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Abstract With the increasing number of GPS-equipped ve-
hicles, more and more trajectories are generated continuous-
ly, based on which some urban applications become feasi-
ble, such as route planning. In general, popular route that
has been travelled frequently is a good choice, especially for
people who are not familiar with the road networks. More-
over, accurate estimation of the travel cost (such as travel
time, travel fee and fuel consumption) will benefit a well-
scheduled trip plan. In this paper, we address this issue by
finding the popular route with travel cost estimation. To this
end, we design a system consists of three main components.
First, we propose a novel structure, called popular traverse
graph where each node is a popular location and each edge
is a popular route between locations, to summarize historical
trajectories without road network information. Second, we
propose a self-adaptive method to model the travel cost on
each popular route at different time interval, so that each time
interval has a stable travel cost. Finally, based on the graph,
given a query consists of source, destination and leaving time,
we devise an efficient route planning algorithm which consid-
ers optimal route concatenation to search the popular route
from source to destination at the leaving time with accurate
travel cost estimation. Moreover, we conduct comprehensive
experiments and implement our system by a mobile App, the
results show that our method is both effective and efficient.

Keywords Location-based services, route planning, travel
cost estimation, minimum description length, optimal road
concatenation
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1 Introduction

Route planning [2, 16–18, 26–28] is important not only for
our daily life, but also for business map engines like Google
and Bing Maps. Although the shortest/fastest paths are used
commonly in road networks, they may be insufficient in some
situations, while the popular route that refers to a path being
travelled frequently is sometimes important. For example,
drivers who travel in an unfamiliar city may prefer a popular
path which may be safer with better traffic condition and road
quality, and a taxi passenger may want to travel along a pop-
ular path in case of a roundabout trip. Moreover, since travel
cost dynamically depends on the traffic conditions and oth-
er factors, such as traffic lights, people care more about the
travel cost, i.e., how long it takes or how much it costs at the
time they are leaving, so that accurate travel cost estimation
will improve people’s satisfaction.

With the development of intelligent transportation in c-
ities, more and more GPS-equipped vehicles are running on
the road networks. As a result, a large number of time-
stamped GPS trajectories are consecutively generated. Based
on the historical citywide trajectories, popular paths can be
constructed by finding out how people usually travel between
locations, and with the temporal information in the trajecto-
ries, it’s possible to estimate the travel cost of paths.

Route planning or driving direction planning has been s-
tudied in recent years and some influential works have been
published. [2, 21] propose a framework to find out the practi-
cally fastest route at a given departure time based on a land-
mark graph learned from a large number of historical taxi
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trajectories. However, the fastest route is not always popu-
lar, some shortcuts may reduce the travel time but increase
the risk and uncertainty of a trip. The work performs a two-
stage routing algorithm based on the graph to find the fastest
route. The first stage is to find the rough route represented by
a sequence of landmarks whose travel time can be estimated
by their model and the second stage is to find a practical-
ly detailed fastest route in the road network based on speed
constraints. But the travel time of the detailed fastest route
may be different from the estimated travel time at the first
stage. Since there may exist several different paths between
two landmarks and the estimated travel time is just the mean
travel time of all possible paths. In most cases, the travel time
of the detailed fastest route is less than the estimated travel
time, which will cause inaccurate travel time estimation of
the route. [3] proposes a model to estimate the travel time of
a given path by using the optimal route concatenation which
considers dependencies between road segments. However, it
cannot be applied to route planning directly.

To find the popular route with travel cost estimation, three
challenges must be addressed.

Data sparseness and coverage Due to the complexity of
road network, we cannot guarantee that all roads have been
covered by trajectories. Moreover, for each road, it is prac-
tically impossible that there are sufficient trajectories during
all time intervals. We must thus contend with data sparseness
to response users’ path queries between any locations at any
time intervals. On the other hand, road network is not always
available, it’s unpractical to find the popular routes/roads by
counting the support on each road. Thus, in this occasion,
how to get the paths/roads from trajectories is meaningful.

Travel cost modeling Different roads have different trav-
el cost, because road quality and road condition are not the
same. For example, the highway with less traffic lights trav-
el faster than the roads with more traffic lights. Meanwhile,
the travel cost of the same road also varies at different time.
For example, the travel time at rush hour is usually longer
than that at the non-rush hour due to traffic jam. Hence, an
intelligence modeling for the travel cost on each road at dif-
ferent time that can benefit accurate travel cost estimation is
a challenge, especially under the fact of data sparseness.

Path cost estimation The cost of a path can be estimated
by summing up, however, the results are only accurate if the
travel costs of roads are independent. In practice, the travel
costs may be dependent due to intersection or turning. To
derive accurate travel cost of path, the dependencies must be
considered. Moreover, estimating the travel cost for a given

path is not enough to answer a path query, so it’s challenging
to estimate the travel cost of paths while routing.

In this paper, we aim at finding the popular route with min-
imal travel cost from source to destination and estimating the
travel cost for this route. To deal with the above challenges,
we devise a system to achieve this goal. Firstly, we construct
a popular traverse graph based on the historical trajectories,
where each node is a popular location, and each edge is a
popular route between two locations. Subsequently, for each
popular route in this graph, we use the minimum description
length (MDL) principle [4] to model the travel cost for each
popular route at different time intervals, so that each time in-
terval has a stable travel cost. Finally, based on the graph,
given a source-destination pair and a leaving time, for accu-
rate travel cost estimation, we find the fastest popular route
in consideration of the optimal route concatenation [3] which
considers the dependencies between road segments. The con-
tributions of this paper are summarized below.

• We propose a novel structure, called popular traverse
graph, from trajectories without road network informa-
tion, which contains the popular routes between popular
locations.

• We present a self-adaptive method using the minimum
description length (MDL) principle to model the travel
cost on each popular route in the graph.

• We devise an efficient routing algorithm which com-
bines optimal route concatenation with route planning
on the popular traverse graph.

• We conduct extensive experiments upon a real dataset of
millions of trajectories generated by more than 10,000
taxis over a month in Beijing. The results show that our
method is both effective and efficient. Moreover, we im-
plement and visualize our system through a mobile App.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the related work. Section 3 describes some
preliminary knowledge. Section 4 describes the overview
of our framework. Section 5 introduces the popular traverse
graph, and the method to model the travel cost for each pop-
ular route. Section 6 details the routing algorithm. Section 7
reports the evaluation and a brief conclusion is given in Sec-
tion 8.

Compared with our earlier proceeding paper [1], this ex-
tended paper mainly claims following contributions. First,
we define our problem more formally and devise and imple-
ment a cloud-mobile based popular route planning system for
solving it, where the mobile App is designed. The architec-
ture of our system is introduced in Section 4, and the detailed
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interactions of the mobile App is presented in Section 7.4.
Second, in Section 6, we improve the efficiency of our rout-
ing algorithm by more efficient optimal concatenation com-
putation, which enables faster response to user query. In ad-
dition, we discuss the time complexity of our routing algo-
rithm. Third, we conduct more comprehensive experiments
to validate our system. For example, we evaluate the popu-
lar traverse graph with different parameter settings (Section
7.2) and test the performance of our method on different pop-
ular traverse graph (Section 7.3.1). In addition, we evaluate
the efficiency of our improved routing algorithm compared to
the method in our previous work [1] (Section 7.3.2). More-
over, a case study on the mobile App is illustrated (Section
7.4).

2 Related work

In general, our problem on popular route planning with trav-
el cost estimation relates to two problems in the literature,
namely route planning and path cost estimation.

Route planning: Route planning, also referred to as driving
direction planning or route finding or path finding, has been
studied for decades. [12] proposes a fundamental algorithm
(Dijkstra’s algorithm) to find the shortest path between two
nodes in a graph and the A∗ algorithm proposed by Hart [22]
boosts the searching performance with heuristic estimation.
In [15–17], the authors study how to find the fastest path on
a time-dependent graph, where the weight of edge is dynam-
ic. [23] computes the fastest path on a road network by con-
sidering speed and driving patterns. All above works find
route from source to destination on a given weighted graph.
However, this kind of weighted graph, such as the road net-
works, is not always available. Moreover, the weight of each
edge is difficult to determine. Yuan et al. [2, 18] proposed
a framework to find the fastest route from taxi trajectories.
In [2], they construct a landmark graph and based on that,
a two-stage routing algorithm is performed to find the fastest
route. In [18], traffic prediction is employed for optimization.
However, the estimated travel time is not actually the travel
time of the practical fastest route as [2,18] recommended and
dependencies between road segments are not considered.

[6, 14] discover the top-k possible popular routes that se-
quentially pass given locations from historical uncertain tra-
jectories. [5] studies how to discover the most popular route
between any two locations. The authors introduce a trans-
fer network model by exploiting intersections and the popu-
larity of transfer nodes on the transfer network. They infer

the most popular routes according to the turning probabili-
ty of each intersection on the network. [7] tries to find the
time period-based most frequent path. It firstly constructs a
footmark graph which is used to calculate the frequencies of
candidate paths, then they retrieve the most frequent path in
arbitrary time periods specified by the users on this graph. All
the above studies try to find the popular routes without con-
sidering the travel cost, whereas our focus is to find a popular
route with travel cost estimation.

Path cost estimation: [2, 18, 24, 25] estimate path cost by
summing up the travel costs of the edges in the path. [11] s-
tudies stochastic skyline route queries in road networks with
multiple travel costs, it provides the travel cost distribution
given a source-destination pair with a leaving time. How-
ever, the above works ignore road dependencies, such as in-
tersection and turning, which can lead to inaccurate estima-
tion. [3, 20] propose a model to estimate the travel time of
a given path in a road network by considering road depen-
dencies, but they cannot be directly applied to route planning
from a source to a destination. Our work differs from the
above works, because we aim at finding the popular route be-
tween locations as well as estimating the travel cost by con-
sidering road dependencies.

3 Preliminary

We define some terms and the problem addressed in this pa-
per.

Definition 1 (Trajectory). A Trajectory Tr is a time-ordered
sequence of points generated by a moving object. Each point
p consists of a geographic location p.l and a timestamp p.t,
i.e., Tr : p1 → p2 → ... → pn, where pi+1.t > pi.t (1 ≤ i < n).

Trajectory is a real reflection of the travelling behaviour
of the moving object and provides us a possible path from
the start to the end location if no road network information is
provided.

Definition 2 (Popular Route). A Popular Route is a path with
alternative condition holds: (1) A path that has been tra-
versed at least τ times, where τ is a pre-defined threshold;
(2) A path consists of multiple sub-paths and each sub-path
satisfies condition (1).

A popular route that has been travelled frequently is al-
ways a candidate for a trip, because most of people have cho-
sen it. However, not all source-destination pairs have a direct
popular route (condition 1). For instance, a long path may not
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A B C D E F

Fig. 1: An example of route concatenation

be frequently passed as a whole. In this case, it can still be
treated as a popular route if all its sub-paths are popular routes
(condition 2) [5]. To distinguish, we call the popular route
that holds condition (1) trivial popular route, and the popular
route only holds condition (2) non-trivial popular route.

Definition 3 (Popular Traverse Graph). A Popular Traverse
Graph (PTG) G = (V, E) is a directed graph where V is a set
of popular locations and E is a set of trivial popular routes
between locations.

Since each edge in PTG is a trivial popular route, the path
between any two nodes is also popular by definition 2.

Definition 4 (Concatenation of Route). Let r : n1 → n2 →

... → nq denotes a route in the popular traverse graph G,
where nk (1 ≤ k ≤ q) is a node in G. Denote |r| as the size of r
which is the number of nodes it contains. A concatenation of r
is r∗ : p1||p2|| · · · ||pk, where pi(1 ≤ i ≤ k) is a trivial popular
sub-path of r and all pi together cover r without intersection.

The concatenation of a route means that some consecu-
tive road segments in the route are frequently traversed as a
whole, and we can regard the consecutive road segments as
a united sub-path when we estimate the travel cost of this
route. Since the united sub-path can reflect the traffic condi-
tions between road segments, including intersections, traffic
lights and direction turns, which will improve the accuracy of
the travel cost estimation.

Example 1. Figure 1 is a path from A to F on PTG. For sub-
path r : A → B → C → D, if r is travelled frequently as a
whole, then r is a trivial popular route due to the condition
(1) in definition 2, we use dashed lines to represents the trivial
popular routes with size greater than 2. Clearly, each sub-
path of r is also a trivial popular route, such as A → B→ C
and B → C → D. Then, the concatenations of path P :
A → B → C → D → E → F can be A → B → C →
D||D → E → F, A → B → C||C → D → E||E → F,
A→ B||B→ C||C → D||D→ E||E → F and so on, there are
totally 10 different ways of concatenations for P. Note that
only path that contains trivial popular route with size greater
than 2 has different ways of concatenations.

Different ways of concatenations lead to different travel
cost estimations when summing up the travel costs of all sub-

A

B

C

D
E

9
25

29

50

11
20

32 51

Fig. 2: An example of popular traverse graph

Table 1: Different paths from A to E

Path Optimal concatenation Travel cost
A→ B→ D→ E A→ B||B→ D→ E 9+50=59
A→ C → D→ E A→ C → D||D→ E 32+29=61

A→ C → E A→ C||C → E 11+51=62

paths. The next issue is how to find an optimal one from all
possible ways of concatenations for a path. [3] finds the opti-
mal concatenation of a path P by making an object function
minimized, so that the empirical risk of travel cost estimation
will be the minimal. In this paper, we apply the same object
function:

∑k
i=1

1
npi

Var(cpi
), where pi is the ith sub-path of P,

Var(cpi ) is the variance of the travel costs on pi, and npi is the
number of trajectories that travelled on pi.

Finally, we formally define the problem addressed in this
paper.

Problem Definition : Given a popular traverse graph G and
a route planning query with a source s, a destination d and a
departure time t, we find a popular route from s to d such that
the travel cost of the optimal concatenation of this route is
minimal at time t.

Example 2. Figure 2 shows a popular traverse graph with
static weight on each edge. Suppose the dashed lines that
represent the trivial popular routes with size greater than 2
are also the optimal concatenation, that is the optimal con-
catenation of A→ C → D and B→ D→ E are A→ C → D
and B → D → E respectively. Let’s find the expected path
from A to E. Table 1 lists all the possible paths from A to E
and their corresponding optimal concatenations and travel
costs. Since path A→ B→ D→ E has the optimal concate-
nation with minimal travel cost, the returned path should be
A→ B→ D→ E with travel cost 59.
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4 Overview

Figure 3 illustrates the overview of our system to find the pop-
ular route with travel cost estimation from trajectories. Our
system is implemented by using client/server model, and it
consists of three major components: popular traverse graph
building, travel cost modeling, and routing. The first two
components operate offline and the third is running online.
The offline parts only need to be performed once unless the
trajectory archive is updated, and the online part runs on our
background server and executes real-time responds to user’s
instant requests via App at different devices.

Popular traverse graph building. Since the road network
is not always available, based on the raw trajectory dataset,
we construct a popular traverse graph, where each node is
a popular location, and each edge is a trivial popular route
between two locations. Accordingly, each path on this graph
from one location to another is a popular route.

Travel cost modeling. Since the cost of a route varies a lot
at different time, for each popular route (an edge) of popular
traverse graph, we need to model its travel cost at different
time intervals according to historical trajectories. For trajec-
tories pertaining to a popular route, we try to partition their
travel costs into different time intervals, so that each time in-
terval has a stable travel cost. After travel cost partitioning on
all popular routes, the popular traverse graph becomes time-
dependent.

Routing. Based on popular traverse graph, given a user query
consists of source, destination and leaving time, we find the
fastest popular route as well as its travel cost from source to

destination at the leaving time, in consideration of the optimal
route concatenation [3] for accurate travel cost estimation.

5 Popular Traverse Graph

This section first describes how to construct a popular tra-
verse graph from trajectories without road network informa-
tion, and then details the travel cost modeling of popular
routes.

5.1 Constructing Popular Traverse Graph

As the road network may be unavailable or incomplete in
some situations [5,6], it is infeasible to compute the travelling
frequency of the roads to find the popular routes. Fortunately,
it is still feasible to find the popular (frequently visited) lo-
cations from the trajectories, so that the transitions between
locations can be extracted. Finally, we discover the popu-
lar routes on each transition to construct the popular traverse
graph. Algorithm 1 describes the major processes.

Popular location mining. Since trajectories consist of
points, the popular locations can come from the points of tra-
jectories. To reduce the size of points, we only consider the
end points of the trajectories which can reflect the location-
s where people usually start from or go to. Thus, the query
source or destination has a high probability to locate at the
same locations. To find the popular locations, we first par-
tition the points into different zones and then the DBSCAN
clustering algorithm [9] is invoked to generate clusters for the
points in each zone. Finally, top-k clusters with the maximal
number of points are chosen as the popular locations.

Transition extraction. We then search the transitions be-
tween locations by scanning the trajectory dataset. For each
trajectory tr, we first map it to the popular locations, then
the trajectory can be represented as tr: l1 → l2 → ... → ln,
where li (1 ≤ i ≤ n) is a popular location. For each li → li+1

(1 ≤ i < n), we generate a transition from li to li+1 if it does
not exist, and we also keep the sub-segment of tr that belongs
to this transition for popular routes discovering.

Popular route discovering. There may exist several differ-
ent paths for a transition that connects two popular locations.
In order to get the popular paths on the transitions, we cluster
the sub-trajectories pertaining to each transition. As a result,
the cluster with at least τ trajectories is treated as a popu-
lar route. To tackle the ununiform rate trajectories, we apply
Edit Distance with Projections (EDwP) proposed in [19] to
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Algorithm 1: ConstructPTG(T )
Input: Raw trajectory dataset T
Output: Popular traverse graph G = (V, E)

1 //Popular locations mining
2 v← ∅;
3 foreach Trajectory t in T do
4 v← v ∪ t.endPoints;

5 V ← point clustering for v;
6 //Transitions extraction
7 T ′ ← map all trajectories in T to V;
8 d ← [< key, valueList >]; //Dictionary data structure
9 foreach Trajectory tr : l1 → l2 → ...
→ ln(li ∈ V(1 ≤ i ≤ n)) in T ′ do

10 tr′ ← sub-trajectory of tr from li to li+1(1 ≤ i < n);
11 d.key(li, li+1).valueList.add(tr′);

12 //Popular routes discovering
13 E ← ∅;
14 foreach key (li, l j) in d do
15 E ← E ∪ trajectory clustering for

d.key(li, l j).valueList;

16 return Popular traverse graph G = (V, E);

measure the similarity between trajectories, and we use the
density-based method [10] to cluster the trajectories.

Note that trajectory clustering can not only discover the
popular routes but also detect the outliers in the trajectory set
(i.e., the roundabout trips), which helps to improve the accu-
racy of the travel cost estimation. In case there are more than
1 popular routes in a transition, we add a flag to distinguish
them. The time complexity of Algorithm 1 consists of one
point clustering on end points of all trajectories, one trajec-
tory clustering on each transition and one trajectory dataset
scanning for transitions extraction. In practice, we use dis-
tributed computing platform, i.e., Hadoop, to process massive
trajectory dataset (see experiment setting in Section 1).

5.2 Constructing Suffix Tree

Since the trivial popular routes on PTG constructed by Algo-
rithm 1 are all with size equals to 2, to find the optimal con-
catenation of a popular route, we need to get the trivial pop-
ular routes on PTG with size greater than 2. To achieve this
goal, we construct a suffix-tree-based index from trajectory
dataset to quickly retrieve such trivial popular routes between
nodes on PTG. For a popular route r : n1 → n2 → ... → nk

on PTG, we define suffix route of r as the route r∗ : ni → ...
→ nk(1 ≤ i < k). Algorithm 2 shows the details on building
suffix-tree-based index for the trivial popular routes with size
greater than 2.

Algorithm 2: ConstructSuffixTree(T,G)
Input: Raw trajectory dataset T , popular traverse graph

G
Output: Suffix tree for trivial popular routes with size

greater than 2
1 T ′ ← map all trajectories in T to V;
2 S ← ∅;
3 foreach Trajectory tr : l1 → l2 → ...
→ ln(li ∈ V(1 ≤ i ≤ n)) in T ′ do

4 if (li, li+1) < E(1 ≤ i < n), remove (li, li+1) from tr;
5 S ← S ∪ remaining segments in tr;

6 Suffix tree S T ← ∅;
7 foreach Segment s : l1 → l2 → ...
→ ln(li ∈ V(1 ≤ i ≤ n)) in S do

8 foreach Suffix route s∗(|s∗| > 2) of s do
9 if s∗ < S T then

10 Create a path s∗ on S T and set its support to
1;

11 else
12 Increment the support of s∗ by 1;

13 Remove all routes with support less than τ from S T ;
14 return S T ;

For each trajectory, we first map it to a string of nodes
on PTG, i.e., t: l1 → l2 → ... → ln. For each transition
li → li+1(1 ≤ i < n), if it’s not a popular route on PTG,
then we know that li → li+1 won’t be a popular route or be a
part of popular route, hence it will be removed from t. Now
t is split into several segments. For each segment s : li →
... → l j, if |s| > 2, it could be a trivial popular route with
size greater than 2. Then, for each suffix route s∗: lo → ...
→ l j(i ≤ o ≤ j − 2) that its sub-segments are included in
the corresponding clusters of lk → lk+1(o ≤ k < j), we cre-
ate a path on the suffix-tree if s∗ does not exist in the tree,
otherwise, we increase its support. By this way, any path p
with |p| > 2 in the suffix-tree whose support is no less than
the threshold τ will be a trivial popular route. To reduce the
size of the suffix-tree, we remove the paths with support less
than τ. As a result, given a starting node, we can find all the
trivial popular routes with size greater than 2 in O(1) with the
reduced suffix-tree.

Suppose the total number of points in the raw trajectory
dataset T is |T |, the time complexity of Algorithm 2 is O(|T |),
since several linear point scanning on T is needed to build the
suffix tree.

Example 3. Figure 4 shows a running example of construct-
ing a reduced suffix-tree based on the PTG and trajectory
dataset that the PTG is built from with threshold τ = 2. As
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Fig. 4: An example of constructing suffix-tree with τ = 2

we can see, in the PTG, there are totally 2 trivial popular
routes with size greater than 2 which are A → B → C and
B→ C → D.

5.3 Modeling Travel Cost Using the MDL Principle

The travel cost of a path varies a lot for different drivers at d-
ifferent time [2, 3, 11], for accurate travel cost estimation, we
need to find the travel cost pattern on each popular route at
different time slots, for example, the rush hour and non-rush
hour intervals. However, it’s challenging to mine such pat-
terns due to data sparseness and skewness. [8, 11] statically
divide a day into different time slots, which is hardly suitable
for all routes. The VE-Clustering algorithm [2, 21] attempt-
s to partition a day into different time slots according to the
travel costs by two clustering methods, namely V-clustering
and E-clustering, and each with a threshold. However, it is
hard to set the values of such global thresholds for all routes
due to different distributions. Fortunately, although challeng-
ing, the minimum description length (MDL) principle [4, 10]
which is widely used in information theory is suitable to solve
this problem. Hence, we propose a parameter-free and self-
adaptive algorithm by integrating the MDL principle.

Before introducing our method, we note that a good par-
tition for travel costs should meet the following two require-
ments: (1)homogeneity: stable travel costs in each time slot,
which can reflect the traffic pattern, and (2) conciseness: the
significant difference (i.e., distribution of the travel costs) be-
tween two adjacent time slots, otherwise, there is no need to
split them apart. That is, a good partition should possess both

two properties: homogeneity and conciseness, and the more
homogenic and concise, the better. However, homogeneity
and conciseness are contradictory to each other. For exam-
ple, if the partition has only one time slot, then all travel costs
will be in the same slot. In this case, the conciseness is maxi-
mized and the homogeneity is minimized. In contrast, if every
single travel cost possesses a time slot, then homogeneity is
maximized and the conciseness is minimized. Therefore, we
need to find an optimal trade-off between the two properties.
To this end, we introduce the minimum description length
(MDL) principle to solve this problem.

Let’s review MDL briefly [4]. The MDL cost consists of
two components: L(H) and L(D|H), where L(H) is the length
of the description of the hypothesis, and L(D|H) is the length
of the description of data under the hypothesis, both in bits.
To get the best hypothesis H to explain the data D, the value
of MDL = L(H) + L(D|H) must be minimized. In our prob-
lem, H refers to the time partitions and D corresponds to the
set of travel costs on each popular route. Hence, L(H) and
L(D|H) are defined formally below.

L(H) = log2(num) +
num∑
i=1

dlog2 span(sloti)e (1)

L(D|H) =
num∑
i=1

{dlog2(N(sloti))e + Ent(sloti)} (2)

where Ent(sloti) = −
∑numcla

k=1
Nk(sloti)
N(sloti)

log2
Nk(sloti)
N(sloti)

. Equation
(1) encodes the hypothesis of a partitioning, the first term de-
scribes the number of partitions (num) on time, the second
term describes the span of each time slot (sloti). Equation
(2) describes data under the hypothesis. The first term en-
codes the number of the travel costs in sloti. The second term
computes the information entropy of the travel costs in time
slot sloti to describe the stability of the slot, where N(sloti)
is the total number of travel costs in sloti and Nk(sloti) is the
total number of travel costs in the kth class in sloti. That is,
we need to first map the travel costs to different classes, and
each class represents a different cost level. For example, in
terms of travel time, 5 minutes (or less) may be a cost level,
i.e., costs from 0 minute to 5 minutes correspond to class 1
and 5 minutes to 10 minutes correspond to class 2 and so on.

Obviously, L(H) measures the degree of conciseness, a
maximum conciseness leads to a minimum L(H). And
L(D|H) measures the degree of homogeneity, a maximum
homogeneity leads to a minimum L(D|H). Therefore, finding
an optimal tradeoff between homogeneity and conciseness is
to find a partition that minimizes L(H) + L(D|H). However,
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Algorithm 3: ApproPartition(D)
Input: Travel cost set D on a popular route
Output: Approximate optimal partition set S

1 S ← {[t1, t2]}, where t1 and t2 are the earliest and latest
time in D;

2 minCost ← MDL(S ); // MDL(S ) = L(H) + L(D|H)
3 while true do
4 s[t1, t2]← a slot in S with the maximal value of

Ent(·);
5 t ← arg mint∈[s.t1,s.t2](Ent([s.t1, t]) + Ent([t, s.t2]));
6 S ′ ← (S − {s}) ∪ {[s.t1, t], [t, s.t2]};
7 newCost ← MDL(S ′);
8 if newCost < minCost then
9 minCost ← newCost;

10 S ← S ′;

11 else
12 return S ;

computing the theoretically optimal partitioning is expensive
due to too many potential partitionings. Thus, we devise an
approximate solution instead, as shown in Algorithm 3. This
algorithm accepts a travel cost set D on a popular route as
input. Initially, a partition set S only contains one time slot
that covers the whole data set D (at line 1). Let minCost de-
note the MDL cost of the current situation. We then probe
the dataset S in greedy manner (at lines 3-10). At each itera-
tion, we find a time slot s with the maximal entropy to split.
Subsequently, the optimal splitting point t (t ∈ [s.t1, s.t2]) is
found by minimizing the sum of entropies. Hence, the origi-
nal time slot s in S is replaced by two new sub-slots [s.t1, t]
and [t, s.t2]. The above iterative procedure won’t stop until
newCost ≥ minCost, then we return the partition set S as the
approximate optimal result.

The time complexity of Algorithm 3 is O(n · k), where k
is the number of time slots and n is the size of the dataset
D, because it computes the MDL cost by scanning the whole
dataset at each iteration. For simplicity, we use the expected
travel cost in each time slot to represent the cost of it. After
we execute Algorithm 3 on every popular route in PTG, we
will get a time-dependent popular traverse graph where the
travel cost on each trivial popular route is dynamic, which
means that each trivial popular route in the graph has a travel
cost function f (t) : t → R≥0, where t is the leaving time from
this popular route.

Example 4. Table 2 shows an example of the travel cost par-
titions of all trivial popular routes on the popular traverse
graph illustrated by Figure 2. Each partition in this table
consists of time slot and the travel cost in that slot, and the

Table 2: An example of travel cost partitions of different triv-
ial popular routes on Figure 2

Trivial popular route Travel cost partition

A→ B

[21,7):(7,0.8,50)
[7,9):(10,0.9,90)

[9,16):(9,0.85,80)
[16,21):(12,1.0,100)

A→ C [0,24):(11,0.8,150)

B→ D
[22,7):(22,0.6,50)

[7,22):(28,0.7,150)
C → D [0,24):(20,0.85,180)

C → E
[21,8):(45,0.65,30)
[8,21):(55,0.8,160)

D→ E [0,24):(29,1.1,190)
A→ C → D [0,24):(32,0.95,130)

B→ D→ E
[21,6):(45,0.65,40)
[6,21):(55,0.95,120)

travel cost is represented by the expected value, variance and
number of all travel costs in the slot. For example, popular
route A→ B contains 4 partitions after travel cost modeling.
The first partition is from 21pm to 7am, whose expected travel
cost and variance are 7 and 0.8 respectively, and the number
of travel costs is 50, which means that there are 50 different
trajectories have visited popular route A → B. If the leaving
time from A to B is 10am, then the expected travel cost will
be 9. Since popular route A→ C → D has two different con-
catenations which are A → C||C → D and A → C → D,
the value of aforementioned object function of concatena-
tion A → C||C → D is 1/150*0.8+1/180*0.85=0.01, and
the corresponding value of concatenation A → C → D is
1/130*0.95=0.007 < 0.01. Hence, the optimal concatenation
of popular route A → C → D will be A → C → D. That is,
the expected travel cost of A → C → D is 32 whenever you
leave.

6 Route Planning On the Popular Traverse
Graph

In this section, given the time-dependent popular traverse
graph, we introduce how to find the popular route with the
minimal travel cost in consideration of the optimal route
concatenation. We note that road network is a FIFO graph
[16, 29], hence no waiting time is needed in the popular tra-
verse graph when we do a route planning.
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Algorithm 4: RoutePlanning (G = (V, E), s, d, t)
Input: Popular traverse graph G, source s, destination d

and leaving time t
Output: The popular route from s to d such that the

travel cost of its optimal concatenation is
minimal at leaving time t

1 s.cost ← 0, s.route← s, s.routeS et ← ∅,
s.settled ← f alse;

2 Create a priority query Q;
3 Q.enqueue(s);
4 while Q , ∅ do
5 n← Q.dequeue();
6 n.settled ← true;
7 if n = d then
8 return d.route;

9 S ← {r : n→ ...→ v|v is not settled and r is a trivial
popular route};

10 foreach route r : n→ ...→ v in S sorted by |r| in
ascending order do

11 r′ ← n.route + r;
12 if r′ is not in v.routeS et then
13 //Compute the optimal concatenation
14 ob j, cost ← ComputeOC(r′, t);
15 v.routeS et ← v.routeS et ∪ {< r′, ob j, cost >

};
16 if cost < v.cost then
17 v.cost ← cost, v.route← r′;
18 if v is not in Q then
19 Q.enqueue(v);

6.1 Routing Algorithm

Recall that we consider the optimal concatenation of route for
accurate travel cost estimation, therefore the result route for a
query should satisfy two conditions: (1) its travel cost should
be the cost of its optimal concatenation, (2) it spends minimal
travel cost under condition (1). That is the route we expected
has the optimal concatenation with the minimal travel cost.

A naive solution is to find all possible routes from source
to destination, then for each possible route, we compute its
optimal concatenation and the corresponding travel cost at the
leaving time. Finally, the expected route will be the one with
minimal travel cost. However, it’s prohibitive to enumerate
all the possible routes and compute their optimal concatena-
tions. Instead, we propose a method to return the expected
route more efficiently, as listed in Algorithm 4.

Given a PTG G = (V, E) and the query q = (s, d, t), Algo-
rithm 4 returns the expected route. For each processing node
n, we use attributes cost and route to keep the minimal cost

and the optimal route from source s to n respectively. In ad-
dition, we use a set routeS et whose element is a triple tuple
< route, ob j, cost > with key route to record the route has
been checked from s to n and its corresponding minimal ob-
ject function value ob j and optimal cost cost with minimal
estimated error. Moreover, attribute settled indicates whether
n has been settled or not during extending. In the process,
we maintain a priority queue Q for nodes on PTG sorted by
cost in ascending order. Initially we set all nodes’ cost to
∞, route to null, routeS et to empty and settled to f alse ex-
cept for the source node s whose initial cost equals to 0. At
the beginning, s is added to Q (lines 1-3). Then we keep ex-
tending nodes until Q is empty or the destination node d is
settled (lines 4-19). At each iteration, we get the head node
n of Q and find its outgoing popular route set where each
route is a trivial popular route (line 9). For each trivial pop-
ular route r : n → ... → v ordered by |r|, we consider the
entire route r′ from s to v via n by concatenating n.route with
r. If r′ has not been checked, we then find its optimal con-
catenation with minimal object function value ob j and the
corresponding travel cost cost. We then insert the triple tuple
< r′, ob j, cost > into v.routeS et to avoid verifying r′ twice
(lines 13-15). Subsequently, if the current cost of v is less
than its old cost, then we update v’ cost and its route, and add
v to Q if v is not in Q (lines 16-19). In this way, we get the
route whose optimal concatenation has minimal travel cost
according to Lemma 1.

Lemma 1. Algorithm 4 returns the optimal concatenation
route with minimal travel cost on popular traverse graph G =
(V, E) for a query q = (s, d, t) if the route exists.

Proof. It is obvious that only the cost of optimal concate-
nations can be considered by Algorithm 4, then we need to
prove that the route returned by Algorithm 4 has minimal
travel cost. We prove it by contradiction. Suppose there exists
a route r′ whose optimal concatenation is s→ ...→ n1||n1 →

... → n2||...||ni → ... → d that has less travel cost than the
route r∗ returned by Algorithm 4. Then each sub-route of r′,
say r′′ : s → ... → n j(1 ≤ j ≤ i), has optimal concatena-
tion s → ... → n1||...||n j−1 → ... → n j and less travel cost
than r∗. As a result, r′ will be returned before r∗, which is a
contradiction. Thus the lemma is proved. �

Example 5. Let’s take Figure 2 as the input PTG, suppose
the dashed line stands for the optimal concatenation. We now
find the expected route from A to E by using Algorithm 4.
Starting from A, we check A→ B and A→ C whose optimal
concatenation is themselves and A → C → D with optimal
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concatenation A → C → D. Then the cost of B, C and D
will be 9, 11 and 32 respectively. We next settle B and check
its outgoing trivial popular routes. Since the cost of A →
B||B→ D is 34 which is larger than the cost of A→ C → D,
the cost of D won’t be updated. Subsequently, the cost of E
will be 59 due to optimal concatenation A→ B||B→ D→ E.
Then we settle C and check routes C → D and C → E, since
A → C → D has been checked (exists in the routeS et of D),
nothing needs to be done. For A→ C → E whose cost is 62,
the cost of E won’t be updated. We proceed to settle D and
consider A→ C → D||D→ E with cost 61. Finally, we settle
E and get the expected route A→ B→ D→ E with cost 59.

It’s worth noting that we find the optimal concatenation of
r′ by using the entire route, not simply combine the optimal
concatenation of n.route and r. Consider an example of Fig-
ure 1, suppose we go from A to E and we now at node C,
that is the optimal concatenation from A to C has been found,
say A → B||B → C. If we combine A → B||B → C and the
optimal concatenation from C to E (say C → D → E) and
regard it (A → B||B → C||C → D → E) as the optimal con-
catenation of the route from A to E, then the concatenations
A→ B→ C → D||D→ E and A→ B||B→ C → D||D→ E
will be missed, and they may have less object function value
than A → B||B → C||C → D → E. Hence, we need to find
the optimal concatenation from A to E by using the whole
route and considering all possible different concatenations.

Although Algorithm 4 returns the right route, the bottle-
neck is computing the optimal concatenation at line 14. To
efficiently find the expected route by Algorithm 4, we devise
an efficient method to compute the optimal concatenation for
a given route.

6.2 Computing the optimal concatenation

As mentioned above, finding the optimal concatenation of
a route r : n1 → n2 → · · · → nk is time-consuming due
to too many different concatenations (O(2k−2)). [1] propos-
es a method by using a dominance relation between different
concatenations, and thus only the non-dominated concatena-
tions are considered to reduce the searching space, howev-
er, the number of non-dominated concatenations may be still
large for a long path and the computations of the object func-
tion value of a path may be redundant when it has many d-
ifferent non-dominated concatenations. To overcome above
weaknesses, we propose a new and more efficient method by
reusing the pre-computed optimal concatenation results. Re-
call that the optimal concatenation of n1 → · · · → ni(1 <

i < k) has been computed, because we first compute the

path with smaller size (line 10 in Algorithm 4). According-
ly, the optimal concatenation of r can be computed by us-
ing the state transition function shown by Equation 3, where
ni.minOb j(1 ≤ i < k) is the minimal object function value of
route n1 → ...→ ni that has been known and can be found in
ni.routeS et, ni → ...→ nk is the trivial popular route from ni

to nk and ob j is the object function value that has been com-
puted in Section 5.3. Finally, the object function value of r’s
optimal concatenation is nk.minOb j, and its cost can then be
computed.

nk.minOb j = min1≤ j<k{n j.minOb j + (n j → ...→ nk).ob j}(3)

Algorithm 5 shows the details of our method. Given a path
r and leaving time t, Algorithm 5 returns the optimal concate-
nation of r at leaving time t. Initially, we set r′s minimal ob-
jective function value nk.minOb j = ∞ and its corresponding
travel cost nk.optCost = ∞. Since n1 is the source node, we
insert triple tuple < n1, 0, 0 > into its routeS et. Subsequently,
for each node ni in r, we first check if ni → · · · → nk is a triv-
ial popular route, if so, that means there is a possible concate-
nation n1 → · · · ni||ni → · · · → nk, we compute its objective
function value by summing up the minimal objective func-
tion value of n1 → · · · → ni and the objective function value
of ni → · · · → nk, which already have been computed. Then
if the objective function value of the possible concatenation
is less than nk.minOb j, we have found a better concatenation
and update nk.minOb j and nk.optCost. Finally, we get r′s
optimal concatenation with minimal objective function value
and its corresponding cost. The complexity of Algorithm 5 is
O(k) due to a linear scan.

Example 6. Let’s reconsider the popular traverse graph in
Figure 2, suppose the travel cost partitions of trivial popular
routes are shown by Table 2 and we find the expected route
from A to E at 8:00am. According to Algorithm 4, we first
compute the optimal concatenations for A → B and A → C,
and add < A→ B, 1/90∗0.9 = 0.01, 10 >, < A→ C, 1/150∗
0.8 = 0.005, 11 > to the routeS et of B and C, respectively.
Then we consider A→ C → D by using Algorithm 5, the first
possible concatenation is A → C → D with ob j = 1/130 ∗
0.95 = 0.007 and cost = 32 at leaving time 8:00am. The next
possible concatenation is A → C||C → D, and the minOb j
and optCost of A → C is 0.005 and 11, respectively, which
is kept in C.routeS et. Since the ob j and cost of C → D at
leaving time 8:11am is 1/180 ∗ 0.85 = 0.005 and 20, the ob j
and cost of concatenation A → C||C → D will be 0.005 +
0.005 = 0.01 > 0.007. Hence, the optimal concatenation
of A → C → D is A → C → D, and it will be kept in
D.routeS et. In this way, the expected route can be computed.
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Algorithm 5: ComputeOC(r, t)
Input: Popular route r : n1 → · · · → nk, leaving time t
Output: The object function value and travel cost of r′s

optimal concatenation
1 nk.minOb j← ∞, nk.optCost ← ∞;
2 n1.routeS et ← {< n1, 0, 0 >};
3 foreach i = 1...k − 1 do
4 r′ ← ni → · · · → nk;
5 if r′ is a trivial popular route then
6 r′′ ← n1 → · · · → ni;
7 < r′′,minOb j, optCost >← get the triple tuple

of r′′ in ni.routeS et;
8 ob j← r′.ob j at time (optCost + t);
9 curOb j← minOb j + ob j;

10 if curOb j < nk.minOb j then
11 nk.minOb j← curOb j;
12 cost ← r′.cost at time (optCost + t);
13 nk.optCost ← optCost + cost;

14 return nk.minOb j and nk.optCost;

Lemma 2 shows the time complexity of Algorithm 4 by
calling Algorithm 5.

Lemma 2. The time complexity of Algorithm 4 is O(mn +
n log n), where m = |E| is the number of trivial popular routes
and n = |V | is number of nodes in the popular traverse graph
G = (E,V).

Proof. Recall that we use a priority queue to manage nodes
during processing, the complexity of the queue’s operations is
O(log n) if we use Fibonacci heap [13] to implement the pri-
ority queue. Since each node is settled at most once, the com-
plexity of operating nodes in the priority queue is O(n log n).
In addition, each trivial popular route will be visited at most
once while extending and Algorithm 5 will be invoked, hence
the complexity of this part is O(mn). As a result, the time
complexity of Algorithm 4 is O(mn + n log n). �

7 Experiments

We report some experimental results in this section. Without
loss of generality, in our experiments, we focus on travel time
cost. All codes are written in Java, run at a computer with
dual core 2.00GHz CPU and 16GB main memory.

7.1 Settings

Dataset We use a real-life dataset generated by 13,007 taxi-
cabs in Beijing from Oct. 1 to Oct. 31, 2013. The sampling

rate is about 1 point per minute. The travel time cost of a tra-
jectory can be computed as the difference between the times-
tamps of the endpoints (end.timestamp-start.timestamp).

We divide the dataset into two parts, one for training and
the other for evaluation. The first part (dataset of the first 21
days) is used to construct a popular traverse graph. It contains
68,686,579 individual trajectories. By removing invalid tra-
jectories (such as crossing forbidden area, too high or too low
average speed, too short distance), we finally get 7,122,320
paid meaningful trajectories with distance greater than 3k-
m. Figure 5 shows the statistics of the trajectories. Clearly,
the number of trajectory decreases as the length increases,
which shows that it’s meaningful to estimate the travel cost
of path, especially for long path with less support. Since our
dataset is very large and building the popular traverse graph is
time-consuming, we run it on a 8-node HP ProLiant DL360
distributed cluster. Each node contains 8 Intel Xeon E5606
2.13GHz quad-core processors, 32GB physical memory and
1TB disk, and installs Hadoop 1.0.3 on a CentOS operation
system.The second part (dataset of the last 10 days) is used
for evaluation. We randomly choose 30,000 trajectories from
the dataset as the queries and regard the travel time as the
ground truth. The length of the trajectories ranges from 3 km
to 18 km, and the travel time varies from 3 min to 60 min.

Baseline The prior work [2,21] proposes a framework, called
T-drive, to find the fastest route between two locations at
a departure time. It first builds a landmark graph based on
the road network, then VE-Clustering is used to partition the
travel cost on each edge in the graph, finally a Dijkstra-like
routing method is applied on the landmark graph to find the
fastest route from the source to the destination at the leaving
time and the travel cost is estimated by summing up the travel
costs of all edges in the route. In this paper, we use T-drive
on popular traverse graph as the baseline method. Moreover,
for comparison purpose, we use MDL+Dijkstra to refer to our
basic method that applies MDL to model the travel cost and
the Dijkstra algorithm to search route on TPG, and MDL+OC
(Algorithm 4) refers to our method that applies both MDL
and the optimal route concatenation.

7.2 Evaluating popular traverse graph

By setting τ = 100, Figure 6 visualizes the popular traverse
graph with different k (number of popular locations), where
black points represent popular locations and green lines rep-
resent popular routes (In each trajectory cluster, we use the
representative trajectory whose total distance between other
trajectories is minimized, to represent the popular route when
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Fig. 5: Statistics of training trajectories

Table 3: The graph size on different τ (k = 5, 000)

τ |E|
10 3,006,271
50 665,287

100 243,695
150 165,587

visualizing). Generally, the graphs we build match the road
networks of Beijing city and the graph with k = 5, 000 well
covers Beijing city compared to the graph with k = 2, 000,
and its distribution follows our commonsense knowledge. Ta-
ble 3 shows the size of popular traverse graph on different τ
with k = 5, 000. As τ increases, the number of trivial popu-
lar routes on the graph sharply decreases, because more and
more trajectories are needed to form a trivial popular route. In
the following experiments, we use the graph with k = 5, 000
and τ = 100 as the default popular traverse graph unless s-
tated otherwise. The default popular traverse graph contain-
s 243,695 different trivial popular routes, in which 210,338
trivial popular routes have size greater than 2, they account
for the overwhelming majority of the trivial popular routes.
That is, the dependencies between roads generally exist. Fig-
ure 7 shows the distribution of the length and support of pop-
ular routes on default graph. As we can see, the number of
popular routes decreases as length and support rise, and the
length of trivial popular route can be as long as 40km, which
shows the long dependencies between roads.

7.3 Evaluating routing algorithm

We show the performance of our routing algorithm according
to its effectiveness and efficiency.

(a) k = 2, 000

(b) k = 5, 000

Fig. 6: Visualized popular traverse graph (τ = 100)

7.3.1 Effectiveness

We use mean absolute error (MAE) and mean relative error
(MRE) to measure the effectiveness of our method. Equation
(4) describes the common definitions, where yi is an estimate,
ŷi is the ground truth and n is the number of samples. In our
experiments, each sample is a query mentioned above.

MAE =
∑n

i=1 |yi − ŷi|

n
,MRE =

∑n
i=1 |yi − ŷi|∑n

i=1 ŷi
(4)

Effectiveness of MDL We ran MDL+Dijkstra and T-drive
on the popular traverse graph to investigate the effectiveness
of MDL and VE-Clustering [2]. Recall that T-drive needs
two parameters, one for V-Clustering and the other for E-
Clustering, we try different parameter combinations to reflect
its effectiveness. Table 4 compares MAE and MRE between
MDL+Dijkstra and T-drive based on aforementioned 30,000
queries. We consider 12 different parameter settings for T-
drive. Clearly, different parameter settings lead to different
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Fig. 7: Distribution of the popular routes on PTG

results and in the best case, MAE = 74.9 seconds and MRE
= 0.224. Note that MDL+Dijkstra has MAE of 71.8 seconds
and MRE of 0.214. Obviously, MDL+Dijkstra outperforms
T-drive. Since the MDL method we proposed find an ap-
proximate optimal trade-off between homogeneity and con-
ciseness on every popular route, which guarantees a better
result on each popular route. While the global parameters of
T-drive cannot generate good partitions for all popular routes
due to different travel cost distributions of different popular
routes. In the following experiments, we use the best param-
eter setting which is (50,30) for T-drive.

Overall Effectiveness We sort the queries mentioned above
by their lengths in descending order and then choose the top-
k queries to generate three original groups of queries with k=
10,000, 20,000, 30,000 respectively. Table 5 shows the s-
tatistics of each group. We can see that group A with the top
10,000 queries has maximum average travel time and maxi-
mum average length which are 435 seconds and 6,226 meter-
s, respectively. Figure 8 illustrates the performance of three
methods for these groups. Clearly, both MAE and MRE of
MDL+OC and MDL+Dijkstra are smaller than T-drive on
all groups, which means that MDL+OC and MDL+Dijkstra
behave better than T-drive, because MDL principle is more
suitable for travel cost modeling. For example, the MAEs of
MDL+OC, MDL+Dijkstra and T-drive on all 30,000 queries
are 70.86, 71.99, 74.94 seconds respectively, and the MREs
are 0.211, 0.214, and 0.224. Moreover, MDL+OC outper-
forms MDL+Dijkstra due to the dependencies between roads
are considered in MDL+OC. We note that the performance
gap between MDL+OC and MDL+Dijkstra, T-drive rises as
the query distance increases. For example, on group C, the
MRE differences between MDL+OC and MDL+Dijkstra, T-
drive are 0.003 and 0.013 respectively, while on group A,
their differences become 0.016 and 0.036. The reason is that
MDL+OC considers the optimal concatenation while routing
and the longer the distance is, the more concatenations of the
route contains, as a result, the more optimal route concatena-

Table 5: Statistics of three original query groups

Group Size Avg time (s) Avg length (m)
A 10,000 435 6,226
B 20,000 369 5,266
C 30,000 335 4,751
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Fig. 8: Comparison of different methods on original query
groups

tion will be found, which leads to more accurate travel cost
estimation. Although our method performs better on long
distance query comparing to baselines, we cannot make sure
that all queries follow the same route as we found, and the
longer the distance is, the higher probability the real path will
choose a different route. That’s why the MRE increases with
the increment of query distance.

An interesting finding is that around 60-70% queries fol-
low the same route as we found in each group. Hence, we
refine each group by keeping the queries that follow the same
route as we returned and discarding the others. As a result,
we generate three new groups. Table 6 shows the statistics of
these refined groups. Clearly, most queries follow the route
we recommended. For example, 20,930 out of 30,000 queries
(nearly 70%) follow the same popular routes as we returned.
That is to say, people prefer the popular routes when driv-
ing, and the shorter the distance is, the higher probability the
query follow the same route as we found. Figure 9 shows the
performance of three methods on the refined groups. Since
the path of the query follows the same route as we found,
both MAE and MRE decrease comparing to Figure 8. Clear-
ly, MDL+OC outperforms all the baselines in terms of the
two metrics, and it has significant advantage over the base-
lines in each query group. Figure 9(a) illustrates the MAE
of different methods. As the length decreases, the MAE de-
creases, too. Conversely, in Figure 9(b), the MREs of all
methods increase as the length of query decreases. This is
because the shorter a path is, the more unstable its travel time
could be due to traffic conditions, such as turnings and traffic
lights. On the other hand, a long distance means more con-
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Table 4: Comparison of MDL+Dijkstra and T-drive

T-drive
Methods MDL+Dijkstra 30, 10 30, 30 30, 50 30, 100 50, 10 50, 30 50, 50 50, 100 100, 10 100, 30 100, 50 100, 100

MAE (sec.) 71.8 75.3 75.0 76.1 77.9 75.5 74.9 76.1 77.9 75.6 75.0 76.2 78.2
MRE 0.214 0.225 0.224 0.227 0.232 0.225 0.224 0.227 0.232 0.226 0.224 0.227 0.233

Table 6: Statistics of refined query groups

Group Size Avg time (s) Avg length (m) Percentage
D 6,238 416 6,163 62.38%
E 13,691 357 5,109 68.46%
F 20,930 327 4,629 69.77%
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Fig. 9: Comparison of different methods on refined query
groups

catenations, it helps to find a “better" optimal concatenation,
therefore MDL+OC behaves better when the length increas-
es.

With k = 5, 000, we test the performance of MDL+OC on
different popular traverse graph by varying τ. Figure 10 illus-
trates the results with different τ. Obviously, both MAE and
MRE of MDL+OC are the greatest when τ = 10, this is be-
cause the trivial popular routes are with fewer supports, and
there are not sufficient data to partition the travel cost, which
increases the error of travel cost estimation. As τ increases,
both MAE and MRE of MDL+OC get smaller, because the
popular routes with less support are filtered. However, when
τ becomes too large, the performance of MDL+OC deteri-
orates. Since less popular routes can be found in this case,
accordingly, the dependencies between roads decrease, espe-
cially for long distance dependencies, which results in the
degradation of performance.

7.3.2 Efficiency

We test the efficiency of our routing algorithm. Fig-
ure 11 shows the runtime of MDL+OC, MDL+OC− and
MDL+Dijkstra on different query distance and query size,
where MDL+OC− is the routing algorithm proposed in our
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Fig. 10: Performance of MDL+OC with different τ
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Fig. 11: Runtime of different methods

previous work [1], and it computes the optimal concatena-
tion by considering all possible non-dominated concatena-
tions. Since MDL+Dijkstra does not need to consider the op-
timal concatenation, it runs much faster than MDL+OC and
MDL+OC−. Moreover, MDL+OC outperforms MDL+OC−,
because MDL+OC reuses the pre-computed optimal concate-
nation results of other nodes, it does not need to consid-
er many different concatenations compared to MDL+OC−.
Figure 11(a) shows that the runtime of MDL+OC increas-
es as the query distance rises, since long distance leads to
more concatenations to be checked while routing. Howev-
er, MDL+OC can return the result very quickly, far less than
1 second. For example, when the query length is 18km,
MDL+OC finds the route in 62ms on average. We then test
the scalability of our algorithm by randomly selected differ-
ent size of queries, Figure 11(b) illustrates that the runtime of
MDL+OC linearly grows as the query size increases, which
shows a good scalability of our method.
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Fig. 12: A case study demonstration

7.4 A case study

We implement our system by a mobile App. Figure 12 shows
the interface of our App on the client. The interface only con-
tains three inputs, including source and destination locations
and the leaving time. Once users submit queries, they will
receive the detailed popular route from source (location A) to
destination (location B) at the leaving time displayed on the
map, moreover, the corresponding travel time and distance of
the route will be given. We test the results between the same
source-destination pair at different time, as shown in Figure
12. Clearly, the travel time at the rush hour is longer than
that at the non-rush hour and two different routes are given
at this case, which follows our common sense and shows the
effectiveness of our system.

8 Conclusion

In this paper, we formally define our popular route planning
problem and propose a cloud-mobile based framework to find
the popular route in consideration of travel cost estimation.
To this end, we firstly construct a popular traverse graph from
historical trajectories, where each node is a popular location
and each edge is a popular route, and then we use MDL prin-
ciple to model the travel cost on each popular route. Sub-
sequently, given a query that consists of source ,destination
and leaving time, we devise a more efficient routing algorith-
m to find the popular route with minimal travel cost in terms
of optimal concatenation. Finally, we evaluate our method
with extensive experiments and a mobile App is presented,
showing that our method is both effective and efficient.

As for future work, it is of interest to use the real-time traf-
fic condition to plan a route for user query, and personalized

route planning by considering user profile is also an interest-
ing and challenging work.
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