bk; i ¼ jk (an observed point);

�
(1)

400400

401 where âi denotes the prediction result using the decoder. In
402 a word, we only predict the unobserved point, while the
403 observed point is simply copied from the sub-trajectory.
404 Second, as previous studies have shown [8], the trajec-
405 tory recovery task can be effectively solved by searching
406 related several local trajectory points. More specially, a sin-
407 gle trajectory point is usually bounded in a local region. In
408 Fig. 1, we present an illustrative example with such region
409 constraints. An observed sub-trajectory consists of three
410 points: a1, a3, and a5. The missing point a4 is likely to fall in
411 the region spanned by its preceding point a3 and successive
412 point a5. Hence, incorporating region constraint is impor-
413 tant to trajectory reconstruction. Instead of using hard rules,
414 we propose to use hidden representations for modeling
415 such region constraints. Especially, we use an embedding
416 vector rri to denote the constraint information for the ith tra-
417 jectory point ai, defined as

rri ¼ DNNðajk ; ajkþ1Þ: (2)
419419

420 where DNNð�Þ is a function consisting of an look-up layer
421 and a Multi-Layer Perceptron (MLP), ajk and ajkþ1 are the
422 observed precursor and successor for ai, and jk < i < jkþ1.
423 In this way, the prediction of a point can utilize the informa-
424 tion from its observed precursor and successor in a
425 trajectory.
426 To this end, for inferring a missing point, our decoder
427 derives the hidden state hihi as

hihi ¼ LSTMðai�1; rri; hhi�1; ssmÞ: (3)
429429

430 where rri is the region constraint vector defined in Eq. (2)
431 and ssm is the output state derived from the encoder. Once
432 we obtain the hidden state hhi from the decoder, we further
433 apply the softmax function to generate the corresponding
434 cell of the missing trajectory point conditioned on the proba-
435 bility of PrðcjhhiÞ as

PrðcjhhiÞ ¼ expðhhi
> � wwcÞP

c02C expðhhi
> � wwc0 Þ

; (4)

437437

438 where wwc is the cth column vector from a trainable parame-
439 ter matrixWWC .

4404.2.4 Applying the Model for Trajectory Recovery

441Given a training dataset D consisting of trajectory and sub-
442trajectory pairs, we define the following objection function

L1 ¼
X
ht;~ti2D

�logPrðtj~tÞ; (5)

444444

445where Prðtj~tÞ is computed using the softmax following the
446original seq2seq model using Eq. (4).
447For applying the model to our task, at each timestep i, we
448first infer the corresponding cell of a missing trajectory point,
449namely bi:c. Then we use the centric coordinate of the cell bi:c
450as the final predictions. In practice, for accuracy, we usually
451set a small cell length, e.g., 100 � 200 meters. The complexity
452for the subseq2seq model increases with the decreasing of the
453cell length, since there will be more cells for predictions.
454Hence, we need to make a trade-off between the above two
455aspects for setting the cell length. We will discuss the effect of
456the cell length on themodel performance in Section 5.3.3.

4574.3 Incorporating the Spatiotemporal Attention

458In the aforementioned subseq2seq model, we only consider
459local region constraint, while long-range or global correla-
460tions can not be modeled. Such correlations mainly reflect
461the spatiotemporal influence among trajectory points [32],
462which is more important to consider in free space without
463using road networks. Next, we adopt the Spatiotemporal
464Attention mechanism to capture the spatiotemporal influ-
465ence among trajectory points.

4664.3.1 A Standard Attention Mechanism

467We first present a standard attention mechanism [34] for the
468general seq2seq model by rewriting Eq. (3) as

hhi ¼ LSTMðai�1; rri; hhi�1; ssm; eeiÞ; (6)
470470

471where the context vector eei is computed by a weighted sum
472of these hidden states ss from the encoder

eei ¼
Xm
k¼1

ai;kssk: (7)

474474

475An important part is how to compute the attention coeffi-
476cients fai;jg. Following [38], we can apply the softmax func-
477tion to derive fai;jg as

ai;k ¼ expðui;kÞPm
k0¼1 expðui;k0 Þ

; (8)
479479

480

ui;k ¼ vv> � tanhðWWHhhi þWWSsskÞ; (9)

482482

483where vv, WWH and WWS are the parameter vector or matrices
484to learn. This attention mechanism mainly captures the gen-
485eral correlations among hidden states in the sequence.
486While, in our task, we need to explicitly model spatiotempo-
487ral influence with the attention mechanism.

4884.3.2 Modeling the Spatiotemporal Influence

489For modeling the temporal influence, given a target point,
490we assume that temporally adjacent points have a larger

WANG ET AL.: DEEP TRAJECTORY RECOVERYWITH FINE-GRAINED CALIBRATION USING KALMAN FILTER 5
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491 influence than temporally distant points in a trajectory. In
492 other words, the influence decreases with the increasing of
493 the temporal distance. Inspired by the method for modeling
494 positional information from the NLP field [39], [40], [41],
495 the temporal distance between the ith predicted point and
496 kth observed point is defined as

d
ð1Þ
i;k ¼ jk � ij j: (10)

498498

499 We have presented an illustrative example in Fig. 2. Here
500 d

ð1Þ
1;5 ¼ 4 since there are four sample intervals between the

501 two trajectory points.
502 Similarly, the spatial influence can be computed with the
503 euclidean distance of locations as

d
ð2Þ
i;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðajk :x� bi:xÞ2 þ ðajk :y� bi:yÞ2

q
: (11)

505505

506 However, during the inferring process, we do not have the
507 coordinate information of bi:x and bi:y, which are our goal
508 to learn. Hence, we use the (inferred) coordinate informa-
509 tion of the previous point to approximate the computation
510 of d

ð2Þ
i;k . In the Eq. (11), d

ð2Þ
i;k is in a real number. We further

511 discretize the distance into integers via dividing d
ð2Þ
i;k by the

512 cell length.
513 For a given trajectory, the scales of both d

ð1Þ
i;k and d

ð2Þ
i;k are

514 usually bounded in a limited small range. So we propose to
515 associate each discretized value for each kind of distance
516 with an embedding vector. Then, the spatial-temporal influ-
517 ence is finally modeled as

ui;k ¼ vv> tanh WWHhhi þWWSssk þWWPpp
d
ð1Þ
i;k

þWWQqq
d
ð2Þ
i;k

� �
;

(12)
519519

520 where fppg and fqqg are the embedding parameters corre-
521 sponding to the temporal and spatial influences respec-
522 tively, which are indexed by the discretized distance values

523 of d
ð1Þ
i;k and d

ð2Þ
i;k . The matricesWWP andWWQ are the parameters

to learn.

5244.4 Incorporating Kalman Filter

525Above, we first apply the subseq2seq model to characterize
526the cell sequence for a trajectory, and then the centric coordi-
527nate of the predicted cell is treated as the final prediction. The
528approach has two potential shortcomings. First, the prediction
529model is likely to be affected by noise, e.g., the instrumental
530errors. Second, the final estimations are coarse since we use
531the corresponding cell coordinate as a surrogate.
532To address these issues, we propose to integrate the
533above neural network model with Kalman filter. Kalman
534Filter [42] is particularly useful in dealing with varying tem-
535poral information. Especially, several studies have applied
536the KF model to calibrate noisy estimates in object track-
537ing [43]. Compared with sequence neural networks, the
538standard KF is a linear system model, which can not capture
539long-range temporal dependencies. To develop our appr-
540oach, our idea is to combine the benefits of sequence neural
541networks and KF with a hybrid model.

5424.4.1 The General Description of Kalman Filter

543Generally speaking, Kalman Filters (KFs) are optimal state
544estimators under the assumptions of linearity and Gaussian
545noise. In the KF model, we use a state vector ggi, which could
546consists of the location and/or speed, to denote the state of
547a mobile object at the time i. The object linearly updates the
548state ggi with a Gaussian noise eeg as

ggi ¼ FFggi�1 þ eeg; eeg � Nð0;MMÞ; (13)
550550

551where MM is the covariance of eeg, and FF is a state update
552matrix. In the KF model, the real value ggi can be measured
553by a measurement vector zzi as

zzi ¼ CCggi þ eez; eez � Nð0; NNÞ; (14)
555555

556where CC is measurement matrix, eez is a Gaussian measure-
557ment noise and NN is the covariance of eez. In the KF model,
558the measurement vector zzi is observable, the real state ggi is
559the unknown variable to be estimated. The matrices FF, CC,
560MM, andNN in Eqs. (13) and (14) are known as a priori.
561The KF model uses two procedures, Prediction and
562Update, to iteratively estimate the true value of gg and calcu-
563late a covariance matrix, denoted asHH, to express the uncer-
564tainty of gg.
565Prediction. In the prediction procedure, the KF model
566uses following equations to predict the state gg and the
567covariance matrixHH at the timestep i

ggiji�1 ¼ FFggi�1ji�1; (15) 569569

570

HHiji�1 ¼ FFHHi�1ji�1FF
> þMM; (16)

572572

573where ggi�1ji�1 and HHi�1ji�1 with the subscript “i� 1ji� 1”
574denotes the variables generated by the update procedure at
575the timestep i� 1, while ggiji�1 and HHiji�1 with the subscript
576“iji� 1” denotes the predicted state and covariance.
577Update. In the update procedure, the KF model use the
578observable measurement vector zzi to update/collate the
579predicted ggiji�1 andHHiji�1 as

ggiji ¼ ggiji�1 þKKiðzzi �CCggiji�1Þ; (17) 581581

Fig. 2. The proposed spatiotemporal attention mechanism. Here, we are
given a sequence of seven trajectory points from a1 to a6, where a1, a3,
a4 and a6 (b2 and b5) are observed and the rest are for prediction. For
region constraints, a5 is only bounded by the pair of a4 and a6. We also
plot the computation for both the temporal and spatial influence of a1 to
a5. Utilizing the attention mechanism makes it feasible to explore long-
range correlations or dependencies.
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582 HHiji ¼ HHiji�1 �KiKiCCHHiji�1; (18)

584584

585 whereKKi is named as the optimal Kalman gain, which com-
586 bines the predicted state and measured state as the updated
587 state. The matrixKKi is calculated as

KKi ¼ HHiji�1CC
>ðCCHHiji�1CC

> þNNiÞ�1: (19)
589589

590 We can see KKi is a tradeoff coefficient matrix between the
591 covariance matrices HHi of the estimation error and NNi of the
592 measurement error. Note that in the standard KF, the covari-
593 ance matrixNNi is a preset constant. Here, we incorporate the
594 subscript of i for ease of our subsequent extension.
595 At every timestep i, the KF takes the noisy measurements
596 of zzi and its corresponding covariance matrix NNi as input
597 and produces the “filtered” measurements ẑzi as

ẑzi ¼ CCggiji: (20)599599

600

601 4.4.2 Utilizing Kalman Filter to Calibrate Trajectory

602 Estimations

603 The main motivation in integrating subseq2seq with KF is to
604 effectively combine the merits of both models. On one hand,
605 we apply the subseq2seq to capture the long-range depen-
606 dencies or correlations over the cell sequence; on the other
607 hand, we feed the coarse, noisy predictions from the sub-
608 seq2seq into the KF for detailed calibration.
609 Next, we study how to integrate subseq2seq with KF as a
610 hybrid model. The key point is to bind the output of sub-
611 seq2seq with the input of KF. In our solution, the original
612 predictions from subseq2seq are considered as the noisy
613 observations. While, KF takes them as input and calibrates
614 them for output. As we mentioned in the Section 4.4.1, KF
615 has two inputs, the noisy measurements zzi and its corre-
616 sponding covariance matrix NNi. We present how to set the
617 two kinds of input in our model as below.
618 Setting zzi. The subseq2seq model is able to produce
619 coarse estimates using the centric coordinates of the pre-
620 dicted cell, which is used to set zzi of our model. At time-
621 stamp i, let ci denote the cell predicted by the subseq2seq
622 model. Then we set zzi as the centric coordinates of ci, i.e.
623 zzi ¼ hxci ; ycii.
624 Setting NNi. The covariance matrix NNi represent the uncer-
625 tainty of predicted zzi. In the standard KF model, NNi is set as
626 a fixed priori parameter. However, intuitively, the predic-
627 tive uncertainties of the estimations for different timesteps
628 should be highly varying. Therefore, in our model, we pro-
629 pose to adopt a dynamic covariance matrix. Given the cell
630 set C, each cell c 2 C is associated with the centric coordinate
631 of hxc; yci. We aggregate the coordinates for all the cells into
632 a matrix LL of size 2� jCj, where each column corresponds
633 to the longitude and latitude of a unique cell. For each time-
634 stamp i, the expected coordinate vector for the current esti-
635 mate is calculated as

�lli ¼
X
c02C

Prðc0jhhiÞ � llc0 ; (21)

637637

638 where Prðc0jhhiÞ is the prediction probability for cell c0 using
639 the softmax function in Eq. (4), and llc0 is the c0th column

640vector of LL. As such, we compute the mean coordinate vec-
641tor as an expectation of the coordinates over all the cells.
642Then, the covariance matrix NN for the timestamp i is calcu-
643lated as

NNi ¼
X
c02C

Prðc0jhhiÞ � ðllc0 ��lliÞ � ðllc0 ��lliÞ>: (22)

645645

646Here, we use the probability distribution fPrðc0jhhiÞgc02C to
647combine the covariance matrix of each cell as an expected
648covariance of the measured coordinates zzi.
649It is not easy to directly estimate the concrete latitude and
650longitude values in free space. So we adopt a two-stage
651approach for prediction. We first utilize the RNN compo-
652nent to locate more predictable cells, and then calibrate the
653centric location of the predicted cell. Our model jointly inte-
654grates the two components in a principled way. We present
655the illustration for the hybrid model in Fig. 3. As we can
656see, it contains two components, namely the subseq2seq
657component and the KF component. The two components
658are integrated by binding their input and output corre-
659spondingly. At each timestep, the subseq2seq component
660first generates the predicted cell of a trajectory point, and
661then the corresponding coordinates zi of the predicted cell
662will be calibrated as ẑi by the KF component using the pre-
663diction and update procedures. Moreover, the KF calibrated
664zi are further discretized as a cell id âi, which is used as the
665input of the decoder of the subseq2seq in Eq. (1). In this
666manner, the subseq2seq component and the KF components
667are intergraded as a whole, and the original noisy, coarse
668cell coordinates are refined to a more reliable, accurate pre-
669diction by explicitly reducing the predictive noise. To our
670knowledge, it is the first time that a joint RNN-KF hybrid
671model has been proposed for trajectory related tasks. The
672model elegantly combines the merits of the RNN and KF
673components. As will be shown later, the two components
674can be optimized in a joint way, which produces a better
675estimation than using a loose combination.
676For optimizing the KF component, we adopt the widely
677used mean squared error by minimizing the following loss

Fig. 3. The illustration for the integration of subseq2seq with Kalman Fil-
ter. We can see there are three data flows in the model: i) The flow of
the hidden state hhi in the subseq2seq component (highlighted by pink),
which captures the long-range dependencies or correlations over the
cell sequence. ii) The flow of gg;HH in the KF component (highlighted by
blue), which calibrate coarse cell coordinates as fine-grained trajectory
point coordinates. iii) The flow of the predicted cell coordinate zzi and its
calibrated coordinate ẑ̂zi (including the middle variables NNi and âi,
highlighted by green), which are passed between the KF component
and the subseq2seq component to integrate the two component as a
hybrid model.
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L2 ¼ 1

2

X
ð~t;tÞ2D

X
ai2t and ai =2 ~t

�
ai:x

ai:y

� �
� ẑzi

�2

; (23)

679679

680 where ẑ̂zi is the output of KF component at timestep i and

681
ai:x
ai:y

� �
is the actual coordinate vector for the ith point.

682 4.5 Model Learning

683 The final model loss consists of two parts, and we use a lin-
684 ear combination way to integrate both loss functions

Ltotal ¼ L1 þ � � L2; (24)
686686

687 where L1 and L2 are the loss functions defined in Eqs. (5)
688 and (23) respectively, and � is a tuning parameter to balance
689 the gradients of two loss functions in our work. Since our
690 method is a hybrid model, it will be difficult to directly opti-
691 mize the whole model. We adopt a separated approach to
692 train the model parameters. Specifically, at each iteration,
693 we first optimize the subseq2seq component and then
694 update the KF component using the learned RNN
695 parameters.
696 For learning the subseq2seq component, it is relatively
697 straightforward to optimize the L1 in Eq. (5). We apply the
698 cross entropy as the loss function to train our subseq2seq
699 model. Once we obtain the parameters for the subseq2seq
700 component, we next optimize the KF component.
701 While, the optimization of KF is more difficult. In the KF
702 component, we have the following parameter matrices to
703 learn, including MM, NN , FF, CC. Note that with our model, NN
704 can be directly computed using the parameters from the
705 subseq2seq component. The transformation matrices FF and
706 CC are set as a priori based on general knowledge. Then, our
707 focus is how to learn the state covariance matrixMM.
708 Since the KF component is coupled with the subseq2seq,
709 we can not directly use the traditional optimization algo-
710 rithm, such as the discriminative training approach in [43],
711 to infer the KF parameter of our model. Inspired by the
712 learning methods of backprop Kalman filter proposed
713 in [44], we propose an error Back Propagation Through Time
714 for Kalman Filter algorithm, abbreviated to BPTT-KF, to
715 optimize the parameter matrix MM of the KF component in
716 our model.
717 The gradients from timestep iþ l to the procedure
718 covariance at timestep i can be derived as follows

@L
�
iþl

@MMi

¼ @L
�
iþl

@ẑziþl

@ẑziþl
@ggiþljiþl

Yiþl
k0¼iþ1

@ggk0 jk0
@ggk0�1jk0�1

@ggiji
@MMi

¼ ai:x

ai:y

� �
� ẑ̂ziþl

� �
CCiþl

Yiþl
k0¼iþ1

ðII �KKk0CCk0 ÞFFk0
@ggiji
@MMi

;

720720

721 where L
�
i is the squared error between the real coordinates

722 and the predicted values, which is defined as

L
�
i ¼ 1

2

�
ai:x
ai:y

� �
� ẑzi

�2

: (25)724724

725

726For a trajectory with a length n, we can accumulate the
727gradients of MMi from the current position to the end of the
728trajectory as

@L2

@MMi
¼

Xn
i0¼i

@L
�
i0

@MMi
: (26)

730730

731Then the parameter MMi is optimized using the gradient
732descent approach.

7335 EXPERIMENTS

734In this section, we first set up the experiments, and then
735present the performance comparison and result analysis.

7365.1 Experimental Setup

7375.1.1 Construction of the Evaluation Set

738To measure the performance of our proposed model, we
739use three real-world taxi trajectory datasets collected from
740Beijing, Shenzhen and Porto respectively. The taxi trajec-
741tory data from Beijing is sampled every minute, while the
742dataset from Shenzhen is sampled every five minutes. The
743dataset from Porto is a public trajectory dataset, and origi-
744nally released for a taxi trajectory prediction competition
745on Kaggle.1 The original sampling period of Porto dataset
746is 15 seconds. Here, we convert it into one minute in the
747preprocessing procedure. In the three datasets, we do not
748have the road network data. For our work, we need to par-
749tition the entire space into disjoint cells. For different data-
750sets, we set different cell lengths. The cell length of Beijing
751and Porto datasets is set to 100 meters, and the cell length
752of Shenzhen dataset is set to 200 meters. We summarize
753the detailed statistics of the datasets in Table 1.

7545.1.2 Evaluation Metrics

755To evaluate our approach, we adopt a variety of evaluation
756metrics widely used in previous works [8], [20], [21], [22].

757� RMSE is the Root Mean Squared Error between the
758real values and predicted values for the coordinates
759of the missing trajectory points.
760� NDTW is the Normalized Dynamic Time Warping dis-
761tance, that is used for evaluating the task of trajectory
762recovery [8]. NDTW is an enhanced version of
763Dynamic Time Warping distance (DTW) [45], which
764divides DTW by the number of reconstructed trajec-
765tory points.

TABLE 1
Statistics of Our Datasets After Preprocessing

Datasets Beijing Shenzhen Porto

Duration 1 month 2 weeks 1 year
#taxis 18,298 17,998 442
#trajectories 313,560 149,230 284,100
#records 31,356,000 14,923,000 8,523,000
#cells 15,870 19,306 6,351
Period 1 minute 5 minutes 1 minute

1. https://www.kaggle.com/c/pkdd-15-predict-taxi-service-
trajectory-i
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766 � LCSS [46] is the measurement for the length of the Lon-
767 gest Common Sub-Sequence between two target sequen-
768 ces. It allows the skip trajectory points when necessary,
769 which is helpful to reduce the influence of noises.
770 � EDR [47] is the Edit Distance on Real sequence, which is
771 also robust to noise and addresses some deficiencies
772 in LCSS.
773 Note that the original LCSS and EDR are intended to deal
774 with sequences of discrete symbols. Here, we assume two
775 continuous points are the same if their distance is smaller
776 than a predefined threshold of 0.2 kilometers. For ease of anal-
777 ysis, we subtracting the value of LCSS and EDR from one, so
778 all the fourmetrics have the same tendency: smaller is better.

779 5.1.3 Task Setting

780 For each of the three datasets, we divide it into three parts
781 with the splitting ratio of 7 : 1 : 2, namely training set, vali-
782 dation set and test set. In our datasets, all the trajectories are
783 completely sampled. Hence, we randomly generate the sub-
784 trajectories using a sampling rate of r%. In other words, for
785 each complete trajectory, we only keep r% of sampled tra-
786 jectory points from it randomly. For the training set, we gen-
787 erate random sub-trajectories at each iteration. While, for
788 the test set, we generate and fix the sub-trajectories for pre-
789 diction, and the complete trajectory are held out as ground-
790 truth for evaluation. We further vary the sampling rate of
791 r% in the set f30%; 50%; 70%g For reliable evaluation, we
792 repeat the above process five times, and report the average
793 results on the five evaluation sets.

794 5.1.4 Methods to Compare

795 We consider using the following successful methods for
796 comparison:

797� RICK [8]: It builds a routable graph from uncertain
798trajectories, and then answers a users online query (a
799sequence of point locations) by searching top-k
800routes on the graph.
801� MPR [21]: It can discover the most popular route
802from a transfer network based on the popularity
803indicators in a breadth-first manner.
804� DeepMove [26]: It is a multi-modal embedding recur-
805rent neural network that can capture the complicated
806sequential transitions by jointly embedding the mul-
807tiple factors that govern the human mobility.
808� STRNN [32]: It models local temporal and spatial
809contexts in each layer with transition matrices for
810different time intervals and geographical distances.
811Among the four baselines, RICK and MPR are classic
812search algorithms, while DeepMove and STRNN are newly-
813proposed deep learning methods for next-step trajectory pre-
814diction. To our knowledge, no deep learning methods are
815directly applicable to trajectory recovery, and here we adapt
816DeepMove and STRNN to this task by consecutively predict-
817ing each missing point. In the trajectory recovery task, we fol-
818low their original way to make the next-point prediction. To
819recovery a missed point, we repeat the next-point prediction
820several times according to the time interval until the cell of the
821missed point is predicted. When the cell is predicted, we use
822the centric location as the final prediction.
823All the models have some parameters to tune. We either
824follow the reported optimal parameter settings or optimize
825each model separately using the validation set. For our
826model, we adopt a two-layer LSTM network, the embed-
827ding size of locations is set to 512. More detailed parameter
828configuration can be found in Table 3. We will give the
829detailed analysis on the parameter sensitivity of our model
830in Section 5.3.3.

TABLE 2
Performance Comparison of Four Metrics on Three Data Sets

Metric (km) Datasets Beijing Shenzhen Porto

Sampling Rate 30% 50% 70% 30% 50% 70% 30% 50% 70%

RMSE DHTR 0.324 0.164 0.069 1.041 0.632 0.369 0.301 0.215 0.126
DeepMove 0.959 0.479 0.295 4.101 1.953 1.115 0.518 0.313 0.195
STRNN 1.071 0.514 0.314 4.346 2.182 1.283 0.659 0.351 0.224
MPR 0.759 0.636 0.548 2.973 2.364 2.013 0.857 0.786 0.731
RICK 0.574 0.378 0.287 2.092 1.485 1.013 0.763 0.497 0.387

NDTW DHTR 0.139 0.059 0.027 0.522 0.338 0.125 0.167 0.099 0.045
DeepMove 0.433 0.166 0.069 1.076 0.546 0.219 0.219 0.109 0.055
STRNN 0.486 0.185 0.082 1.126 0.587 0.246 0.237 0.128 0.060
MPR 0.402 0.368 0.318 1.432 1.127 0.983 0.615 0.579 0.553
RICK 0.263 0.174 0.092 1.038 0.699 0.408 0.599 0.358 0.308

LCSS DHTR 0.208 0.116 0.060 0.230 0.102 0.029 0.188 0.130 0.066
DeepMove 0.457 0.245 0.132 0.364 0.221 0.103 0.254 0.152 0.085
STRNN 0.472 0.293 0.158 0.393 0.263 0.115 0.271 0.164 0.091
MPR 0.451 0.409 0.394 0.396 0.353 0.317 0.591 0.559 0.528
RICK 0.443 0.392 0.368 0.372 0.259 0.153 0.538 0.392 0.277

EDR DHTR 0.169 0.080 0.041 0.318 0.127 0.053 0.232 0.146 0.069
DeepMove 0.387 0.204 0.143 0.434 0.254 0.96 0.254 0.163 0.086
STRNN 0.406 0.222 0.164 0.455 0.274 0.102 0.273 0.185 0.091
MPR 0.701 0.685 0.679 0.506 0.453 0.342 0.623 0.586 0.540
RICK 0.524 0.465 0.296 0.706 0.561 0.448 0.517 0.331 0.221

All the performance scores are better with smaller values for the four metrics.
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831 5.2 Result and Analysis

832 The performance of all methods has been presented in
833 Table 2. It can be observed that:

834 (1) Comparing the two traditional algorithms, we can
835 see RICK is much better than MPR. RICK is based on
836 the classic A* search algorithm, and MPR is based on
837 the graph search algorithm. MPR involves much
838 computation over the construction of the graph,
839 which leads it is not suitable for large-scale data.
840 (2) For the two neural network models, DeepMove is
841 better than STRNN, since it incorporates more kinds
842 of context information such as history information.
843 Overall, DeepMove is better than the two traditional
844 methods RICK and MPR. RICK is a competitive
845 baseline, since it uses a series of heuristic refinement
846 techniques for enhancing the prediction perfor-
847 mance. As a comparison, DeepMove and STRNN
848 mainly rely on the automatic learning of useful pat-
849 terns or characteristics from original data.
850 (3) Finally, our proposed model DHTR consistently out-
851 perform all the baselines on three datasets with four
852 metrics. Especially, the improvement ratios with a
853 larger sampling rate is more significant. The underly-
854 ing reasons for improvement lie in two aspects. First,
855 we specially design a subseq2seq model equipped
856 with the spatiotemporal attention for the task of tra-
857 jectory recovery, which is able to fully utilize the spa-
858 tiotemporal information in observed sub-trajectory.
859 Second, we use the KF component to calibrate the
860 coarse estimate by reducing prediction noise.

861 5.3 Detailed Analysis of Our Model

862 As shown in previous experiments, our model has achieved
863 a significant improvement over all the baselines. In this
864 part, we construct more detailed analysis of the proposed
865 model for better understanding why it works well. Our
866 model has two major technical contributions. First, we
867 adopt the subseq2seq model for trajectory recovery, and
868 incorporate the spatiotemporal attention mechanism to
869 enhance the capacity of modeling complex dependencies or

870correlations for trajectory data. Second, we integrate the
871subseq2seq model with the KF component, which further
872uses a dynamic covariance for prediction. Next, we analyze
873the effect of these two contributions, and then report the
874results of parameter tuning.
875For ease of analysis, we only report the average RMSE
876performance on the Beijing dataset and Porto dataset, while
877the results on the Shenzhen dataset using other metrics are
878similar and omitted here.

8795.3.1 The Effect of the Spatiotemporal Attention

880For the task of trajectory recovery, spatiotemporal influence
881is very important to consider. In our model (Section 4.3), we
882proposed an elaborately designed spatiotemporal attention
883mechanism for effectively utilizing such context. In this
884part, we analyze the effectiveness of the proposed attention
885mechanism. Based on the subseq2seq model, we prepare 4
886variants for comparison:

887� NA: It is the subseq2seq model without the attention
888mechanism.
889� BA: It is subseq2seq model with the original Bahda-
890nau attention mechanism proposed in [38].
891� SA: It is the subseq2seq model which only utilizes
892the spatial attention in Eq. (12).
893� TA: It is the subseq2seq model which only utilizes
894the temporal attention in Eq. (12).
895� STA: It is the subseq2seq model which utilizes both
896the spatial and temporal attention in Eq. (12).
897As showed in Tables 4 and 5, the variants with the atten-
898tion mechanism are better than the one without the attention
899mechanisms. It indicates that it is important to utilize the
900attention mechanism to better capture the dependencies or
901correlations in trajectory data. Among all the attentionmech-
902anisms, the general attention mechanism works worst, since
903it essentially does not utilize the spatiotemporal information.
904In our model, both the spatial and temporal attentions are
905helpful to improve the performance. The combination bet-
906ween both spatial and temporal attention yields the best per-
907formance among these variants.

TABLE 3
Parameter Configuration for Our Model

Component Notation Configuration

RNN ssj (Eq. (3)) R512�1
rrj (Eq. (2)) R512�1
hhj (Eq. (3)) R512�1
vv (Eq. (12)) R256�1

WWH (Eq. (12)) R256�512
WWS (Eq. (12)) R256�512
WWP (Eq. (12)) R256�512
WWQ (Eq. (12)) R256�512

KF FF (Eq. (13)) R4�4
CC (Eq. (14)) R2�4
ggi (Eq. (13)) R4�1
zzi (Eq. (14)) R2�1

HHiji�1 (Eq. (16)) R4�4
MM (Eq. (16)) R4�4
NNi (Eq. (19)) R2�2

TABLE 4
The Effect of Different Attention Mechanisms on Beijing Dataset

Sampling 30% 40% 50% 60% 70%

NA 0.598 0.436 0.331 0.256 0.221
BA 0.551 0.383 0.292 0.239 0.194
SA 0.490 0.353 0.252 0.214 0.177
TA 0.475 0.338 0.259 0.217 0.163
STA 0.344 0.257 0.176 0.115 0.075

TABLE 5
The Effect of Different Attention Mechanisms on Porto Dataset

Sampling 30% 40% 50% 60% 70%

NA 0.416 0.335 0.301 0.264 0.225
BA 0.352 0.298 0.245 0.229 0.179
SA 0.346 0.285 0.239 0.224 0.168
TA 0.348 0.284 0.234 0.221 0.162
STA 0.316 0.274 0.229 0.194 0.138

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. X, XXXXX 2019



IEE
E P

ro
of

908 5.3.2 The Effect of the Kalman Filter Component

909 A key contribution of our model is the integration of the
910 subseq2seq model with the KF component. In this section,
911 we examine the effect of KF component on the model per-
912 formance. Especially, in the standard KF, the covariance
913 matrix NNi for the observation is static and all the timesteps
914 share the same covariance matrix. In our model, we use the
915 dynamic covariance matrices for modeling varying predic-
916 tive uncertainty with time.
917 Here, we prepare four variants of our model for compari-
918 son. The first variant is the subseq2seq model (including the
919 spatiotemporal attention) without the KF component. The
920 second and third variants are the subseq2seq model inte-
921 grated with the KF component using static and dynamic
922 covariances respectively. While, the fourth variant is using
923 the standard KF as a post-processing to filter the trajectory
924 recovered by the subseq2seq model.
925 For ease of comparison, we take the variant without KF
926 as the reference, and compute the improvement ratios of the
927 other three variants over it. We also consider the compari-
928 sons with different sampling rates. We present the results in
929 Tables 6 and 7. As we can see, the two variants integrating
930 the KF component and the subseq2seq component as a
931 whole are better than the one using KF as a post-processing.
932 The dynamic covariance have better performance than the
933 static covariance. Interestingly, with the increase of the sam-
934 pling rate, the improvements become larger. It indicates
935 that when we have more observed data, the estimation of
936 KF can become more accurate and the calibration of KF
937 component are more efficient.

938 5.3.3 Parameter Tuning

939 In addition to the model components, there are several
940 parameters to tune in our model. Here we incorporate the
941 best baseline for comparison.
942 Since the subseq2seq model is developed based on the
943 discrete symbol set (i.e., the cell set), each cell ID is associ-
944 ated with an embedding. An important parameter to con-
945 sider is the embedding size for cell IDs. We vary the
946 embedding size from 128 to 640 with a gap of 128.
947 As shown in Figs. 4a and 5a, the optimal embedding

948size is around 500. Overall, the range from 400 to 600 gives
949good performance.
950Another parameter to tune is the cell length. When a larger
951cell length is used, we will have fewer cells to model. In this
952case, we have a small complexity for the cell sequence, but the
953numerical predictions for the coordinates become coarse and
954vice versa. Hence, the setting of the cell length should make a
955trade-off on the two above aspects. We vary the cell length
956from 80 meters to 160 meters with a gap of 20 meters for the
957Beijing dataset and vary the cell length from 160 meters to
958320 meters with a gap of 40 meters for the Porto dataset.
959Figs. 4d and 5d present the varying results for different cell
960lengths. It can be observed that the length gives the best per-
961formance is 100 meters for the Beijing dataset and is 200
962meters for the Porto dataset.
963In our loss function, we incorporate a tuning parameter �
964for balancing the RNN and KF components. We tune � from
9650.01 to 0.25with a gap of 0.05 for the Beijing and Porto datasets.
966From Figs. 4c and 5c, it can be observed that the performance
967remains relatively stable when � 2 ½0:05; 0:15�. And a value of
9680.1 leads to the optimal performance for the both datasets.
969In previous experiments, we use the sampling interval
970(or period) as known input (Table 3). Indeed, our model
971itself does not rely on a specific sampling interval and can

TABLE 6
The Effect of the KF Component with Different Covariance

Matrices on Beijing Dataset

Sampling Rate 30% 50% 70% 90%

Dynamic Covariance 5.90% 6.98% 8.09% 9.23%
Static Covariance 1.18% 2.34% 4.18% 6.52%
Post-processing 0.83% 1.94% 3.65% 5.27%

TABLE 7
The Effect of the KF Component with Different Covariance

Matrices on Porto Dataset

Sampling Rate 30% 50% 70% 90%

Dynamic Covariance 4.96% 6.37% 8.58% 10.18%
Static Covariance 2.41% 3.71% 4.85% 6.12%
Post-processing 1.78% 2.48% 3.27% 4.57%

Fig. 4. Parameter tuning for our model on Beijing dataset using the
RMSE measure.

Fig. 5. Parameter tuning for our model on Porto dataset using the RMSE
measure.
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972 work with different sampling periods. To see this, we vary
973 the sampling period in the set f1; 3; 5; 10; 15g. Figs. 4d and
974 5d present the results with different sampling periods for
975 the Beijing and Porto datasets. Overall, a larger sampling
976 period will yield a worse performance, since the input has
977 contained fewer known points.

978 5.4 Qualitative Analysis on the Model
979 Interpretability

980 Another major benefit of our model is that the intermediate
981 results for predictions are highly interpretable. In this sec-
982 tion, we present some qualitative analysis by visualizing the
983 attention weights and the covariance matrices.

984 5.4.1 Visualizing Attention Weights of the Subseq2seq

985 Model

986 We first present a qualitative example for understanding the
987 attention weights in our model. We take a trajectory
988 sequence from the Beijing dataset. The complete sequence
989 consists of 100 trajectory points sampled by minute. After
990 removing the points for predictions, we keep 30 random
991 points as the observed sub-trajectory. The task is to recon-
992 struct the missing 70 points in the original trajectory. Fig. 6a
993 gives the overview of the trajectory sequence, where the
994 observed points are marked as purple.
995 Fig. 6b presents the comparison between our proposed
996 spatiotemporal attention mechanism and the Bahdanau
997 attention mechanism in [38]. In the experiment, we respec-
998 tively use the Bahdanau attention and the spatiotemporal
999 attention in our model to recovery the missing trajectory

1000 points. The attention weights of the two type of attentions
1001 are plotted in Fig. 6b. As shown in the figure, there are two
1002 matrices with the size of 30� 100. The upper is for the Bah-
1003 danau attention, and the lower is for our spatiotemporal
1004 attention. The horizontal axes of the matrices express the
1005 100 trajectory points of the complete sequence, and the ver-
1006 tical axes express the 30 random points. The cells of the Bah-
1007 danau attention matrix denote ui;j that are calculated by
1008 Eq. (9), and of the spatiotemporal attention denote ui;j that

1009are calculated for Eq. (12). The values of the matrix cells are
1010the darker the higher.
1011As shown in the figure, the Bahdanau attention does not
1012consider the spatiotemporal information for modeling trajec-
1013tory data, and it produces dispersive attention weights over
1014the observed points. As a comparison, our proposed method
1015generates a skew, focused distribution of attention weights.
1016With our attention mechanism, a trajectory point to be pre-
1017dicted is mainly influenced by the nearby sampled points.
1018Hence, our attention mechanism is more capable of modeling
1019the spatiotemporal characteristics of trajectory data.

10205.4.2 Visualizing the Dynamic Covariance of Kalman

1021Filter

1022In our model, we model the dynamic covariance for the pre-
1023dictions with time, and trace the varying of the predictive
1024uncertainty for the estimations. Therefore, besides the esti-
1025mated results, both the subseq2seq component and the KF
1026component are able to give confidence distribution over the
1027predictions.
1028Fig. 7 illustrates an example of how prediction uncertainty
1029in our model changes with time. In this example, we present
1030three trajectory points from a trajectory sequence, namely
1031ai�2, ai�1 and ai. The prediction uncertainty of the these points
1032are plotted on the figure as heat map. A darker color indicates
1033a more confident prediction. At timestamp i, we give a detail
1034of the prediction uncertainty for different components of our
1035model. Here, the subseq2seq model outputs a noisy predic-
1036tionwith a confidence distribution labeled as “Predicted by sub-
1037seq2seq at i”. The noisy prediction is subsequently fed into the
1038KF component. Recall that the KF component involves two
1039steps. In the prediction step, KF makes a state prediction with
1040a confidence distribution labeled as “Predicted by KF at i”,
1041which pulls the prediction towards the target point. Then,
1042after the update step, our model given a final prediction with
1043a confidence distribution labeled as “Calibrated by KF at i”,
1044which ismore close to the target point.
1045Different from previous deep learning models for trajec-
1046tory data, our model is able to explicitly characterize the

Fig. 6. The visualization of the attention weights for the recovery of a sample trajectory. This trajectory originally consists of 100 trajectory points. In
this example, 30 points are kept as input, and the rest are hidden for prediction. For each known point, we calculate its attention weights over the
complete 100 points. Hence, the attention weights are plotted as a matrix of the size of 30� 100. Here, we compare two kinds of attention mecha-
nisms for calculating the weights. The left figure gives the overview of the trajectory sequence, where the observed points are marked as purple. The
right figure presents the comparison between the Bahdanau attention and the proposed spatiotemporal attention.
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1048 ful to understand the internal working mechanism of the
1049 prediction model.

1050 6 CONCLUSIONS

1051 In this paper, we proposed a novel deep hybrid model for
1052 trajectory recovery in free space. Our model integrated the
1053 subseq2seq component with the KF component. It was
1054 endowed with the merits of both components, i.e., the
1055 capacities of modeling complex sequence data and reducing
1056 predictive noise. We constructed three large trajectory data-
1057 sets for evaluation. The experimental results have shown
1058 that our model is superior to previous methods in the task
1059 of trajectory recovery.
1060 Currently, we test the proposed model with three taxi
1061 trajectory datasets. We will consider applying our model to
1062 trajectory data in more domains, e.g., animal trace. In our
1063 work, we mainly focus the spatiotemporal correlations
1064 among trajectory points. As future work, we will extend the
1065 proposed model by incorporate more kinds of context infor-
1066 mation, e.g., POI labels and user profiles.
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