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Abstract To facilitate the travel preparation process to a

city, a lot of work has been done to recommend a POI or a

sequence of POIs automatically to satisfy users’ needs. How-

ever, most of the existing work ignores the issue of planning

the detailed travel routes between POIs, leaving the task to

online map services or commercial GPS navigators. Such a

service or navigator in terms of suggesting the shortest travel

distance or time, which cannot meet the diverse requirements

of users. For instance, in the case of traveling by driving for

leisure purpose, the scenic view along the travel routes would

be of great importance to users, and a good planning ser-

vice should put the sceneries of the route in higher priority

rather than the distance or time taken. To this end, in this

paper, we propose a novel framework called ScenicPlanner

for route recommendation, leveraging a combination of geo-

tagged image and check-in digital footprints from location-

based social networks (LBSNs). First, we enrich the road net-

work and assign a proper scenic view score to each road seg-

ment to model the scenic road network, by extracting relevant

information from geo-tagged images and check-ins. Then, we

apply heuristic algorithms to iteratively add road segment and

determine the travelling order of added road segments with

the objective of maximizing the total scenic view score while
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satisfying the user-specified constraints (i.e., origin, desti-

nation and the total travel distance). Finally, to validate the

efficiency and effectiveness of the proposed framework, we

conduct extensive experiments on three real-world data sets

from the Bay Area in the city of San Francisco, which con-

tain a road network crawled from OpenStreetMap, more than

31 000 geo-tagged images generated by 1 571 Flickr users in

one year, and 110 214 check-ins left by 15 680 Foursquare

users in six months.

Keywords scenic view, travel route planning, heteroge-

neous, digital footprint

1 Introduction

Planning an itinerary before travelling to a city is one of the

most important travel preparation activities [1]. To figure out

a route with the best sightseeing experience, a user may not

only have to browse as many profiles of Point of Interests

(POIs) as possible to pick up his/her preferred one(s), but

also need to determine the order of travelling, which is very

time-consuming and labor-intensive [2–4]. To facilitate the

trip planning process, a number of online trip planners (e.g.,

NileGuide1) , YourTour2)) rank the city landmarks to guide

users to select interesting places to visit, and also help users to

organize the travel order of the selected POIs. Moreover, with

1) https://www.nileguide.com/
2) http://www.yourtour.com/
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the increasing popularity of location-based social networks

(LBSNs), various digital footprints recording the interactions

between human and cyber-physical worlds are accumulated

at an unprecedented scale [5–7]. Rich and valuable informa-

tion regarding the POIs and users, such as the POI’s physi-

cal coordinate, category, popularity and the check-in prefer-

ence are contained explicitly or implicitly in such digital foot-

prints [8, 9]. Such data can be mined for automatic trip plan-

ning under different user scenarios [10, 11]. However, most

current trip planning systems recommend either a single POI

or a sequence of POIs, neglecting the detailed travel route

planning issue between two suggested consecutive POIs. Al-

though available on-line map services such as Google Maps3)

and Baidu Maps4) or commercial GPS navigators can be eas-

ily integrated, the suggested travel routes just cannot meet

diverse user requirements since they usually provide routes

with the shortest travel distance or time. In real life, partic-

ularly in the case of travelling for leisure purpose by driving

a car [12, 13], users probably are not rushing in reaching the

next destination, but the visual and scenic attributes along the

driving routes are more preferred instead [12]. Thus, beyond

the shortest distance (or time), in the paper, we aim to recom-

mend the travel route between two POIs with the best scenic

view.

Intuitively, to plan a scenic travel route from one POI to an-

other, we can design one that passes by a few famous tourist

attractions (or landmarks) under user constraints. However,

the solution is problematic and invalid due to the following

two reasons. Fist of all, the activity of sightseeing during driv-

ing has a distinct nature from the activity of visiting tourist at-

tractions. Specifically, users would still get a beautiful scene

view along the travel routes even if there is no tourist attrac-

tion passing by (e.g., “The Embarcadero” at San Francisco),

while paying visits to tourist attraction, users have to make a

dedicated stay for a certain duration to visit a number of in-

door tourist attractions (e.g., stay several hours at “The Lou-

vre” museum to visit the famous artworks). Second, some

landmarks may be far away from the road and invisible when

users are in car, thus cannot offer a pleasant driving experi-

ence. In essence, it is the overall scenic environment along

the roads that contributes the beautifulness. The problem of

the scenic travel route planning can be divided into two sub-

problems, modelling scenic road network, and finding the

route with the maximum scenic score under the given con-

straints. To ensure the feasibility of our method, we need to

address the following two research challenges.

• How to model the scenic road network? The goal of

the scenic road network modelling is to score each road

segment in the road network correctly, according to its

nearby “scenic environment”. Nevertheless, the term is

rather subjective which depends on its popularity, user’s

preference, the visiting time and so on, making the

modelling task quite challenging.

• How to find the quasi-optimal route efficiently? Being

able to score each road segment, from a starting point to

an ending point, the problem becomes the well-known

path-finding problem, which is proved to be NP-hard.

To get a high-quality solution, we have to determine

that how many road segments to be travelled, and the

travelling order as well, suffering from the combination

complexity in nature. What is worse, for a targeted trav-

elling road segment, it usually has two driving direc-

tions which complicates the problem further.

With the above-mentioned research objective and chal-

lenges, the main contributions of the paper are:

• We propose a novel framework called ScenicPlanner,

which contains two functional modules (i.e., the scenic

road network modelling and the scenic route planning)

to plan a travel route between two given points, with the

objective of maximizing the scenic view score to gain

the most excellent driving experience.

• On the basis of the road network crawled from

the crowdsourcing platform (i.e., OpenStreetMap

(OSM)5)), we enrich it and assign a scenic view score

to each road segment in a comprehensive way, leverag-

ing the complementary information provided by a com-

bination of geo-tagged images and check-ins from two

LBSNs platforms (i.e., Flickr6) and Foursquare7)).

• We propose a heuristic algorithm to find the near-

optimal routes, and validate its effectiveness and ef-

ficiency in the city of San Francisco, USA, through

extensive experiments based on large-scale real-world

data sets, consisting of more than 31 000 geo-tagged

images generated by 1 571 Flickr users in a year, and

110 214 check-ins left by 15 680 Foursquare users in six

3) https://maps.google.com/
4) https://map.baidu.com/
5) http://www.openstreetmap.org/
6) https://www.flickr.com/
7) https://foursquare.com/
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months. As a comparison, we also propose two baseline

methods. Results demonstrate that the proposed algo-

rithm can achieve the best performance.

The rest of the paper is organized as follows. In Sec-

tion 2, after presenting some basic concepts and introducing

the problem formulation, we overview the framework of our

proposed ScenicPlanner system. We present the process of

modelling the scenic road network by leveraging the Flickr

geo-tagged images and Foursquare check-ins in Section 3,

and elaborate on our scenic route planning approach in Sec-

tion 4. We evaluate the performance of the proposed frame-

work in Section 5. In Section 6, we review the related work

and show how this paper differs from prior research. Finally,

we conclude the paper and chart the future directions in Sec-

tion 7.

2 The overview of ScenicPlanner system

In this section, we provide definitions of some basic concepts,

give a formal problem statement of scenic travel route plan-

ning, and present a brief description of ScenicPlanner frame-

work, which is comprised of two major parts: a scenic road

network model and a scenic route planning component, as

shown in Fig. 1.

2.1 Basic concepts

Definition 1 (Road network) A road network is a graph

G(N, E), consisting of a node set N and an edge set E, where

each element n in N is an intersection with a pair of longi-

tude and latitude coordinates (x, y) representing its spatial lo-

cation. Edge set E is a subset of the cross product N×N. Each

element e(u, v) in E is a road segment connecting node u and

node v.

Definition 2 (A travel route) A travel route TR is a sequence

of nodes (n1, n2, . . . , ni, . . . , nk), in which between any two

consecutive nodes 〈ni, ni+1〉, there exists a road segment (i.e.,

an edge) e(ni, ni+1) in the road network. Alternatively, a travel

route can be also defined as a sequence of road segments, in

which between any two consecutive road segments they share

a unique node.

Definition 3 (A geo-tagged image) A geo-tagged image is

defined as a quadruple gim = (uid, xi, yi, ti), showing a user

with id uid took an image at location (xi, yi) at time ti using

Flickr.

Definition 4 (A check-in) A check-in is defined as a triple

ck = (uid, vid, ti), showing a user with id uid checked-in a

venue (i.e., POI) with id vid at time ti using Foursquare. In

addition, Foursquare provides the physical coordinates, tags

and the category information about an any given venue.

Definition 5 (Scenic score of a road segment) Given a road

segment e(i, j), function S(e(i, j)) → R+ assigns a score to

reflect its scenic environment. A higher score, a more beau-

tiful scene it is. A road segment with score greater than 0 is

also called scenic road segment.

Definition 6 (Scenic score of a travel route) The scenic

score of a travel route TR is defined as the sum of the scenic

score of all road segments that the travel route contains, and

thus can be computed by
∑k−1

i=1 S(e(ni, ni+1)), where k is the

number of road segments that TR contains.

Definition 7 (A travel route query) A travel route query

(TRQ) consists of three parts: 1) a user-specified starting

point po = (xo, yo); 2) a user-specified ending point pd =

(xd, yd); and 3) the maximum travel distance of the targeted

Fig. 1 The framework of our proposed ScenicPlanner
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travel route Distmax. In summary, the query TRQ can thus be

represented as (po, pd, distmax).

2.2 Problem formulation

The problem of planning scenic travel route can be formu-

lated as follows:

Given:

1) a user’s travel route query (TRQ);

2) a collection of geo-images and check-ins from the tar-

geted city;

3) a road network G(N, E) of the targeted city.

Model the scenic road network by designing a proper func-

tion S(·) to score each road segment leveraging the collection

of geo-tagged images and check-ins, then find the travel route

which maximizes its scenic score while satisfying the user’s

TRQ.

Theorem 1 The scenic travel route planning problem is

NP-hard.

Proof For a set of road segments {e(i, j)}, each of them has

a scenic score S(e(i, j)) reflecting its sightseeing, in analogy

to the case that each item has a value in the Knapsack prob-

lem [14]. On the other hand, users have to travel a certain

distance to visit a scenic road from a given source to a desti-

nation, in analogy to the case that each item has a weight. The

maximum travel distance imposed by the user is just similar

to the maximum weight capacity in the Knapsack problem.

More complicatedly, different travelling orders of the same

set of scenic roads need different travel distances, and dif-

ferent traversed directions would also result in varied total

travel distances, even for a same scenic road. Therefore, the

problem discussed in the paper can be viewed as a variant of

Knapsack problem, which is NP-hard.

2.3 ScenicPlanner framework

As shown in Fig. 1, the ScenicPlanner is consist of two mod-

ulars, scenic road network modelling and scenic route plan-

ning respectively. With the inputs from three data sets, i.e.,

the road network, the geo-tagged image data and check-ins

data, the scenic road network modelling modular enriches

the road network by extracting relevant information from the

geo-tagged image and check-ins data. The scenic route plan-

ning modular works in a query-response manner. To be more

specific, after being triggered by a user-inputed travel query,

it first determines the interested area according to the loca-

tions of starting and ending points, and only road segments

lying in the interested area can be qualified to be travelled.

As each candidate road segment has two driving directions,

we then apply a heuristic rule to determine its driving direc-

tion. Finally, road segment selecting and ordering operation

finds the travel route with the best scenic view. We elaborate

the details of each component in the next two sections.

3 Scenic road network modelling

As discussed adove, the key issue of modelling the scenic

road network is to score each road segment (i.e., the degree

of beautifulness) according to its landscape quality. Previous

studies on quantifying the factors contributing to the scenic

beauty of routes concluded that scenic routes usually have

a higher density of surrounding geo-tagged photos and some

specific landscape features (i.e., a good visibility to POIs with

some specific categories, such as the foreground river and

garden) [12, 13]. Bringing this idea in and going a step fur-

ther, we leverage the complementary information provided

by geo-tagged image and check-in data to score the scenic

view of a given road segment, detailed as follows.

3.1 Geo-tagged images and scenic view score

A high density of geo-tagged images surrounding a road seg-

ment is a good indicator of its quality of scenic view. How-

ever, a higher value of density may not necessarily lead to a

better scenic view. The dominate direction of the distribution

is also of great importance. For instance, a better sightseeing

from the road might be guaranteed if the dominate direction

of the geo-tagged image distribution is consistent with the

direction of the road. The rationale behind is: users would

probably take photos along the road if they are attracted by

its overall view, while users would take photos from differ-

ent standpoints around a center location if they are attracted

by a nearby landmark. Taking the two distributions shown in

Fig. 2 as an example, though they have the same density,

the road segment in the left case should be scored higher.

Thus we consider both the density and dominate direction of

the geo-image data distribution collectively, and compute the

scenic score of a given road segment as follows:

Simage(e(ni, n j), {gim}) = w(e(ni, n j), {gim}) ×
log[sizeo f ({gim|dist(gim.(xi, yi), e(ni, e j)) < δ})], (1)

where dist((xi, yi), e(ni, n j)) computes the geo-distance from

point (xi, yi) to the road segment e(ni, n j), δ is a user-specified

parameter. sizeo f (·) gets the number of elements in the set,
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indicating that only the geo-tagged images with the distance

less than δ are counted when calculating the density to ensure

the visibility. w is a weighting factor which considers the road

direction and the dominate direction of the distribution, and

it is calculated by Eq. (2).

{λ1, λ2} = PCA({gim|dist(gim.(xi, yi), e(ni, e j)) < δ}),

w(e(ni, n j), {gim}) = cos(α) · λ1 + sin(α) · λ2,

α = arccos(
�d1 · �dr

| �d1| · |�dr |
), (2)

where λ1 and λ2 are the eigenvalues corresponding to the first

and second principal components ( �d1 and �d2, as shown in

Fig. 2) respectively, when applying PCA (principal compo-

nent analysis) algorithm [15] to the image set with distance

to the road segment less than δ, and �dr is the direction of the

road segment.

3.2 Check-ins and scenic view score

Popular roads where users can glimpse more natural view
or road-side tourist attractions (e.g., churches, palace, and
squares) are also preferred during driving. Thus, to score the
scenic view of a road, the POIs on or near the road should be
also taken into consideration. Fortunately, compared to the
geo-tagged image data which does not have the explicit in-
formation about a POI, check-in data not only contains the
information about the inherent attributes of a POI (e.g., the
longitude, latitude, a hierarchical category description), but
also how many times that the POI was checked-in during the
past time, which is a good indicator of its popularity. Inspired
by the idea that POIs with some specific categories would
contribute relatively more on its scenic view [12], we thus

intentionally divide the POIs into three groups according to
their category labels, as shown in Table 1. The scenic view of
a given road segment e(ni, n j) using the check-in data can be
computed as follows:

Scheckin(e(ni, n j), {ck}) =
3∑

k=1

wk · sizeo f ({ck|dist(ck.vid , e(ni, n j)) < δ ∩ catg(ck.vid) ∈ Groupk})
sizeo f ({ck}) , (3)

where dist(ck.vid, e(ni, n j)) measures the geo-distance from

the venue to the road segment, and only the check-ins at

venues with the distance to the road segment less than δ are

counted, which is similar to the case of geo-tagged image

data. Moreover, those check-ins are weighted differently ac-

cording to the group of the corresponding checked-in venues,

roughly followed the idea in Ref. [12], which investigates

the scenic view and the surrounding POI categories of a

travel route quantitatively. Results suggest that POIs belong-

ing to the natural scenery and tourist attraction generally

contribute more on the scenic view of the travel route than

other groups. Therefore, check-ins at venues belonging to

Group 1 (i.e., natural scenery) are weighted higher than the

other two groups in this paper. Specifically, we empirically

set w1 = 0.65,w2 = 0.3 and w3 = 0.05.

Table 1 Three groups of POIs

Group name Category labels

park, garden, lake, forest,

Natural scenery mountain, beach, sea, river,

bridge, harbor, scenic, hiking.

museum, palace, church, gallery,

Tourist attraction memorial, monument, square, zoo,

university, historic site, square.

Others restaurant, cafe, hotel, etc.

Fig. 2 Illustrative example of two geo-tagged image distributions with the same density but different dominate directions
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3.3 Integration of geo-tagged images and check-ins

Given the geo-tagged image data and check-in data, the

scenic view score of a road segment is integrated based on

Eq. (4).

S(e(ni, n j), {gim}, {ck})
= Simage(e(ni, n j), {gim}) × Scheckin(e(ni, n j), {ck}). (4)

Figure 3 shows cumulative distribute function (CDF) re-

sult of the scenic view score of all road segments in the road

network. We can observe that only 5% of road segments have

a value of score bigger than 0.05, and around 85% of road

segments even do not have a score.

Fig. 3 CDF result of the scenic view score of all road segments

Remark There are many different weighting algorithms to

integrate the contributions of geo-tagged images and check-

ins on scoring a given road segment, and also different

weighting mechanisms would result in different values of

score. Furthermore, one kind of data might contribute more

than the other one. At the current stage, we are more focused

on demonstrating the effectiveness of the introduction of the

new kind of user-generated data (i.e., check-ins) on quantify-

ing the score of the scenic view of the road segment. Thus we

simply product two kinds of scores in the integration. In the

near future, we plan to explore more different weighting algo-

rithms and investigate the related influence on the framework

performance.

4 Scenic route planning approach

With the results returned from modelling phase, the objec-

tive of scenic route planning is to add the road segments8)

to travel (or visit) to maximize the total scenic view score

while satisfying the user-specified constraints (i.e., the start-

ing and ending points, the maximum travel distance). The

essence is how to select road segments and determine their

ordering. The problem is NP-hard and suffers from combina-

tion explosion. On one hand, some road segment has a higher

scenic view score but at a higher cost (resulting in a longer

travel distance) if included in the travel route. On the other

hand, there are many possible orders to travel the selected

road segments, and different travelling orders would result in

different total travel distances. Furthermore, for most of road

segments, they have two driving directions. From a starting

point to an ending point and a passing-by road segment, the

resulted total travel distance is varied if the road segment is

traversed from different driving directions. To maximize the

route score without exceeding the allowed maximum travel

distance, we propose a three-step procedure, detailed as fol-

lows.

• Step 1 Interested area determination There are thou-

sands of road segments in a road network, some of which are

far away and cannot be travelled due to the budget constraint.

Thus, to improve the efficiency of route planning, we first de-

termine the interested area according to locations of the given

starting and ending points. The minimal rectangle area which

covers starting and ending points is selected as the interested

area. Only road segments lying in the area are qualified to be

the candidates for travelling. One obvious advantage of ap-

plying this rule is that the efficiency can be greatly improved.

We argue that the simply rule is reasonable since the scenic

roads outside the area can be hardly selected due to the con-

straint of maximum travel distance imposed by the user.

• Step 2 Driving direction determination For a given

road segment, its driving direction is determined by com-

paring the value of shortestDist(po, ni)+ shortestDist(n j, pd)

(the distance of the black dashed line in Fig. 4) to the value of

shortestDist(po, n j)+shortestDist(ni, pd) (the distance of the

blue dashed line in Fig. 4), where shortestDist(a, b) gets the

shortest distance from point a to point b. We choose the one

that can lead to a smaller travel distance. If the two distances

are with the same value, the driving direction is determined as

the direction from the node closer to the starting point to the

other node. As can be observed, the most time-consuming

procedure is the shortest path computation given the start-

ing and ending points. Fortunately, the number of scenic road

segments in the determined interested area is small and lim-

ited. By applying the rule repeatedly, the driving directions of

any road segment can be determined once given the locations

of starting and ending points. In real situations, for a given

road segment, it usually can be traversed in two directions.

Suppose a recommended scenic travel route can include N

8) In the rest of presentation, without special explanation, the road segment refers to the one with scenic view score greater than 0, i.e., the scenic road
segment
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scenic roads, there would be (2N × N!) combinations in total.

Therefore, it is impossible to immense a response within an

acceptable time especially when N is large. To ensure a quick

response, in our current study, we simply adopt the proposed

rule.

Fig. 4 Demonstration of the rule of driving direction determination

• Step 3 Road segment selecting and ordering As ob-

served in Fig. 3, there are only a few number of scenic road

segments in the city, and the number is even smaller in the

interested area. An intuitive idea is to select road segment

with the highest score in the interested area and add it into

the travel route, however, this strategy may use up the travel

distance if the highest-score road segment is far away, and

forbid adding more new high-scored road segments. We also

call the intuitive strategy as the highest-score-first selecting

(HfS). To make a trade-off between the scenic score of an in-

dividual road segment and the number of road segments, we

propose a heuristic algorithm called probability-based select-

ing (PbS) strategy based on the idea that the road segment

with a higher scenic view score would be selected and added

into the route with a higher probability. As a comparison, the

strategy which is based on selecting the road segment ran-

domly regardless its scenic view score is also adopted. We

call it as the random-based selecting (RbS) strategy. HfS and

RbS are used as baseline approaches.

Another key issue is the selected road segment ordering.

As discussed previously, different road segment orders would

result in different travel distances, leaving different margins

for adding in more road segments. A straightforward way is

to enumerate all the order combinations and pick up the one

with the minimal travel distance. The complexity is O(N!),

where N is the number of the selected road segments. It is

very time-expensive. To simplify the problem, we propose

an iterative process consisting of road segment selecting-

adding-ordering. For instance, based on the proposed select-

ing strategies, a road segment would be selected and added

into the route at the first iteration if the resulted route would

not violate any constraint, such as the black dashed line in

Fig. 5. At the second iteration, another new road segment

would be selected (e.g., e(nk, nl) in Fig. 5), and we fol-

low the shortest distance principle to determine the order.

There are two options that the newly selected road segment

e(nk, nl) can be added, i.e., before or after the previously

added e(ni, n j). To be more specific, we assume the scenic

travel route is po � ni → n j � pd9) after the first iter-

ation. In the next iteration, suppose e(nk, nl) is selected, the

newly shortest path can be determined by comparing the dis-

tances between po � ni → n j � nk → nl � pd and

po � nk → nl � ni → n j � pd. The distance compar-

ison can be quite efficient due to the following two aspects:

1) the pair-wised shortest paths and distances between the

scenic road segments can be computed and stored a priori,

moreover, the number of scenic road segments is small and

limited, as shown in Fig. 3; 2) the number of computation

of the shortest paths and distances from the starting point to

each scenic road segment and from itself to the ending point

is also limited. Finally, we just choose the one that can lead to

a shorter travel distance as a shorter travel distance may allow

to add more road segments, probably implying a better travel

route. As can be expected, there are (n − 1) options that the

newly selected road segment can be added if the travel route

has already added n road segments in. Thus, the complexity

is reduced to O(N2).

Fig. 5 Demonstration of road segment selecting-adding-ordering process
(arrows above the road segments refer to the driving directions)

Algorithm 1 summarizes the whole procedure of the scenic

travel route planning. Lines 1–4 refer to the initialization.

Based on the user travel route query, the interested area and

the driving direction of the road segments in the area will

be first determined. We also rank the road segments accord-

ing to their scenic view scores (line 2). The travel route is

initialized as the shortest path from po to pd (line 4). Lines

5–9 illustrate the iterative process of road segment selecting,

adding and ordering. At one iteration, a new road segment

will be selected based on our proposed strategies, and then

added in the current travel route (line 6), Meanwhile, the se-

9) pi � pj denotes the detailed shortest path from pi to pj
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lected road segment will be removed from the set of road

segments to avoid being selected again. The iteration will be

terminated once no more new road segments can be added or

the number of iterations is equal to the user-specified maxi-

mum value (line 5). Note that, for the PbS and RbS selecting

strategies, the algorithm should be run repeatedly to ensure

a high-quality travel route. Each run is independent and can

be easily implemented in a parallel way. Thus, the total com-

putation time needed is equal to the one corresponding to the

most time-expensive run. We compare the computation time

cost for three different approaches in the evaluation part.

Algorithm 1 Scenic travel route planning

Input: A travel route query TRQ = (po , pd , distmax);

Scenic road network Gs.

Output: A travel route (TR)

1: G′s = IAD(Gs, po, pd) //The determination of the interested area.

2: Rank the road segments in G′s according to the scenic view score.

3: maxIter = m; curIter = 0

4: TR = shortestPath(po , pd)

5: while (dist(TR) < distmax)||(curIter < maxIter) do

6: TR← TR + eselected //eselected is the road segment selected based

on our strategies.

7: {e} = {e} − eselected //The selected road segment will be removed.

8: curIter = curIter + 1

9: end while

5 Experimental evaluation

In this section, we first describe the experimental setup, then

present the evaluation results on the efficiency and effective-

ness of our proposed ScenicPlanner framework.

5.1 Experimental setup

• Data preparation Three data sets in the Bay Area in the

city of San Francisco are used, i.e., the road network, the

geo-tagged image data, and the check-in data. Statistical in-

formation about the three data sets is shown in Table 2.

Table 2 Statistics of the three data sets

Datasets Properties Statistics

Geo-tagged image data # of images 31 022

# of users 1 571

Check-in data # of check-ins 110 214

# of users 15 680

Road network # of nodes 3 771

# of road segments 5 940

• Evaluation environment All the evaluations in the paper

are run in Matlab on an Intel Core i5-4460 PC with 4-GB

RAM and running Windows 7 operation system.

5.2 Evaluation on scenic road network modelling

The scenic road network modelled by leveraging two user-

generated digital footprints is shown in Fig. 6(a). For com-

parison, we also provide a part of “49-Mile Scenic Drive” for

the selected rectangle region in the road network in Fig. 6(b).

From the results, we can see most of road segments in the

urban area are scored extremely low. Moreover, the road seg-

ments which are scored higher are generally consistent with

the designated scenic road tour recommended by the local

government, demonstrating the effectiveness of our proposed

scenic road network modelling approach.

We also compare our scenic road network modelling ap-

proach to the previous work which is solely based on geo-

tagged image data. The premise of the modelling approach

in Ref. [16] is: the roadway is a scenic one if along which

a large number of photos are densely distributed. Never-

theless, it fails to take category information about POIs into

Fig. 6 Result of (a) scenic road network modelling and (b) a part of the 49-Mile Scenic Drive
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consideration which is rooted by the fact that geo-tagged im-

age data does not contain such information explicitly. Taking

the two road segments shown in Fig. 7 as an example, the

road in Fig. 7(a) is the “Bicycle Route 65”, which is a fa-

mous driving road due to its attractive scenic view. As can be

seen, though the “Bicycle Route 65” is surrounded by only

four POIs (i.e., “Conservatory Flows”, “Gold Gate Park” and

so on), it also offers a pleasant driving experience. The road

in Fig. 7(b) is the “7th St”, which is a regular and normal

commercial urban street. It is surrounded by at least eight

popular POIs (twice more than that in “Bicycle Route 65”),

but they are more preferred for shoppers. Hence, the road in

Fig. 7(a) should be scored higher. The “Bicycle Route 65” is

ranked 23rd by our modelling approach but ranked 234th by

approach in [16]; “7th St” ranked 1 004th by our modelling

Fig. 7 Two road segments. (a) Bicycle Route 65: a famous driving road due
to its attractive scenic view; (b) 7th St: a regular commercial urban street

approach but ranked 12th by approach in [16]. In summary,

our modelling approach achieves a more reasonable result as

we extract the complementary information provided by two

data sources.

5.3 Evaluation on scenic route planning approach

We evaluate three different route planning approaches (i.e.,

HfS, PbS and RbS), and present the comparison results on

the scenic score of the travel route and the computation

time respectively. We also provide some additional attributes

along the planned routes resulted by different approaches, in-

cluding the total number of images, the number of different

groups of POIs and respected check-ins. In particular, we

select five origin-destination (OD) pairs for the evaluation.

Table 3 shows the starting and ending locations of the se-

lected five OD pairs.

Table 3 Starting and ending locations of the selected five OD pairs

OD pair Start End

1
New Strangers Home

Baptist Church
Russian Hill Park

2 Lombard Gate Museum of Vision

3 Tenth & Harrison Car Wash Music Intelligence Solutions

4 Safeway Marina Yacht Harbor

5 Union Square Ghirardelli Chocolate

Figure 8 shows the results of the scenic score of the

planned travel routes for the selected OD pairs. For all five

OD pairs, as can be seen, PbS approach achieves the highest

scenic score, while RbS approach gets the lowest one. The

scenic score obtained by HfS is in-between, better than that

of RbS, worse than that of PbS. What is more, among all five

OD pairs, for all of three approaches, three of them are with

quite small value of scenic score. This is probably caused by:

both starting and ending points of the three OD pairs locate

in the downtown area, in which the surrounding POIs on road

segments are dominated by ones belonging to Group 2 and

Group 3 (refer to Table 1).

Fig. 8 The scenic score of the travel routes resulted by different route plan-
ning approaches



70 Front. Comput. Sci., 2017, 11(1): 61–74

We also show the results of computation time cost of three

approaches for the selected OD pairs in Fig. 9. For all five OD

pairs, PbS approach needs the most of computation time, HfS

costs the smallest amount of computation time. The compu-

tation time cost is less than half a minute, which can be ac-

ceptable for most of users. As discussed earlier in Section 4,

PbS selects the road segment with a higher scenic score and

with a higher probability, thus additional probability compu-

tation is required, leading to an increase of the computation

time, compared to HfS and RbS. We can also observe that the

computation time cost of all three approaches for OD pair 1

is much greater than the other four OD pairs, which is due

to the fact that the interested area of OD pair 1 is with much

denser road network (a bigger number of nodes and edges)

and thus more iterations are required to obtain a good-quality

travel route.

Fig. 9 Computation time cost of different route planning approaches

To better understand how three approaches differ in the

planned travel routes, we further provide the statistical in-

formation about the number of images, the number of

POIs/check-ins distribution on each group, and the number

of scenic road segments included in the travel routes obtained

by different approaches for all selected five OD groups, as

shown in Table 4. We observe that PbS approach achieves

either the biggest number of images or the biggest number

of POIs and check-ins belonging to Group 1 (i.e., natural

scenery), demonstrating the capability of the proposed PbS

approach in finding the near-optimal travel route. We can also

observe that the number of images associated with the travel

routes obtained by RbS is the smallest. With the travel routes

obtained by PbS approach, users can visit the biggest number

of scenic road segments in four out of five selected OD pairs.

To demonstrate the effectiveness of the proposed frame-

work on the planned travel routes as well as their differences,

we plot three travel routes obtained by three approaches (i.e.,

Hfs, RbS, PbS) for a selected OD pair on the Google map

respectively, as shown in Fig. 10. We manually select some

Table 4 Statistics of the number of images and POIs/check-ins distribution
on each group of travel routes obtained by different approaches

OD # POIs (# Check-ins) # of scenic
pair

Approaches # Images
Group 1 Group 2 Group 3 roads

HfS 1737 5(16) 5(34) 170(1849) 23

1 RbS 309 6(15) 2(29) 59(367) 7

PbS 1970 2(11) 4(32) 182(1930) 31

HfS 1064 1(3) 1(2) 79(753) 14

2 RbS 177 4(20) 3(7) 37(246) 9

PbS 1090 2(3) 3(8) 109(971) 19

HfS 879 7(10) 0(0) 81(837) 15

3 RbS 766 8(55) 0(0) 168(1604) 23

PbS 787 10(89) 3(7) 162(1482) 21

HfS 1446 66(955) 1(9) 385(3956) 66

4 RbS 1256 29(128) 1(9) 361(3913) 55

PbS 2375 59(806) 1(9) 459(5089) 73

HfS 1510 16(54) 0(0) 225(2241) 34

5 RbS 1200 13(52) 0(0) 195(2127) 37

PbS 1564 27(69) 1(9) 267(3266) 46

representative POIs (marked as stars) on each travel route,

which are either with frequent check-ins or surrounded by a

big number of images. Note that the number of stars on the

travel route is related to its scenic score. The bigger number

of stars implies the corresponding scenic score is also higher.

For the travel route obtained by RbS (i.e., the black solid line

in Fig. 10), we can see that the number of stars is the smallest,

moreover, it also has the fewest common POIs with the other

two travel routes (i.e., three gray stars and two cyan stars).

With the HfS approach, the system first recommends users

to make a dedicated detour to visit some distant scenic roads

(the bottom part of blue solid line in Fig. 10), since the ap-

proach favors visiting high-score scenic roads no matter how

far away. We also observe that the travel route obtained by

HfS include much more common POIs with the one obtained

by PbS (i.e. nine green stars), compared to the one obtained

by RbS. For the travel route obtained by PbS approach (i.e.,

the red solid line in Fig. 10), it has the largest number of stars.

We can also see that the route is more smooth (i.e., with less

zigzag parts) than the other two routes, suggesting the effec-

tiveness of our system.

We also design an experiment study to show how far the

solutions obtained by the heuristic algorithm are from the

ones obtained by the optimized methods as well as the ide-

ally optimal ones. Specifically, we compare their results w.r.t

scores and computation time costs, as shown in Table 5. Note

that the dynamic programming [17] is adopt as the optimized

method, and the ideally optimal travel route is obtained by

the simple enumeration process. In terms of the route score,

PbS can get a high-quality travel route, with the value quite

close to the one obtained by the dynamic programming. In
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Fig. 10 Comparison results of three planned travel routes obtained by three approaches

terms of the computation time, PbS is the most efficient,

while enumeration needs more than three hours. Consider-

ing the fact that it is really time-consuming to get the optimal

travel route through an enumeration process, the distance of

the OD pair is set to small (i.e., 1.41km), as a result, there are

seven scenic roads inside the interested area.

Table 5 Comparison results of different approaches

Approaches Route score Computation time/s

PbS 0.005 5 5.12

Dynamic programming 0.005 6 83.76

Enumeration 0.008 2 1.13×104

6 Related work

6.1 Geo-tagged and check-in data mining

Geo-tagged image and check-in data have been mined to sup-

port various applications, having attracted lots of attentions

from researchers during recent years. To name a few, how to

efficiently manage them has become a critical issue as geo-

tagged image data is accumulating rapidly, thus Ref. [18]

provided a framework to automatically select a summary set

of photos for better accessible. Geo-tagged images taken by

different users at different locations may concern the same

landmark, thus many studies on identifying and classifying

landmarks through data mining algorithms have been done

[19,20]. The geo-tagged image data is a result of crowds who

share their photos on social media sites behind which is the

wisdom of the crowd [21], hence knowledge and patterns of

our human society have been discovered, such as (person-

alized) landmark recommendation, frequent associated POI

sequences suggesting, the heat-map of landmark popularity

at different time understanding [8, 10, 19, 22–25]. Similarity,

knowledge hidden in check-in data has been mined to sup-

port similar applications [1, 9, 26, 27]. However, the major

difference between geo-tagged image and check-in data is

that the latter one contains rich and explicit information about

the POIs. To the best of authors’ knowledge, there is not any

previous work on exploring the complementary information

contained by two user-generated digital footprints in the field

of travel route planning.

6.2 Travel route planning

There has been quite some work on planing travel route from
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one point to another point with non-stop in a city. Systems

with objective of the shortest distance (or time) are the most

common ones, and many commercial navigators and online

map services have provided such travel routes. Considering

that the traffic condition is highly dynamic at different time

of the day or under different weather, the time-dependent

shortest time travel route is also one of the common objec-

tives [28,29]. There is also some work on planning the short-

est travel route integrating the real-time traffic information,

such as avoiding roads with high congestion [30]. New ob-

jectives that go beyond the shortest distance (time) have been

recently appeared in the literature. To number a few, Sharker

et al. [31] considered the recommendation of healthy routes

(i.e., maximizing the physical activity) to pedestrians. Quer-

cia et al. [32] suggested “happy”, “pleasant” travel routes

by foot to travellers. Kim et al. [33] made use of the sen-

timent of geo-tagged image data to recommend routes that

are friendlier, more enjoyable and potentially safer. Similarly,

based on crime data, Galbrun et al. [34] selected travel routes

based on multiple criteria, such as the distance and the safe.

Additionally, some constraints are often emphasized, such as

bypassing some given POIs (with some specific attributes),

and the maximum travel time. Closer to our work, Zheng et

al. [16] presented a GPSViewer system, with the objective of

planning a driving route with scenery and sightseeing quali-

ties, making use of geo-tagged image data to incorporate the

scenic factor into the routing. The weight of edges in the road

network is a weighted summary of the travel distance and

scenic view that can be negative, although the shortest path-

finding algorithm adopted in [16] can work in network with

negative weights, it may suffer from the problem of negative

loops (all weights in the loop are negative), failing to provide

a satisfactory travel route to users. Moreover, based on the

method proposed in [16], users cannot get a travel route with

a controllable driving distance. On the top of the GPSView

system, our ScenicPlanner system improves in the following

two main aspects: 1) we model the scenic road network in

a more reasonable and accurate way, by leveraging the com-

plementary information provided by Flickr geo-tagged im-

age data and Foursquare check-in data; 2) we use the total

travel distance as the constraint which can be customized,

and ScenicPlanner works to suggest the travel route with the

highest scenic score under the given constraints to users.

7 Conclusion and future work

In this paper, we present a novel framework called Scenic-

Planner to recommend the travel route with the best scenic

view to users given the constraints of starting, ending points

and the maximum travel distance. The framework contains

two major modulars, i.e., scenic road network modelling and

scenic route planning. More specifically, we first enrich the

road network and assign a proper score to each road seg-

ment by extracting relevant information from geo-tagged im-

age and check-in data sets. Then we propose heuristic algo-

rithms for scenic route planning with a novel and compre-

hensive process that consists of interested area determination,

road segment driving direction determination and road seg-

ment selecting and ordering. Using real-world data sets which

include the road network data crawled from OSM platform, a

large-scale geo-tagged image data generated by 1 571 Flickr

users in a year and check-in data left by 15 680 Foursquare

users in six months in the Bay Area in city of San Francisco,

USA, we demonstrated the effectiveness and efficiency of our

proposed framework.

In the future, we plan to broaden and deepen this work in

several directions. First, we plan to develop more advanced

route planning algorithms to get better quality travel routes

(or solutions for the problem) such as adopting some index

and efficient algorithms to speed up the computation of the

point-wised distance in a road network and evolution algo-

rithms, and evaluate the theoretical gap between the resulted

solution and the truly optimal one. Second, we plan to model

the scenic road network at different time of the day and dif-

ferent seasons of the year and integrate the user travelling

preferences, on the basis of which we are able to suggest

the personalized best travel routes at different time. More-

over, we also intend to mine the GPS trajectory data (e.g.,

taxi GPS trajectory data) to determine the driving direction

for the road segments given locations of source and destina-

tion. The rationale behind is: for a given road segment, we

are able to obtain its frequent bypassing direction from the

source to the destination by mining the history GPS trajectory

data, which can be used as its driving direction for that given

source-destination pair. Finally, we would like to deploy our

system on mobile devices, and recruit some volunteers to test

our system in actual settings, collecting feedback on how to

further improve the service.
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