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Abstract With the increasing availability of modern mo-

bile devices and location acquisition technologies, massive

trajectory data of moving objects are collected continuously

in a streaming manner. Clustering streaming trajectories fa-

cilitates finding the representative paths or common moving

trends shared by different objects in real time. Although data

stream clustering has been studied extensively in the past

decade, little effort has been devoted to dealing with stream-

ing trajectories. The main challenge lies in the strict space

and time complexities of processing the continuously arriv-

ing trajectory data, combined with the difficulty of concept

drift. To address this issue, we present two novel synopsis

structures to extract the clustering characteristics of trajec-

tories, and develop an incremental algorithm for the online

clustering of streaming trajectories (called OCluST). It con-

tains a micro-clustering component to cluster and summa-

rize the most recent sets of trajectory line segments at each

time instant, and a macro-clustering component to build large

macro-clusters based on micro-clusters over a specified time

horizon. Finally, we conduct extensive experiments on four

real data sets to evaluate the effectiveness and efficiency of

OCluST, and compare it with other congeneric algorithms.

Experimental results show that OCluST can achieve superior

performance in clustering streaming trajectories.
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1 Introduction

With the widespread application of modern mobile devices

and the vigorous development of location acquisition tech-

nologies, numerous moving objects relay their locations con-

tinuously, and hence a tremendous amount of positional in-

formation is accumulated in a streaming manner. For in-

stance, taxis equipped with GPS sensors transmit their loca-

tions to a data center at regular intervals so that the taxi com-

pany is capable of dispatching taxis efficiently. Trajectory

data analysis enables us to discover the evolutionary moving

behaviors of moving objects, which fosters a broad range of

critical applications such as location-based social networks

[1], route planning [2,3], intelligent transportation manage-

ment [4], and road infrastructure optimization [5].

As a typical class of the moving pattern discovery ap-

proach, clustering aims to group a large number of trajec-

tories into comparatively homogeneous clusters to extract the

representative paths or common moving trends shared by var-

ious objects [6–12]. For instance, in hurricane landfall fore-

cast applications, discovering the common behavior of hurri-

canes can improve the forecasting accuracy. In animal migra-

tion analyzing applications, extracting the common behaviors

of animals can reveal the cause of animal migration. An im-

portant observation is that the trajectory of one moving ob-

ject may belong to different clusters with the progression of

a stream. That is, the clustering result may evolve with time.

For example, traffic is highly dynamic in a road network sce-

nario; accordingly, the trajectory stream generated by vehi-

cles may evolve more dramatically over shorter time hori-

zons. Figure 1 illustrates a small example of four taxis’ tra-
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jectories from time instant t0 to t2. Obviously, during [t0, t1],

four trajectories construct one cluster, while in [t1, t2], they

form two clusters owing to different moving directions.

Fig. 1 Evolution of clusters

To estimate real-time traffic conditions of a road, we need

to keep up with the continuously evolving streaming trajecto-

ries. This requires that clustering is performed online on a re-

cent subset of the streaming data. The sliding-window model

that keeps only the most recent W tuples in a limited time

window is suitable for describing the evolution of the clus-

tering results. In other words, any tuple outside of the current

time window has no effect on the current clustering results.

On the basis of the sliding-window model, we can focus on

the traces of vehicles in recent time horizons, and generate

clusters based on them. By extracting the moving behavior of

each cluster at each time instant, we can estimate real-time

traffic conditions of the road where each cluster is located.

Such traffic information can be provided to road users and

applied to real-time routing planning and traffic management.

To the best of our knowledge, the problem of online clus-

tering of trajectory data streams using the sliding-window

model has not been addressed to date. The challenges come

from limited system resources, huge stream volumes, high

arrival rates, and real-time response requirements, combined

with the difficulty of concept drift. Furthermore, the exist-

ing work cannot be adopted to deal with this issue directly.

First, the existing work on trajectory data stream cluster-

ing does not consider removing the influence of outdated tu-

ples [12]. Along with incrementally clustering incoming tra-

jectory data, the expired records cannot be discarded upon

the arbitrary arrival of new ones. The size of micro-clusters

continuously increases with the drifts of the cluster centers,

which leads to concept drift and thus degrades the clustering

performance. Second, the existing data stream clustering us-

ing the sliding-window model treats each tuple as a full entry

[13], while each tuple in the trajectory data stream is only a

part of an entry.

In this paper, we develop an online approach to deal with

this issue, including the line segment micro-clustering com-

ponent and macro-clustering component. During the micro-

clustering phase, a number of micro-clusters, each repre-

sented by a compact synopsis data structure, are maintained

incrementally. During the macro-clustering phase, a small

number of macro-clusters are built upon the micro-clusters

according to a clustering request within a specified time hori-

zon. The core innovation in this framework is exploiting

a novel compact synopsis data structure to represent each

micro-cluster. Distinct from trajectory simplification [6] or

trajectory compression [14] technologies, such a synopsis can

preserve the spatio-temporal characteristics of the trajectory

in memory while removing the influence of obsolete tuples.

The experimental results demonstrate the applicability of the

new proposal for online clustering streaming trajectories, and

show better clustering performance than the congeneric algo-

rithms. The contributions of this paper are summarized be-

low.

• We address the problem of online clustering stream-

ing trajectories using the sliding-window model. Nei-

ther existing trajectory clustering algorithms nor data

stream clustering algorithms using the sliding-window

model can be adopted to tackle this issue directly.

• We exploit two new synopsis data structures to extract

and maintain the spatio-temporal clustering character-

istics of sets of trajectories incrementally.

• We propose an online algorithm, called OCluST, to

cluster streaming trajectories over the sliding-window

model, which incrementally summarizes clusters, and

safely eliminates the expired tuples.

• We conduct a comprehensive series of experiments on

four real data sets to manifest the efficiency and effec-

tiveness of our proposal, as well as its superiority over

other congeneric approaches.

The rest of this paper is organized as follows. In Sec-

tion 2, the problem is defined formally. In Section 3, we out-

line and analytically study the scheme for clustering stream-

ing trajectories, called OCluST. In Section 4, a series of com-

parison experiments are conducted on real data sets to eval-

uate OCluST through comparisons with other congeneric al-

gorithms. In Section 5, we review the latest work related to

OCluST. Finally, in the last section, we conclude this article

in brief and discuss the direction of future study.
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2 Problem definition

In this section, we define some notations formally, as listed in

Table 1, and then formalize the problem of online clustering

of streaming trajectories.

Table 1 List of notations

Notation Explanation

S Trajectory stream

W Window size

p( j)
i Location of an object o( j) at time instant ti

Li Line segment connecting two adjacent points

n Number of line segments

m Number of TFs in an EF

Ci Set of line segments at time instant ti
cen Central point

ε Error threshold

θ Angle of line segment

k Maximum number of EFs

ρ Time tolerance threshold

γ Distance threshold

λ Spatial proximity weight

Definition 1 (Trajectory stream) A trajectory stream that

consists of a series of positional records of M moving objects

is denoted as S = {(o(1), p(1)
1 ), (o(2), p(2)

1 ), . . . , (o(M), p(M)
1 ),

(o(1), p(1)
2 ), . . .}, where p( j)

i is the location of an object o( j) at

time instant ti in 2D space (i.e, p( j)
i = (x( j)

i , y
( j)
i )).

A trajectory stream is commonly assumed to be un-

bounded. Hence, it is common to use a window to limit an

infinite stream to a specified finite set of records within a

given time horizon. We adopt the idea of a sliding tuple-based

window model, which is commonly used for discounting ob-

solete data, and only the latest W records in the window are

valid at the point in time of the clustering.

Definition 2 (Sliding tuple-based window) Given a stream

S , a window size W, a starting time instant ts, and an end-

ing time instant te, a sliding tuple-based window over S

at te is a finite multiset of stream elements with S W =

{(o(1), p(1)
s ), (o(2), p(2)

s ), . . . , (o(M), p(M)
s ), . . . , (o(1), p(1)

e ), . . .,

(o(M), p(M)
e )}. Whenever the window slides forward, the num-

ber of positional elements received in S W is W.

In general, the positional record (represented as a trajec-

tory) of one object is defined as follows.

Definition 3 (Trajectory) The trajectory of an object o, de-

noted as tro = {(p1, t1), (p2, t2), . . .}, is a subsequence of S

affiliated with o. Such records arrive in chronological order,

i.e, ∀i < j, ti < t j. Two temporal adjacent points are con-

nected into a line segment Li, i.e., Li is denoted as (pi, pi+1).

Correspondingly, the trajectory of an object o is also denoted

as tro = {(L1, t1), (L2, t2), . . .}.

Owing to the infeasibility of keeping massive trajectory

data in memory, it is necessary to summarize original data

and approximate the clustering results. We summarize orig-

inal data in memory using a compact synopsis data struc-

ture called the Exponential Histogram of Temporal Trajec-

tory Cluster Feature (EF). Each bucket in an EF is a Tempo-

ral Trajectory Cluster Feature (TF), which attempts to sum-

marize the features of incoming trajectory line segments at

each time instant. Accordingly, we use a Minimum Bound-

ing Rectangle (MBR) to represent the spatial range of all line

segments that are contained in a TF.

Definition 4 (Temporal trajectory cluster feature (TF)) TF

of a set of line segments C = {L1, L2, . . . , Ln}, is of the form

(LS cen, LS A, LS len, S S len,maxlen,minlen, BL, TR, n, t).

• LS cen: linear sum of the line segments’ center points;

• LS A: linear sum of the product of the line segments’

angle and length;

• LS len: linear sum of the line segments’ length;

• S S len: squared sum of the line segments’ length;

• maxlen: maximum of the line segments’ length;

• minlen: minimum of the line segments’ length;

• BL: bottom left corner of MBR;

• TR: top right corner of MBR;

• n: number of line segments;

• t: time stamp of the last line segment;

Figure 2(a) illustrates an example of MBR that contains

three black lines. We use a line (denoted as TF.rp(s, e), where

s and e are the starting and the ending points, respectively) to

represent the moving pattern of all line segments in TF in

terms of the central point (denoted as TF.cen) and the an-

gle (denoted as TF.θ). Specifically, for angle calculation, as

a longer line segment is intrinsically more important than a

shorter line segment, we take the line segment’s length into

account in obtaining the angle of the representative line seg-

ment, i.e., LS A/LS len. Additionally, it is easy to derive a

shorter representative trajectory line segment owing to the

effects of a few short line segments that are absorbed in a

cluster. Hence, we attempt to extend the average length of

line segments to make a representative line segment conform
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more accurately to the original data distribution. We extend

the average length of the line segments with the product of

the standard deviation (denoted as σ) and the ratio of maxlen

to minlen. Then, we derive TF.rp(s, e) by the following equa-

tions:

s = ((cen)(1) − len
2

cos θ, (cen)(2) − len
2

sin θ),

e = ((cen)(1) +
len
2

cos θ, (cen)(2) +
len
2

sin θ),

where

cen =
LS cen

n
, θ =

LS A

LS len
, len =

LS len

n
+

maxlen

minlen
· σ,

σ =

√
n · S S len − LS len

2

n
.

As illustrated in Fig. 2(a), the three line segments

(tr1, tr2, andtr3) have different lengths and angles. We com-

pute the central point, the angle, and the average length of

the three line segments to obtain a representative line seg-

ment, namely, a blue thick line with red dashed part (denoted

as (TF.rps, TF.rpe)).

Fig. 2 Representative line segment. (a) TF.rp; (b) EF.rp.

Property 1 (Additive property) Let TF(C1) and TF(C2)

denote the TF structures for two sets C1 and C2, respec-

tively, and C1 ∩ C2 = ∅. TF(C1 ∪ C2) is constructed on

TF(C1) and TF(C2). The new entries LS cen, LS A, LS len,

S S len, and n are equal to the sum of the corresponding en-

tries in TF(C1) and TF(C2). The new entries maxlen and

t are computed as the maximum of the corresponding en-

tries in TF(C1) and TF(C2). The new entry minlen is com-

puted as min(TF(C1).minlen, TF(C2).minlen). Moreover, the

corners of the new TF can be directly computed based on the

two original corners.

As a TF may consist of multiple line segments, and they

will go out of the window one by one in the future, this ne-

cessitates a structure to deal with the expired line segments.

An Exponential Histogram (EH) is a well-known approach

to deal with the sliding-window model, where all data in the

stream are split into many buckets in terms of the arrival

time [15]. Inspired by the EH, we exploit a synopsis struc-

ture called EF below.

Definition 5 (Exponential histogram of temporal trajectory

cluster Feature (EF)) Given an error threshold ε, EF is a

collection of multilevel TFs on the sets of trajectory line seg-

ments C1,C2, . . . with the following constraints:

1) ∀i < j, any trajectory line segment in Ci arrives earlier

than that in C j;

2) |C1| = 1. ∀i > 1, |Ci| = |Ci−1| or |Ci| = 2 · |Ci−1|;
3) At most � 1

ε
� + 1 TFs are placed in each level.

Lemma 1 Given an EF that contains ni tuples, and an error

threshold ε, the number of obsolete tuples is within [0, εni],

and the number of TFs is at most ( 1
ε
+ 1)(log(εni + 1) + 1).

Proof Only the last TF (namely, the oldest TF at the highest

level of TFs) in EF may contain the expired records. Let ns

denote the number of tuples in the last TF. According to Def-

inition 5, we have 1
ε
(1+ 2+ 4+ · · ·+ ns) � ni. Then, ns � εni

holds. Moreover, an EH structure with a window size ni and

parameter ε can be constructed. Each TF maps to a bucket in

EH structure. According to [15], EH structure computes an

ε-deficient synopsis using at most ( 1
ε
+ 1)(log(εW + 1) + 1)

buckets, where W represents the window size. Thus, there

exist at most ( 1
ε + 1)(log(εni + 1) + 1) TFs in an EF.

We maintain EF in the following way. When a new line

segment is incorporated into an existing EF, a new 0-level

TF will be generated for it at first. After absorbing more and

more line segments, once the number of 0-level TFs in EF

exceeds the threshold (� 1
ε � + 1), the two oldest 0-level TFs

are merged to generate a 1-level TF. Such a merge operation

may propagate from the lowest level toward the higher levels

until, at a certain level, there are fewer than � 1
ε
� + 1 TFs.

Figure 3 explains how to maintain an EF when ε = 1/3.

This means that at most four TFs are kept at each level. As

we can see, when L5 arrives, a new 0-level TF (TF({L5}))
is generated, which results in five 0-level TFs. Then, a 1-

level TF (TF({L1, L2})) is generated by merging TF({L1})
and TF({L2}). A similar merging operation occurs when L7

arrives. Furthermore, the arrival of L13 triggers the merging of
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Fig. 3 Process of incorporating line segments into an EF (ε = 1/3)

TF({L9}) and TF({L10}), which further triggers the merging of

TF({L1, L2}) and TF({L3, L4}).
Likewise, to extract the moving pattern of all line segments

absorbed in EF, we derive a representative line segment for

each EF. The central point (denoted as EF.cen) and the an-

gle (denoted as EF.θ) of the representative line segment are

computed by the following equations, respectively:

EF.cen =
∑

i TFi.LS cen × TFi.n∑
i TFi.n

, EF.θ =
∑

i TFi.LS A∑
i TFi.LS len

.

The corners of MBR that describe the EF are computed

based on all TFs’ MBRs. Then, we plot a line across EF.cen,

along EF.θ, and finally extend it to the borders of MBR.

The intersection points are treated as the starting and ending

points of the representative line segment. Figure 2(b) illus-

trates an example of the MBRs for a group of TFs contained

in an EF, and the blue thick line segment (EF.rps, EF.rpe) is

the derived representative line segment.

The TF and EF synopsis structures allow us to effectively

extract and maintain the spatio-temporal characteristics of

clusters at different intervals. Additionally, the EF synopsis

can promptly remove the obsolete records when clustering

trajectories, which prevents the size of each cluster from get-

ting larger and larger, and hence avoids the shifting of the

cluster’s center. Figure 4 illustrates the evolutions of three

clusters (represented by EF1, EF2, and EF3) in the current

window (including seven time instants). Owing to the elimi-

nation of obsolete data as time goes by, the boundary of each

cluster does not become larger and larger, and hence avoids

the concept shift. Meanwhile, since each EF maintains its

histogram, the EF synopsis can adjust the frequency of gen-

erating a new TF adaptively, which enables a reduction in

space consumption. Specifically, a new EF that contains a

TF will be created only when the incoming trajectory seg-

ment cannot be absorbed into any existing cluster. If such a

segment is an outlier, only one TF will be created for it in a

new EF, and the EF that contains the outlier will be removed

when it becomes outdated.

Fig. 4 Example of EF in current window

Our goal is to divide all trajectory line segments into clus-

ters in terms of the similarity measurement. Whether the sim-

ilarity measurement between a trajectory line segment and an

EF, or that among EFs (an EF is represented by its represen-

tative line segment), is essentially translated to measure the

similarity between trajectory line segments. Note that two tra-

jectory line segments close to each other but generated at dif-

ferent time intervals are actually not similar. In view of this,

we define similarity as the combination of the spatial proxim-

ity and temporal closeness between line segments. For a spa-

tial proximity measurement, although Euclidean-distance-

based schemes are commonly used in the spatial data man-

agement field, including Dynamic Time Warping Distance

(DTW) [16], Longest Common Subsequences (LCSS) [17],

Edit Distance with Real Penalty (ERP) [18], and Edit Dis-
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tance in Real Sequence (EDR) [19], they are inappropriate to

measure the spatial proximity in some scenarios with bidi-

rectional properties. For instance, as illustrated in Fig. 5,

there are three trajectories (tr1, tr2, and tr3) on two separate

roads. According to Euclidean-distance-based schemes, tr1

is closer to tr2. Nevertheless, in a real road network, there

exists no route between tr1 and tr2, and accordingly, tr2 is

closer to tr3. Hence, we leverage the adapted Hausdorff dis-

tance in [20] to measure the spatial proximity. The distance

between two trajectory line segments is regarded as the maxi-

mal distance between two line segments after alignment, i.e.,

DL(L′, L′′) = max(dl(L′, L′′), dl(L′′, L′)), where

dl(L′, L′′)
= max(min(‖p′s, p′′s ‖, ‖p′s, p′′e ‖),min(‖p′e, p′′s ‖, ‖p′e, p′′e ‖)).

Here, p′s (or p′′s ) and p′e (or p′′e ) denote the starting and end-

ing positions of two line segments separately, and ‖p′s, p′′s ‖
denotes the length of the shortest path between p′s and p′′s .

Fig. 5 Spacial proximity in road network scenario

On the basis of a spatial proximity measurement, we de-

fine the difference between two trajectory line segments as

follows.

Definition 6 (Difference measurement) Given a temporal

closeness threshold ρ (0 < ρ � 1/2), a spatial proxim-

ity threshold γ (γ � 1), a spatial proximity weight λ (0 �
λ � 1), a window size W, and the arrival time instant of

line segment t, the lengths of two line segments (denoted

as L′ and L′′) are denoted as ‖L′‖ and ‖L′′‖ separately. If

DL(L′, L′′)/(‖L′‖ + ‖L′′‖) � γ and (L′.t − L′′.t < ρW), the

difference between L′ and L′′ is defined as follows:

Di f f (L′, L′′) = λ · DL(L′, L′′)
‖L′‖ + ‖L′′‖ + (1 − λ) · (L′.t − L′′.t).

We usually put more weight on spatial proximity by set-

ting λ > 1/2. Generally, a smaller Di f f value means a high

similarity between line segments, namely, the line segments

are closer to each other in recent time intervals.

Finally, we summarize the problem definition below:

Given a time horizon of length len, the current time instant

tc, and a trajectory stream portion that flows into the current

time window (depicted as a multiset of trajectory segments),

our goal is to discover the micro-clusters (represented as a set

of EFs) at each time instant, and the macro-clusters accord-

ing to a clustering request within the specific time interval

[tc − len, tc].

In the following section, on the basis of the TF and EF

synopsis, we study the problem of online clustering stream-

ing trajectories using the sliding-window model.

3 OCluST algorithm: online clustering of
streaming trajectories

In this section, we propose an online approach to cluster

streaming trajectories using the sliding-window model, called

Online Clustering of Streaming Trajectories (OCluST). Since

a trajectory is referred to as a set of consecutive line seg-

ments (Definition 3), our scheme is essentially a line segment

clustering algorithm. As illustrated in Algorithm 1, OCluST

is comprised of two components: a line segment micro-

clustering phase (line 1) and an EFs macro-clustering phase

(line 2). During the first phase, on the basis of the aforemen-

tioned data structures (TF and EF), appropriate statistical in-

formation of the micro-clusters in the current time window

is extracted and maintained incrementally, as shown in Algo-

rithm 2. Each micro-cluster is represented by an EF structure

(Definition 5), and each bucket in an EF is a TF (Definition

4) that represents the summary statistics of a set of trajectory

segments at each time instant. During the second phase, given

a time horizon, a small number of macro-clusters are derived

on EFs by invoking traditional density-based clustering tech-

niques. In this way, the cluster characteristics of streaming

trajectories can be preserved with continuity in time and con-

tiguity in space.

3.1 Line segment micro-clustering

The micro-clustering phase aims to cluster the continuously

arriving trajectory line segments at each time instant while

discarding expired ones. Algorithm 2 shows the main frame-

work to generate and maintain EFs for trajectory line seg-

ments. It executes two algorithms to achieve the subtasks sep-

arately (lines 7 and 17). Let Z represent the set of EFs gen-

erated during the micro-clustering phase. Initially, Z is emp-

tied, and subsequently, k EFs are generated one after another

and added to Z when continuously receiving k line segments.
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Specifically, we create an EF that contains a TF for each in-

coming line segment through an initialization process, and

regard the line segment itself as the representative line seg-

ment of such an EF (line 2). Instead of the orginal trajectory

data is kept in memory, at most k EFs are kept in memory at

any time.

Algorithm 1 OCluST

Input: S : stream of trajectory line segments; W: window size; ε:
error threshold; ρ: time tolerance threshold; k: maximum number of
EFs; len: time horizon of length; tc: current time intant;

Output: Z′: set of all generated EFs;

1 Z ← MicroClu(S ,W, ε, ρ, k);

2 Execute macro-clustering on Z within [tc − len, tc];

3 Get a set Z′ using the macro-clustering result;

4 return Z′;

When a line segment Lx arrives, we attempt to find its most

similar EF from the existing EFs. According to Definition

3, only EF (denoted as h) with the greatest spatial proxim-

ity over recent time interval is deemed as the appropriate EF

to absorb Lx, and the entries of it are accordingly adjusted

based on Lx. If Lx cannot find its most similar EF, a new EF

hn that only contains TF({Lx}) will be created (line 19) on

the condition that the number of EFs is less than k. When

the number of EFs exceeds k, we need to take into account

eliminating the expired EFs (lines 10–12) or merging EFs

(lines 16 and 17) to make room for the newly created EF. The

detailed procedure for inserting Lx into h is shown in Algor-

ithm 3. A TF0({Lx}) is generated first and is added to h (line

1). Subsequently, once the number of 0-level TFs in h exceeds

� 1
ε � + 1, the two oldest 0-level TFs are merged to generate a

1-level TF. Such a merge operation is repeated several times

for higher levels until the number of a certain level of TFs

lower than � 1
ε
� + 1 (lines 4–10).

In the following, we describe the process of individual sub-

routines such as eliminating obsolete records and merging

EFs.

3.1.1 Expired records elimination

In essence, the significance of each position in a trajectory

stream is time-decaying, until it finally becomes outdated and

negligible. To eliminate the adverse effect of expired records

on the micro-clustering results (e.g., concept drift), we con-

sider removing the insignificant records including obsolete

EFs, and a few EFs with the earlier updated time which will

no longer absorb tuples in the current window. More specif-

ically, when a line segment Lx is incorporated into its most

similar EF h, h must be checked to see if it contains obsolete

TFs, and then discard them (lines 11 and 12 in Algorithm

3). Further, when the number of EFs exceeds the specified
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threshold k, we not only remove the expired EFs but also fil-

ter out EFs with the earlier updated time and an insufficient

amount of participating trajectory segments. Let ti represent

the time instant of the newest updated TF in an EF hi, and

tc represent the current time instant. Then, we can obtain the

updated period of hi by (tc−ti+1). If the updated period is be-

yond more than half (e.g., 2/3) of the current window size, hi

is deemed as an EF that has not been updated for a long time.

Further, we filter out such EFs with longer updated periods

and participating records smaller than the average participat-

ing records of all EFs in the current window (lines 10 and 12

in Algorithm 2).

3.1.2 EF merging

If no EF is deleted, that is, none of the aforementioned elim-

inating criteria are met, we attempt to find the most similar

EF pair to merge until the size of the existing EFs meets the

space constraints, as shown in Algorithm 4. Only the most

similar EF pair will be merged into a new EF according to

Definition 6. However, even the two most similar EFs face

the problem of an inconsistent time instant of corresponding

level TFs. Therefore, for any two most similar EFs hi and h j,

we first align all level TFs of them in terms of the time range

of each level of TFs (line 1). To be specific, we obtain a set

of time instants of all levels of TFs in hi and h j, and insert

hi or h j with the empty level of the missing time range to en-

sure one-to-one correspondence between all levels of TFs of

hi and h j. Later, the merging process is akin to the process of

incorporating the line segments into an EF. If the number of

corresponding l − level TFs in two EFs exceeds � 1
ε � + 1, the

oldest l − level TFs are merged into (l + 1) − level TFs (lines

5 and 6). Otherwise, l − level TFs in two EFs are directly

combined into l − level TFs of new EF (lines 7 and 8). Such

operations will cascade to a higher level l = 0, 1, 2, . . . , until

the sum of the number of a certain level of TFs is 0.

However, the computation overhead of finding the most

similar EF pair is costly, especially when the number of EFs

(k) is too large. A nested loop used for calculating and com-

paring the similarity between all pairs of EFs is inevitable,

and costs O(k2) (k is the number of EFs). Owing to the

evolving properties and high updating cost of a data stream,

tree-based indexes cannot be well applied to cluster trajec-

tory streams. We opt for a heuristic strategy to speed up this

process. For each EF, we maintain its most similar EF (de-

noted as c) as well as the difference (denoted as ds) between

its most similar EF and itself. In particular, when receiving a

line segment Lx, we attempt to search its most similar EF h

and the second most similar EF hs (lines 3 and 4 in Algorithm

2). During the process of absorbing Lx into h, the difference

between h and hs (denoted as Di f f (h.rp, hs.rp)) is computed

and compared with h.ds. If Di f f (h.rp, hs.rp) � h.ds, the

original most similar EF of h (h.c) is replaced with hs (lines

13–15 in Algorithm 3). Only when a new EF is created for

Lx, and the most similar EF of h is eliminated or merged into

the other EF, we need to search the most similar EF for the

influenced EFs (denoted as Zlist) by the difference measure-

ment between the representative trajectory line segments of

the EFs. Hence, we derive Zlist after newly creating, deleting,

and merging the EFs (lines 14, 18, and 21 in Algorithm 2),

and implement the maintenance of the most similar EFs for

Zlist (line 22 in Algorithm 2). The maintaining details are il-

lustrated in Algorithm 5. For each EF hi in Zlist, we re-find the

most similar EF for it by comparing the difference between

hi and every existing EF h j (lines 1–5). At the same time,

we accordingly update h j’s most similar EF via a difference

comparing process (lines 6–8). In this way, when searching

for the most similar EF pair to merge, we simply need to tra-

verse the most similar EF lists of all EFs to find the EF pair

with the least difference. As a result, the cost of searching the

most similar EF pair to merge in the best case can be reduced

to O(k). Only when the deleted or merged EF is the most

similar EF of all EFs, the cost of searching the most similar

EF pair to merge is O(k2). Actually, this extreme case rarely

occurs. Moreover, keeping the most similar EF for each EF

does not require much extra space, which additionally needs

to store the index of the most similar EF, the value of ds,

and a list of indexes of the inverse most similar EFs for each

EF. As compared to the memory consumption of TFs that are

included in each EF, such extra space consumption is negli-

gible if n � k.
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3.2 EFs macro-clustering

Given a clustering request over a time horizon of length len

and a current time instant tc, we can further derive larger

macro-clusters based on previously generated micro-clusters.

As micro-clusters are line segment clusters of arbitrary shape,

and density-based clustering methods are suitable for discov-

ering such types of clusters, we implement macro-clustering

using the DBSCAN method. As mentioned in Section 2, the

micro-clusters are represented by the representative trajec-

tory line segments of the EFs. Hence, EFs in [tc − len, tc]

are treated as pseudo line segments, and they are re-clustered

to produce macro-clusters using a variant of the DBSCAN al-

gorithm [6,12]. The approach of generating a representative

trajectory for a macro-cluster is the same as that for a set of

trajectory partitions in [6]. Specifically, a representative tra-

jectory of a macro-cluster is a small sequence of points gen-

erated by using a sweep line approach and a smoothing tech-

nique, which can better capture the spatial characteristics of

a macro-cluster. If the given time horizon exceeds the current

window size, in addition to the latest EFs that are maintained

in main memory, the historical EFs stored on disk within

the specific period will also be used for macro-clustering. At

this point, the representative trajectory line segments of such

EFs can be clustered offline to generate the macro-clusters by

executing the DBSCAN algorithm. Intuitively, larger macro-

clusters tend to indicate more valuable patterns in contiguous

regions during continuous periods. For instance, in the sce-

nario of hot region identification, the road regions that the

macro-clusters cover exhibit similar mobile behaviors (e.g.,

maintain a similar low speed) at consecutive intervals, which

can be further identified as hot areas (e.g., traffic congestion).

3.3 Time and space complexity

The goal of OCluST is to cluster continuously arriving tra-

jectory line segments. The cost of incorporating a new line

segment Lx into its most similar EF mainly involves lines 4,

9, and 16 in Algorithm 2. The cost of line 4 (finding the most

similar EF for Lx) is simply O(k). At line 9, when the number

of EF exceeds k, the cost of removing obsolete EFs is O(k).

At line 16, the cost of calculating the difference between EFs

and merging a similar pair of EFs is O(k2) for the worst-case

scenario. Consequently, the per-record processing cost is at

most O(k2). However, in essence, the merging process sel-

dom occurs because the eliminating criteria ensure that some

EFs are deleted to make enough room for newly created EF.

Concerning space complexity, given an error threshold

ε, maximal number of EF k, window size W, and number

of line segments absorbed in the ith micro-cluster ni, then
∑k

i=1 ni = W, and the number of obsolete records is within

[0, εW]. There are at most ( 1
ε
+ 1)(log(εni + 1) + 1) TFs in

an EF [15]. The total number of TFs in k EFs is at most
∑k

i=1( 1
ε + 1)(log(εni + 1) + 1). In addition, the number of TFs

required by merging two EFs is ( 1
ε
+1)(log(ε(ni+n j))+1). As

a consequence, the total required memory (the total number

of TFs) of clustering streaming trajectories using the sliding

window model is O( k
ε log(ε�W

k �)).

4 Experimental evaluation

In this section, we conduct extensive experiments to evalu-

ate the clustering performance and efficiency of our proposal.

First, we utilize TRACLUS [6] as the baseline approach to

compare against OCluST. OCluST extracts spatio-temporal

characteristics of trajectories at different intervals with very

little information loss. TRACLUS clusters over the original

trajectory data set, and is regarded as the most effective trajec-

tory clustering algorithm available for a static trajectory data

set. Therefore, we choose the clustering result of TRACLUS

as a precision evaluation standard. To better perform an accu-

racy comparison against TRACLUS, we fit a hurricane data

set and deer movement data set in a single window. Second,

in order to verify the effectiveness and efficiency of OCluST

on streaming trajectories, we compare OCluST against two

algorithms (TCMM [12] and TSCluWin [21]) on a trajec-

tory data set for taxis. TCMM is a representative incremen-

tal trajectory clustering approach that employs a micro- and

macro-clustering framework to cluster trajectory data. Unlike

OCluST, TCMM does not take the temporal aspects of the

trajectories into account, and cannot eliminate obsolete tra-

jectories. Finally, we evaluate traffic conditions on-the-fly by

executing the OCluST algorithm on a trajectory data set for

taxis.
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All code, written in Java, is run on a PC with an Intel Core

CPU at 3.1 GHz and 8.00 GB of RAM. The operating system

is Windows 8.1. Unless mentioned, the parameters are set

below: ε = 0.5, γ = 0.75, ρ = 0.5.

4.1 Data sets

We use four real-world trajectory data sets, including a hur-

ricane track data set, a deer movement data set, and two taxi

trajectory data sets. The former two are derived in free space,

and the latter two are obtained on a restricted road network.

Just like [6], we choose the Atlantic hurricane track data

within the period 1950 to 2004, and extract the latitude and

longitude information of hurricanes for the experiment. The

deer movement data set contains the radio-telemetry loca-

tions of deer in 1995. We extract the x and y coordinates from

Deer1995 for the experiment.

The taxis’ trajectory data sets contain the GPS logs of

taxis over a period of three months from October to Decem-

ber 2013, covering the main road networks of Shanghai and

Beijing. Each GPS log is represented by a sequence of time-

stamped points (latitude and longitude positions).

4.2 Effectiveness evaluation

• Results for hurricane track data To verify the accuracy

of our proposal, we first implement TRACLUS and OCluST

on hurricane track data. Both algorithms use the DBSCAN

algorithm in different phases. min Lns and ε are important

parameters for DBSCAN, and ε is a neighbor threshold. To

differentiate it from the error threshold in our proposal, we

use d to denote the neighbor threshold for DBSCAN. Figure

6 shows the clustering result of TRACLUS and the macro-

clustering result of OCluST using the optimal parameter val-

ues (TRACLUS: min Lns = 9, d = 130, 000, OCluST:

k = 1000, min Lns = 30, d = 320, 000). Thin green lines

depict raw trajectories, and thick red lines with arrows repre-

sent the extracted clusters (directions marked using arrows),

specifically, macro-clusters for OCluST. The clustering re-

sults of both algorithms are similar except for a few minor

differences. They all capture the moving trends of hurricanes

accurately, that is, moving from east to west first and then

moving from west to east, occasionally mixed with south-to-

north movement. As we can see, four clusters (Fig. 6(a)) are

identified by TRACLUS, and three macro-clusters (Fig. 6(b))

are identified by OCluST. In addition, the lengths and loca-

tions of representative line segments in both algorithms ex-

ist with very few deviations. This is mainly because OCluST

executes macro-clustering using the DBSCAN algorithm on

a set of representative trajectory segments of micro-clusters,

which summarizes the trajectories with very little information

loss. TRACLUS executes clustering on trajectory partitions

of original trajectories using the DBSCAN algorithm and de-

rives the representative trajectories. It is noted that the clus-

ters obtained by the DBSCAN algorithm are easily affected

by the direction and length of core line segments and border

line segments. Since the direction and length of the represen-

tative line segments in OCluST are different from those of

trajectory partitions in TRACLUS, the clustering results in

Fig. 6 are quite reasonable.

Fig. 6 Clustering results for hurricane track data. (a) Hurricane-
TRACLUS; (b) Hurricane-OCluST

• Results for deer movements in 1995 In the subsequent

effectiveness experiment, we report on the clustering results

of TRACLUS and OCluST on deer movements data. Figure 7

shows the clustering results for both algorithms by using the

appropriate parameter values (TRACLUS: min Lns = 8, d =

149, OCluST: k = 300,min Lns = 100, d = 750). Also, we

use thin green lines to depict raw trajectories and thick red

lines to represent the extracted clusters (directions marked

using arrows). Like the results for the hurricane track data,

except very few differences in the lengths and locations of

representative line segments, the clustering results of both al-

gorithms are broadly similar. As illustrated in Fig. 7, on the

left side of the middle area, we observe that deer essentially

move in different directions, and the movement data are not

so dense to form a cluster. Hence, we derive two clusters in

the two most dense regions, which match the intuitive clus-

ters.

• Results for Shanghai taxi trajectory data For ef-
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fectiveness validation purpose, in addition to comparing our

proposal with TRACLUS in free space, we conduct evalu-

ations by comparing OCluST with two algorithms (TCMM

and TSCluWin) on a restricted road network. The three ap-

proaches maintain the same number of micro-clusters. As for

the important parameter dmax of TCMM, we set the same

value as [12], i.e., dmax = 800.

Fig. 7 Clustering results for Deer1995. (a) Deer1995-TRACLUS; (b)
Deer1995-OCluST

Here, we consider the sum of the square distance (SSQ)

used in [12,13] as the criterion to evaluate the quality of the

clustering results (micro-clusters or macro-clusters). For each

cluster ci, we first obtain the SSQ by computing the sum of

the square distance between each line segment in ci (denoted

as Li
j, 0 < j � ni) and the representative line segment of ci

(denoted as ci.rp), and then derive the average SSQ by calcu-

lating the ratio of SSQ to the number of trajectory line seg-

ments (denoted as n). Therefore, the average SSQ can be

calculated as

Average SSQ =
1
n

k∑

i=1

ni∑

j=1

DL2(Li
j, ci.rp),

where k denotes the number of clusters (micro-clusters or

macro-clusters). Generally, a smaller average SSQ value

means a higher clustering quality.

First, to validate the effectiveness of our proposal, we com-

pare the micro-clustering results obtained by three algorithms

(OCluST, TSCluWin, and TCMM) under different window

sizes. In terms of the reported average SSQ value, we con-

clude that OCluST and TSCluWin cluster the streaming tra-

jectories more effectively than TCMM, and OCluST obtains

the best clustering results.

Figure 8 shows the average SSQ obtained by three ap-

proaches (OCluST, TSCluWin, TCMM) as time progresses

when the window size is set to 160,000 and 330,000, respec-

tively. We observe that in all cases, OCluST and TSCluWin

behave better (with a smaller average SSQ value) than

TCMM because obsolete records are promptly eliminated,

and the clustering changes in the most recent records in

the current window can be precisely captured by OCluST

and TSCluWin. Thus, the micro-clusters are maintained rela-

tively compact with fewer records whenever the cluster center

drifts. Conversely, since TCMM does not consider eliminat-

ing the influence of the expired records, a micro-cluster may

continuously increase on the boundary rather than be split

into multiple small micro-clusters. Additionally, OCluST in-

variably obtains better outcomes than TSCluWin, as illus-

trated in Fig. 8. With the dramatic increase of positional data,

TSCluWin easily obtains larger micro-clusters than OCluST

because longer representative line segments are easily de-

rived by TSCluWin approach when the positional data has

great distances between corresponding starting positions or

ending positions. As a result, uneven clustering results drasti-

cally degrade the overall performance of micro-clustering, as

illustrated in Fig. 8(a). Furthermore, as data continue to flow

in, OCluST approach shows better clustering efficacy with

the use of more effective methods for extracting representa-

tive line segments. At the same time, the clustering efficacy

is less influenced by larger window sizes, as illustrated in

Fig. 8(b).

4.3 Efficiency evaluation

• Execution time evaluation We assess the efficiency of

our proposal by comparing OCluST and TSCluWin with

TCMM when dealing with streaming trajectories. Figure 9

shows a per-record processing time comparison (expressed

in seconds) among three methods. The OCluST curves nearly
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Fig. 8 Quality comparison. (a) W = 160, 000; (b) W = 330, 000

overlap the TSCluWin curves. As shown in Fig. 9(b), the per-

record processing time of OCluST and TSCluWin fluctuates

smoothly and keeps superior to that processed by TCMM

with the progression of a trajectory stream. TCMM takes

0.13s to obtain a cluster, while OCluST and TSCluWin only

take around 0.008s. The faster processing rate of our proposal

is because micro-clustering is executed on the original tra-

jectory data (without disregarding any trajectory points). By

contrast, TCMM needs to partition trajectories using MDL

method before the micro-clustering phase, which consumes

additional waiting time for partitioning accumulated trajec-

tory data into sub-trajectories.

Additionally, to test the algorithm’s robustness in the pres-

ence of uncertainty, we study the sensitivity of our proposal

to parameter k. Figure 9(b) shows the per-record processing

time when the number of micro-clusters is varied. Since the

distance computation cost of finding the most similar micro-

cluster for an incoming line segment keeps growing as the

number of clusters increases, all the approaches scale lin-

early with the number of micro-clusters. Nevertheless, with

an increase in the class number, the execution overheads

of OCluST and TSCluWin grow more slowly than that of

TCMM, and are less affected by the parameter k.

Fig. 9 Execution time comparison. (a) Execution time vs. length of stream;
(b) Execution time vs. number of EFs

• Memory usage evaluation One important efficiency

characteristic for the streaming algorithms is the memory us-

age. As previously mentioned, TF and EF synopsis structures

extract and maintain the spatio-temporal characteristics of

micro-clusters at different intervals, which effectively com-

presses the size of the data needed to be stored. Therefore,

we evaluate the memory usage of two algorithms mainly by

using the memory space usage of the synopsis structures (TF)

without taking into account the other issues. Since this type

of entity (TF synopsis structure) defined in the OCluST and

TSCluWin methods needs almost the same memory space,

we utilize the number of entities (TF) to estimate the mem-

ory usage of both algorithms. Figure 10(a) shows the mem-

ory footprint (in the number of entities) of OCluST and

TSCluWin when the window size W is set to 160,000 and

330,000, respectively. For W = 160, 000, as the number of

trajectories increases from 100,000 to 400,000, the mem-

ory usage of both methods fluctuates with the progression

of the trajectory stream, and OCluST requires less memory

than TSCluWin. This is based on the fact that a more bal-
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anced clustering result is easily obtained by OCluST than

TSCluWin. By contrast, for W = 330, 000, the memory usage

of TSCluWin outperforms OCluST at first, and then equals

OCluST when the number of incoming records is beyond

240,000. This is because the maintenance of the most sim-

ilar EF for Zlist in OCluST is more complicated than that in

TSCluWin. A larger window size leads to more influenced

EFs need to update their most similar EFs. However, when

the number of trajectories is larger than 240,000, the number

of TFs drops with the elimination of expired records (as il-

lustrated in Section 3). Both methods require almost the same

memory usage.

Fig. 10 Memory usage comparison. (a) Memory usage vs. length of stream;
(b) Memory usage vs. threshold ε

Moreover, we study the effect of input parameter ε on

memory usage. Figure 10(b) shows the memory usage of

OCluST and TSCluWin when the window size is set to

250,000 by tuning the value of parameter ε. OCluST main-

tains a slightly larger memory footprint than TSCluWin. In

addition, when the value of ε increases from 0.02 to 0.1,

the memory usage of both approaches decreases significantly.

This is because ε determines the number of expired records

within the time window. Specifically, in the current window,

with the increment of ε, more obsolete records are eliminated,

and fewer TFs are stored in memory.

4.4 Application to real-world problem: real-time traffic in-

formation evaluation

In order to further assess the performance of OCluST on real-

world problems, we apply OCluST to a taxi trajectory data set

to derive real-time traffic information for an urban road net-

work. Although there are specific pervasive techniques and

on-road (fixed) sensors for estimating traffic situations, e.g.,

magnetometers, visual cameras, and inductive loops built into

the road surface, they are prone to error and are limited to

critical portions of the arterial network owing to their high

costs of implementation and maintenance. This requires some

new ways to collect traffic data for evaluating road situa-

tions. Since taxis with in-vehicle GPS devices travel along the

entire road network, their trajectories typically cover much

wider areas, and hence they can be treated as mobile probes to

measure traffic states. As a complementary solution to fixed

sensors, this opens the door to use our proposal for deeply

understanding road network traffic, especially in areas where

no sufficient infrastructure to estimate traffic has or can be

deployed. Among the existing traffic estimation methods, the

aggregate-based method [22,23] is widely used to estimate

the road conditions of each link (i.e., a unidirectional road

segment) owing to its simplicity. However, it aims at gener-

ating the aggregate values (e.g., average speed and maximum

speed) of each road link, and cannot reveal similar moving

behavior of objects that drive on each road segment or on

wider road regions. Thus, to indicate the roads where vehic-

ular traffic is most concentrated, and to estimate the mean

speed of each road segment in real time, we use OCluST in-

stead of the aggregate-based method to cluster and discover

the common behavior of each cluster.

• Indications of high-vehicular-density route distribu-
tion in Shanghai We first implement OCluST approach on

Shanghai’s taxi trajectory data set to indicate the roads where

vehicular traffic is most concentrated during a specified time

period. The clustering result of trajectories on a randomly

selected region is visualized in Fig. 11. Figure 11(a) shows

the movement distribution of taxi traces during the period

(from 10:00 to 10:30 a.m.) on October 7, which involves

477,810 trajectory line segments (in green). Let MinLns be

set to 2000 and d to 730. We implement OCluST algorithm

on trajectories within the intervals [10:00, 10:10] and [10:10,

10:20] separately. These are portions of data shown in Fig.

11(a). Then, we derive 300 micro-clusters (in blue) on trajec-

tory segments within each interval, as shown in Figs. 11(b)

and 11(c). It is observed that the micro-clustering results

within the two intervals can capture most traffic flows in Fig.
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11(a), but with a few differences, which does accord with

the actual dynamic traffic status. Additionally, since micro-

clustering is maintained on raw trajectory line segments, the

obtained representative trajectory of each cluster behaves in

a short route form, and hence the micro-clusters are discrete

on the map. The micro-clustering result indicates the road

segments where vehicular traffic is the most concentrated.

Given the time period (from 10:00 to 10:30 a.m.) on Oc-

tober 7, we execute macro-clustering using DBSCAN algo-

rithm. Then, small micro-clusters are derived within three in-

tervals ([10:00, 10:10], [10:10, 10:20], and [10:20, 10:30]),

which are merged into seven larger macro-clusters. As il-

lustrated in Fig. 11(d), these macro-clusters describe seven

high-vehicular-density routes, which also reflect the traffic

continuity in the road network. Essentially, the seven routes

on the map indicate seven hot regions, including Shanghai

Railway Station, Shanghai Museum, West Nanjing Road, and

Caoyang Road. Moreover, it can be observed that some traces

originally exist in Fig. 11(a) but disappear in Fig. 11(d) be-

cause there are insufficient participating trajectory line seg-

ments to be filtered out. The real-time traffic information for

high-vehicular-density route distribution can be delivered to

road users for traffic management.

• Estimate the mean speed of each road segment of Bei-
jing in real time We also attempt to use OCluST approach

to estimate the traffic situation in Beijing on October 9. As

mentioned earlier, the clustering of streaming trajectories is

more flexible in evaluating real-time traffic conditions than

the aggregate-based method. For instance, we can estimate a

varied range of road region traffic situations by using different

Fig. 11 Indications of high-vehicular-density route distribution in Shanghai. (a) Movement distribution within (10:00–10:30); (b) Micro-
clustering within (10:00–10:10); (c) Micro-clustering within (10:10–10:20); (d) Macro-clustering within (10:00–10:30)
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distance thresholds in clustering. In our experiment, the av-

erage speed is employed to estimate the traffic situation

because other information can be derived by speed (e.g.,

estimated travel time). We treat the average speed of each

macro-cluster as the mean speed of a road segment where a

macro-cluster is located. By setting speed thresholds, we em-

pirically divide the traffic conditions into three classes: traffic

jams with speeds lower than 28.8km/h (in red), less con-

gested traffic with speeds within a range [28.8km/h,54km/h]

(in yellow), and smooth traffic with speeds beyond 54km/h

(in green). Figure 12 shows the macro-clustering results for

four intervals (8:00–8:30, 10:00–10:30, 14:00–14:30, and

17:00–17:30) on October 9, 2013. As shown in Fig. 12(a), for

[8:00–8:30], the distribution of congestion is from the outside

to the inside of the city. Congested roads are mainly concen-

trated in the south and north directions of East 2nd Ring

Road, West 2nd Ring Road, East 3rd Ring Road, and most

highways entering Beijing (in red on the map). Traffic moves

slowly in the Zhongguancun Bridge area, Hangtianqiao area,

Yongding Road, Wanquanhe Road, and Yuanmingyuan West

Road (in yellow on the map). During the interval [17:00–

17:30], as illustrated in Fig. 12(d), there is serious congestion

in the north-to-south direction of East and West Second Ring

Roads, as well as the north-to-south directions of East and

West Third Ring Roads. Vehicle travel is more concentrated

in the famous business circles and surrounding Catering ar-

eas, e.g., the Dongzhimen, Xizhimen, CBD, Financial Street,

and Zhongguancun regions (in red on the map). Moreover,

the traffic crawls in the regions near Beijing West Railway

Station and Beijing South Railway Station (in yellow on

the map). During the other two intervals (10:00–10:30 and

14:00–14:30), congestion is not serious and traffic is rela-

Fig. 12 Estimating mean speed of road segments in Beijing. (a) 8:00–8:30; (b) 10:00–10:30; (c) 14:00–14:30; (d) 17:00–17:30
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tively smooth. The vehicle velocity changes that were derived

from taxi trajectories can exhibit peaks in the morning and af-

ternoon rush hours, and basic impartial traffic pressure during

off-peak hours. As a result, the clustering results of OCluST

algorithm can effectively evaluate traffic conditions in real-

time.

5 Related work

In this section, we review existing work on data stream clus-

tering and trajectory clustering, and then cover a continuous

query over a trajectory stream. We end by introducing a few

research studies devoted to the clustering of streaming trajec-

tories.

• Clustering of data stream Traditional cluster-

ing approaches include partition-based methods (e.g., K-

means, [24]), hierarchical-based methods (e.g., BIRCH,

[25]), density-based methods (e.g., DBSCAN, [7]) and grid-

based methods (e.g., STING, [9]). All of the above methods

need to visit the data set more than once. Thus, they are un-

suitable for streaming scenarios with real-time response re-

quirements. Babcock et al. studied the clustering issue using

the sliding-window model with a focus on theoretical bound

analysis [26]. Aggarwal et al. developed CluStream algorithm

to cluster large evolving data streams based on a pyramid

model [13]. Aggarwal et al. further proposed UMicro algo-

rithm to deal with uncertain data streams [27]. Zhou et al.

presented SWClustering algorithm to track the evolution of

clusters using the sliding-window model by using a novel

synopsis data structure called EHCF [28]. Jin et al. proposed

the cluUS algorithm to cluster uncertain data streams using

the sliding-window model [29]. However, none of the above

methods can deal with trajectory data directly owing to their

different scenarios. In such scenarios, each tuple in the data

stream is an entry, while each tuple in streaming trajectories

is only part of an entry.

•Clustering on static trajectory data There exist salient

accomplishments on clustering static trajectory data sets, in-

cluding road-network unaware sets [6,8] and road-network

aware sets [20,30,31]. Gaffney et al. treated the entire tra-

jectory as a basic unit and introduced fundamental princi-

ples of clustering trajectory based on the probabilistic mix-

ture regression model [8]. Lee et al. presented a partition-

and-group framework (TRACLUS) to derive common sub-

trajectories [6]. Since the MDL method used in partitioning

the trajectory suffers from high computation overhead, it is

not suited for online clustering trajectories with limited mem-

ory resources. Many research studies address road-network

scenarios [20,30,31]. Won et al. presented a similarity mea-

surement by considering the total length of matched road seg-

ments, and proposed a clustering algorithm by adjusting the

FastMap and hierarchical clustering schemes [30]. Roh et al.

proposed a distance measure that considers the spatial prox-

imity of vehicle trajectories on a road network, and presented

a neighbor-based clustering approach called NNCluster [20].

Han et al. proposed a road-network aware clustering method

called NEAT, which considers traffic locality characterized

by the spatial constraints of a road network, the traffic flow

among consecutive road segments, and the flow-based den-

sity [31]. Nevertheless, the abovementioned works require

clustering on stored trajectory data; thus, they cannot be ap-

plied to streaming trajectories directly.

• Continuous query over trajectory stream There also

exist some approaches that are to some degree orthogonal to

our work but deserve to be mentioned. Various techniques for

trajectory simplification [6] or trajectory compression [14]

have been studied in real-time trajectory tracking [32], but

they refer to the problem of minimizing the amount of posi-

tion data that are communicated and stored. Owing to high

computational overhead to attain the optimal results, these

approaches are unsuitable for online clustering rapidly chang-

ing stream data in limited memory. In addition, more re-

cent achievements have been reported for continuous query

processing over trajectory streams [33–37]. Nehme et al.

proposed SCUBA to optimize the execution of continuous

queries on spatio-temporal data streams by utilizing motion

clustering [33]. Sacharidis et al. proposed a framework for

the online maintenance of hot motion paths in order to detect

frequently traveled trails of numerous moving objects [34].

Zheng et al. presented a method to discover closed gather-

ing patterns from a large trajectory data set [35]. Tang et

al. studied the problem of incrementally discovering travel-

ing companions from streaming trajectories by a data struc-

ture termed the traveling buddy [36]. Li et al. proposed a

group discovery framework that satisfies requirements in-

cluding sampling independence, density connectedness, tra-

jectory approximation, and online processing [37].

• Clustering of streaming trajectories Trajectory clus-

tering for static data sets [6,8] scarcely considers maintain-

ing clusters incrementally. Jensen et al. exploited an incre-

mentally maintained clustering feature CF, and proposed a

scheme for the continuous clustering of moving objects [10].

Li et al. presented the concept of a Moving Micro-Cluster

to catch the regularities of moving objects [11]. Neverthe-

less, they highlighted incrementally clustering moving ob-

jects rather than trajectories. Li et al. proposed an incremen-
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tal trajectory clustering framework called TCMM, which in-

cludes micro-clusters maintenance by simplifying new trajec-

tories into directed line segments, and macro-clusters gener-

ated by clustering the micro-clusters [12]. While in the micro-

clustering phase, TCMM has to accumulate sufficient incom-

ing positional data to obtain the simplified sub-trajectories by

using MDL method. In addition, owing to the effect of ob-

solete data, along with the process of continuously absorbing

more records and merging the most similar pairs of micro-

clusters, the centers of micro-clusters will shift gradually,

which leads to concept drift and thus degrades the effective-

ness of the resulting clusters. In general, incremental cluster-

ing approaches barely consider the temporal aspects of the

trajectories and cannot scale up to mine massive trajectory

streams.

Aiming at the requirement of clustering trajectory big data,

Deng et al. presented a scalable density-based clustering al-

gorithm called Tra-POPTICS, and parallelized it with the

Hyper-Q feature of Kelper GPU and massive GPU threads

[38]. Costa et al. proposed a framework (Lifting and Fourier

Transforms) that pre-elaborates original trajectories by us-

ing non-separable Fourier transforms [39]. Yu et al. proposed

CTraStream for clustering trajectory data streams, includ-

ing online line-segment stream clustering and an update pro-

cess for closed trajectory clusters based on a TC-Tree in-

dex [40]. This attempts to extract the patterns online, sim-

ilar to a convoy pattern [41]. Our previous work [21] pro-

posed a two-phase framework to cluster a trajectory stream

using the sliding-window model, called TSCluWin. It is ca-

pable of capturing the clustering changes in a certain tempo-

ral window while eliminating the influence of expired data.

This paper builds on this concept but differs in the follow-

ing respects. First, we exploit a new type of synopsis data

structure to summarize the spatio-temporal clustering fea-

tures of trajectories at different instants. Second, we employ

an online approach to cluster streaming trajectories (OCluST)

on the basis of such synopses. Third, we conduct perfor-

mance studies on real data sets by comparing OCluST with

TRACLUS, TCMM, and TSCluWin algorithms. Finally, we

use OCluST algorithm to estimate real-time traffic condi-

tions in urban road networks, specifically, by extracting high-

vehicular-density routes and assessing the traffic pressure ac-

cording to the velocity changes in the clustering results.

6 Conclusion and future work

In this paper, we proposed an online algorithm called OCluST

to cluster evolving streaming trajectories using the sliding-

window model. It consists of two components: a micro-

clustering component that summarizes trajectory line seg-

ments in the current window, and a macro-clustering com-

ponent that reclusters the previously extracted summaries ac-

cording to the user’s request. Specifically, we define two

novel synopsis data structures (TF and EF) to represent the

spatio-temporal clustering characteristics of the stream data

in memory, and track the latest cluster changes of the tra-

jectory stream in real time. By conducting extensive experi-

ments on real-world data sets, we compare OCluST to three

other algorithms (TRACLUS, TCMM, and TSCluWin) in

terms of effectiveness and efficiency. A theoretical analysis

and comprehensive experimental results demonstrate that our

proposal is of high quality, requires little memory, has a fast

processing rate in coping with streaming trajectories, and out-

performs the baseline approach.
Trajectory data in real applications is generally collected

in a distributed fashion. With a substantial increment in the

trajectory stream data, a distributed clustering approach is

required to meet the rising requirements of analyzing huge

amounts of data. Therefore, in our future work, we would

like to extend OCluST to a distributed solution based on

a distributed computing platform in order to improve the

efficiency of processing massive volumes of streaming tra-

jectories and to provide real-time clustering results.
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