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ABSTRACT

Since the 21st century, the global outbreaks of infectious
diseases such as SARS in 2003, H1N1 in 2009, and H7N9 in
2013, have become the critical threat to the public health and
a hunting nightmare to the government. Understanding the
propagation in large-scale metapopulations and predicting the
future outbreaks thus become crucially important for epidem-
ic control and prevention. In the literature, there have been a
bulk of studies on modeling intra-city epidemic propagation
but with the single population assumption (homogeneity).
Some recent works on metapopulation propagation, however,
focus on finding specific human mobility physical networks to
approximate diseases transmission networks, whose generality
to fit different diseases cannot be guaranteed. In this paper,
we argue that the intra-city epidemic propagation should be
modeled on a metapopulation base, and propose a two-step
method for this purpose. The first step is to understand
the propagation system by inferring the underlying disease
infection network. To this end, we propose a novel network
inference model called D2PRI, which reduces the individual
network into a sub-population network without information
loss, and incorporates the power-law distribution prior and
data prior for better performance. The second step is to
predict the disease propagation by extending the classic SIR
model to a metapopulation SIR model that allows visitors
transmission between any two sub-populations. The validity
of our model is testified on a real-life clinical report data set
about the airborne disease in the Shenzhen city, China. The
D2PRI model with the extended SIR model exhibit superior
performance in various tasks including network inference,
infection prediction and outbreaks simulation.
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Figure 1: Illustration of the metapopulation SIR
model. [26]
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1 INTRODUCTION

Infectious diseases are serious threats to human life and
health. From the Black Death resulting in about 75 million
deaths in 1340s, to the 2017 outbreak of H3N2 influenza
in Hongkong killing over 300 residents in just two months,
the war between human beings and infectious diseases will
never end. On the other hand, the developed transportation
systems nowadays make long distance travel very convenient.
Likewise, with mobility of infected persons, pathogens can
be spread to large geographic space within a short period of
time. The recent global epidemic outbreaks, including SARS
in 2003 [14], H1N1 in 2009 [8] and H7N9 in 2013 [9], all
have close relationship with transnational human mobilities.
Understanding large spatial diseases transmission with human
mobility and predicting outbreak process of epidemics in early
stages, have become crucial problems in epidemic control and
prevention.

In the literature, many epidemic models have been pro-
posed to reveal propagation dynamics of disease in different
structures of population, such as the compartment models [12]
for the small size and individual “well-mixed” population,
and network epidemiology models [26] for individuals with
complex contact relationship in a single population. For epi-
demic propagation in a large-scale spatial area, the most
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widely used model is the metapopulation model. A meta-
population refers to a group of separated sub-populations
of the same species which are connected by an interaction
network. Large-scale epidemic outbreaks, such as global trans-
mission of influenzas, can be modeled as a propagation of
pathogens through a metapopulation network, in which c-
ities of different countries are modeled as sub-populations
and inter-city human mobility are modeled as the network
connecting the sub-populations (see Fig. 1).

The metapopulation model has achieved great success in
empirical large scale epidemic propagation studies. For ex-
ample, the studies [6, 14] use the worldwide aviation network
to analyze the propagation of SARS and H1N1 in the global
city metapopulation, while the study [28] uses a cell-phone
user mobility network to analyze Malaria propagation in an
inter-settlement metapopulation of Kenya. However, because
obtaining detailed mobility data of all cities in the world
or even in a country is often practically impossible, most of
these works can only build epidemic propagation networks at
the inter-city level using coarse-grained mobility data, assum-
ing that all contacts and infections between individuals in
the same city are homogeneous. With the rapid development
of metropolis in the worldwide, social structures inside a
city also become more and more complex, and therefore the
homogeneous mixture assumption of intra-city population
no longer holds. Moreover, it is unclear whether a physical
network found can approximate all the infection networks of
different diseases, which further limits the applicative value
of existed methods. As a result, the methods that can achieve
fine-grained intra-city epidemic propagation analysis and do
not require detailed residential mobility empirical data are
still highly desired.

In this paper, we employ a two-step method for metapop-
ulation based epidemic propagation analysis. Step I is to
understand the propagation system by inferring the underly-
ing disease infection network. A novel model called D2PRI
is proposed to reduce individual network inference into sub-
population network inference, and the power-law distribution
prior and data prior are also incorporated for enhancements.
Step II is to predict the infection propagation by using a
metapopulation SIR model that allows visitors transmission
between any two sub-populations. We conduct experiments
on a real-life clinical report data set about the airborne dis-
ease in the the famous Shenzhen city in southern China. The
D2PRI model and the metapopulation SIR model show more
excellent performances than some baseline methods in vari-
ous tasks such as network inference, infection prediction and
outbreaks simulation. We also apply our method in real-world
applications.

2 MODELING INFECTION
PROPAGATION IN
METAPOPULATIONS

In this section, we start from introducing the classic Susceptible-
Infectious-Recovered (SIR) model for single population mod-
eling, and then extend it to describe the propagation of
epidemic in an intra-city metapopulation.

2.1 The Single-Population SIR Model

In this study, we adopt the classical SIR model to describe the
dynamic process of epidemic propagation. Given a population
that contains a group of individuals, the SIR model divides
the individuals as three compartments (states): the 𝑆 states
is for the susceptible individuals, 𝐼 for the infectious, and 𝑅
for the recovered.

The SIR model assumes that all individuals have the same
probability to contact each other. For a population with 𝑃
individuals, we use 𝑠(𝑡), 𝑖(𝑡), 𝑟(𝑡) to denote the numbers of
individuals in the three states at time 𝑡. Therefore, given a
contact probability 𝛼1, there are total 𝛼1 · 𝑠(𝑡)𝑖(𝑡) times of
contacts between the susceptible and infectious in the unit
time 𝑡. Assuming the infection probability of a contact is 𝛼2,
the number of susceptible individuals getting infected and
switching to the 𝐼 state is 𝛼 · 𝑠(𝑡)𝑖(𝑡), where 𝛼 = 𝛼1 · 𝛼2

is named as the Infection Rate. By further assuming a 𝛽
fraction of infectious individuals are cured during an unit
time, the number of individuals switching from 𝐼 state to the
𝑅 state is 𝛽 · 𝑖(𝑡).

Given the above, 𝑠(𝑡), 𝑖(𝑡), 𝑟(𝑡) have the following dynam-
ics [12]:

d𝑠(𝑡)

d𝑡
= −𝛼 · 𝑠(𝑡)𝑖(𝑡),

d𝑖(𝑡)

d𝑡
= 𝛼 · 𝑠(𝑡)𝑖(𝑡)− 𝛽 · 𝑖(𝑡),

d𝑟(𝑡)

d𝑡
= 𝛽 · 𝑖(𝑡),

(1)

which implies that 𝑠(𝑡) + 𝑖(𝑡) + 𝑟(𝑡) = 𝑃, ∀ 𝑡.

2.2 The Metapopulation SIR Model

The basic SIR model implicitly assumes a homogeneous in-
fection network between individuals and thus can only model
epidemic propagation in a single population. Here, we extend
the SIR model to the metapopulation scenario.

Ametapopulation refers a group of separated sub-populations
of the same species which interact at some level. Given a
metapopulation with 𝑁 sub-populations, we denote the total
number of individuals in sub-population 𝑛 as 𝑃𝑛, and the
numbers of individuals in the 𝑆, 𝐼,𝑅 states at time 𝑡 as 𝑠𝑛(𝑡),
𝑖𝑛(𝑡), 𝑟𝑛(𝑡), respectively. Between two sub-populations 𝑛 and
𝑚, the interaction strength is defined as ℎ𝑛𝑚, which is the
average volume of visitors from 𝑛 to 𝑚 in a unit time. Given
the above, the dynamic relationship of 𝑠𝑛(𝑡), 𝑖𝑛(𝑡), 𝑟𝑛(𝑡) is



expressed as

d𝑠𝑛(𝑡)

d𝑡
= −𝛼 · 𝑠𝑛(𝑡)

𝑁∑︁
𝑚=1

(︂
ℎ𝑚𝑛

𝑃𝑚
+

ℎ𝑛𝑚

𝑃𝑛

)︂
𝑖𝑚(𝑡),

d𝑖𝑛(𝑡)

d𝑡
= 𝛼 · 𝑠𝑛(𝑡)

𝑁∑︁
𝑚=1

(︂
ℎ𝑚𝑛

𝑃𝑚
+

ℎ𝑛𝑚

𝑃𝑛

)︂
𝑖𝑚(𝑡)− 𝛽 · 𝑖𝑛(𝑡),

d𝑟𝑛(𝑡)

d𝑡
= 𝛽 · 𝑖𝑛(𝑡).

(2)

We here give detailed explanations to the first two equa-
tions in Eq. (2). In a metapopulation, a susceptible individ-
ual of sub-population 𝑛 may contact with infectious indi-
viduals from three sources: 𝑖) The infectious in the same
sub-population with a total number of 𝑖𝑛(𝑡), which will re-
sult in 𝛼 · 𝑠𝑛(𝑡)𝑖𝑛(𝑡) new infectious in 𝑛, where 𝛼 is the
infection rate; 𝑖𝑖) The infectious visitors from other sub-
populations. The probability for an individual in 𝑚 visiting
𝑛 can be estimated by ℎ𝑚𝑛/𝑃𝑚, so the new infectious in
𝑛 totals 𝛼 · 𝑠𝑛(𝑡)

∑︀
𝑚 ̸=𝑛(ℎ𝑚𝑛/𝑃𝑚)𝑖𝑚(𝑡); 𝑖𝑖𝑖) The infectious

of other sub-populations who are contacted by the suscep-
tible visitors from 𝑛. The probability of an individual in
𝑛 visiting 𝑚 can be estimated by ℎ𝑛𝑚/𝑃𝑛, so the resulted
new infectious in 𝑛 is

∑︀
𝑚 ̸=𝑛 𝛼 · 𝑠𝑛(𝑡)(ℎ𝑛𝑚/𝑃𝑛)𝑖𝑚(𝑡). For

convenience, we define ℎ𝑛𝑛 = 𝑃𝑛/2, so the total number
of new infections caused by the three types of contacts is:
𝛼 · 𝑠𝑛(𝑡)

∑︀𝑁
𝑚=1 (ℎ𝑚𝑛/𝑃𝑚 + ℎ𝑛𝑚/𝑃𝑛) 𝑖𝑚(𝑡).

Eq. (2) models epidemic propagation in a metapopulation
as a dynamic change of individual numbers in different states.
Given the initial states 𝑠𝑛(0), 𝑖𝑛(0), 𝑟𝑛(0) and the infection
and recovery rates 𝛼 and 𝛽 empirically, we can use Eq. (2)
to recursively predict the epidemic propagation process in a
metapopulation.

2.3 Problem Formulation

When applying Eq. (2) for real-life epidemic propagation
prediction in a metapopuation, we still face a serious problem:
How to set the individual mobility volumes ℎ𝑛𝑚, ∀ 𝑛,𝑚? This
is not a trivial issue, since ℎ𝑛𝑚’s are often unobservable and
are different from city to city. Although there exist some
studies in the literature that claimed to find some physical
networks like cell-phone user mobility network [28] that can
explain the propagation of some disease, the generality and
availability of these physical networks are very limited for
different types of infectious diseases and different application
scenarios.

In this study, we attempt to solve the above problem from
a very different perspective. That is, if we can collect the time
series data about the number of infected people in a metapop-
ulation, we can infer the dynamics of the propagation system
behind the infection data, and ℎ𝑛𝑚’s can be regarded as the
key parameters of the system and can be inferred accordingly.
Following this idea, the problem of modeling epidemic prop-
agation in a metapopulation can be decomposed into two
steps. Step I is to understand the propagation system for
a specific infectious disease by inferring its parameters, and
Step II is to use the system (Eq. (2)) to predict the future
propagation for epidemic control and prevention.

It is obvious that Step I is the key for solving the whole
problem, so we focus on understanding the propagation sys-
tem in the following Sect. 3 and Sect. 4. Specifically, we view
a sub-population of a metapopulation as a node, and the
individuals’ visits between two sub-populations as directed
edges. So the epidemic propagation system can be viewed as
a directed network, with ℎ𝑚𝑛’s being the network parameters
to be inferred.

Remark. Transforming Step I into a network inference
problem has three obvious advantages. The first is to set the
parameters in Eq. (2) more accurately in an objective way.
The second is to enhance the generality of the whole solution
to fit different infectious diseases — we can learn different
parameters for distinct diseases. The third is to help us to gain
deep insight into the epidemic propagation system, which is
crucial for making proper decisions for disease control and
prevention. We will revisit the last point in the real-world
application section below.

3 NETWORK INFERENCE MODEL

In this section, we formalize the dynamic relationship defined
in Eq. (2) as a network interaction model, and propose a
network inference framework to implicitly infer the individual
mobility volume ℎ𝑛𝑚.

3.1 Network Interaction Model

We discretize the time line as a sequence of time slices, i.e.,
𝑡 = {1, 2, · · · , 𝑇}, and assume 𝑠𝑛(𝑡), 𝑖𝑛(𝑡), 𝑟𝑛(𝑡) of a sub-
population are invariable in a time slice. We define 𝛿𝑛(𝑡) as
the number of individuals newly infected in the time slice 𝑡,
i.e., the number of individuals switching from 𝑆 to 𝐼 during
𝑡 to 𝑡 + 1. According to the dynamic relations defined in
Eq. (2), 𝛿𝑛(𝑡) is calculated as

𝛿𝑛(𝑡) = −
∫︁ 𝑡+1

𝑡

d𝑠𝑛(𝑥)

d𝑥
d𝑥 = 𝛼𝑠𝑛(𝑡)

𝑁∑︁
𝑚=1

(︂
ℎ𝑚𝑛

𝑃𝑚
+

ℎ𝑛𝑚

𝑃𝑛

)︂
𝑖𝑚(𝑡).

(3)

We model the metapopulation as a network with 𝑁 nodes
and 𝑁 ×𝑁 edges connecting the nodes. The nodes indicate
sub-populations and the edges indicate interactions between
sub-populations. For the node 𝑛, we define a state variable

𝑢
(𝑡)
𝑛 to describe the current condition of the node 𝑛 at time 𝑡

as follows:

𝑢(𝑡)
𝑛 =

𝛿𝑛(𝑡)

𝑠𝑛(𝑡)
. (4)

In the epidemiology, 𝑢
(𝑡)
𝑛 is called the Incidence Rate of

a sub-population, which refers the number of new cases
per population at risk (susceptible) in a given time peri-

od 1. 𝑢
(𝑡)
𝑛 is an important variable in the epidemic propa-

gation. 𝑠𝑛(𝑡), 𝑖𝑛(𝑡), 𝑟𝑛(𝑡) of a sub-population for any given

time 𝑇 can all use the historical incidence rates u
(<𝑇 )
𝑛 =

1https://en.wikipedia.org/wiki/Incidence (epidemiology)

https://en.wikipedia.org/wiki/Incidence_(epidemiology)


{𝑢(1)
𝑛 , 𝑢

(2)
𝑛 , . . . , 𝑢

(𝑇−1)
𝑛 } to calculate:

𝑠𝑛(𝑇 ) =𝑓𝑠
(︁
u(<𝑇 )
𝑛

)︁
= 𝑃𝑛

𝑇−1∏︁
𝑡=1

(︁
1− 𝑢(𝑡)

𝑛

)︁
,

𝑖𝑛(𝑇 ) =𝑓𝑖
(︁
u(<𝑇 )
𝑛

)︁
=

𝑇−1∑︁
𝑡=1

(1− 𝛽)𝑡−𝑇 𝛿𝑛(𝑇 ),

=

𝑇−1∑︁
𝑡=1

(1− 𝛽)𝑡−𝑇𝑢(𝑇 )
𝑛 𝑃𝑛

𝑇−1∏︁
𝑡=1

(︁
1− 𝑢(𝑡)

𝑛

)︁
,

𝑟𝑛(𝑇 ) =𝑃 − 𝑠𝑛(𝑇 )− 𝑖𝑛(𝑇 ).

(5)

For the edge from the node 𝑛 to 𝑚, we define its weight
𝑔𝑛𝑚 as

𝑔𝑛𝑚 := 𝛼

(︂
ℎ𝑚𝑛

𝑃𝑚
+

ℎ𝑛𝑚

𝑃𝑛

)︂
, ∀ 𝑛,𝑚. (6)

It is easy to see that the physical meaning of 𝑔𝑛𝑚 is the
two-way mobility intensity between two sub-populations mul-
tiplied by the infection rate 𝛼. Denote the matrix G ∈ R𝑁×𝑁

with the elements 𝑔𝑛𝑚 as the network adjacent matrix. We
call the network G as the Infection Network. It is obvious
that G is a symmetric matrix, although the whole network

is directed. Further let 𝑣
(𝑡)
𝑛 = 𝑖𝑛(𝑡). By inserting Eq. (4) and

Eq. (6) into the Eq. (3), we have

𝑢(𝑡)
𝑛 =

𝑁∑︁
𝑖=1

𝑣(𝑡)𝑚 𝑔𝑚𝑛, ∀ 𝑛. (7)

Remark. Note that from Eq. (5), 𝑣
(𝑡)
𝑛 = 𝑖𝑛(𝑡) and 𝑠𝑛(𝑡), 𝑟𝑛(𝑡)

can all be calculated using u
(<𝑇 )
𝑛 . Therefore, if the matrix G

is available, we can use Eq. (7) as a “condensed” yet equiv-
alent system for epidemic propagation prediction. In other
words, by taking a network perspective to a metapopulation
and introducing new states 𝑢 and 𝑣, our problem reduces
to the inference of G (rather than more detailed ℎ𝑚𝑛’s in
Eq. (2)). We describe it formally below.

3.2 Network Inference Problem

We denote the states 𝑢, 𝑣 of all sub-populations at time 𝑡

as u(𝑡) = (𝑢
(𝑡)
1 , . . . , 𝑢

(𝑡)
𝑛 , . . . , 𝑢

(𝑡)
𝑁 )⊤ and v(𝑡) = (𝑣

(𝑡)
1 , . . . ,

𝑣
(𝑡)
𝑛 , . . . , 𝑣

(𝑡)
𝑁 )⊤. The interactions of sub-populations over the

infection network are expressed as

u(𝑡) = Gv(𝑡) + e(𝑡), (8)

where e(𝑡) = (𝑒
(𝑡)
1 , 𝑒

(𝑡)
2 , . . . , 𝑒

(𝑡)
𝑁 )⊤ is introduced to model ran-

dom noises in empirical data. Then, the Network Inference
problem of the network interaction model in Eqs. (4) - (7) is
defined as:

Definition 1: Network Inference Problem. Given observable
states series U = {u(1), u(2), . . . , u(𝑇 )} and V = {v(1), v(2),

. . . , v(𝑇 )} of a metapopulation propagation network, inferring
the adjacent matrix G according to Eq. (8). �

In practical, due to the data availability issue, we use the

number of newly infected individuals in a unit time, i.e., 𝛿
(𝑡)
𝑛 ,

to calculate 𝑢
(𝑡)
𝑛 and 𝑣

(𝑡)
𝑛 as follows:

𝑢
(𝑇 )
𝑛 =

𝛿
(𝑇 )
𝑛

𝑃𝑛 −
∑︀𝑇−1

𝑡=1 𝛿
(𝑡)
𝑛

, 𝑣
(𝑇 )
𝑛 =

𝑇−1∑︁
𝑡=1

(1− 𝛽)𝑇−𝑡−1𝛿
(𝑡)
𝑛 . (9)

Compared with other variables, 𝛿
(𝑡)
𝑛 is easier to obtain, for

example, from daily clinic reports of CDC. The recovery
rate 𝛽 can be set as follows. For diseases that require hospi-
talization, 𝛽 can be calculated according to the number of
hospitalizations; otherwise, we assume an infectious individu-
al will recover after a given time period based on the actual
situation.

3.3 The Basic Network Inference Model

We assume the noise 𝑒
(𝑡)
𝑛 in Eq. (8) is an i.i.d. random vari-

able that follows a zero-mean Gaussian distribution, i.e.,

𝑒
(𝑡)
𝑛 ∼ 𝒩 (0, 𝜎2

𝑒), ∀ 𝑛, 𝑡. Given the network state v(𝑡) and the
interaction network G, the conditional probability distribu-
tion of u(𝑡) is calculated as

𝑃
(︁
u(𝑡)

⃒⃒⃒
G,v(𝑡)

)︁
=

𝑁∏︁
𝑛=1

𝒩
(︁
𝑢(𝑡)
𝑛

⃒⃒⃒
g𝑛: · v(𝑡)

)︁
, (10)

where g𝑛: is the 𝑛-th row vector of G. Then the log Likelihood
probability of u(𝑡) is formulated as

log𝑃
(︁
u(𝑡)

⃒⃒⃒
G,v(𝑡)

)︁
∝ − 1

𝜎2
𝑒

𝑁∑︁
𝑛=1

(︁
𝑢(𝑡)
𝑛 − g𝑛: · v(𝑡)

)︁2
. (11)

Therefore, the Maximum Likelihood Estimation (MLE) of G
for 𝑇 interaction rounds is to minimize the objective function

𝒥1 =
1

𝜎2
𝑒

𝑇∑︁
𝑡=1

⃦⃦⃦
u(𝑡) −G · v(𝑡)

⃦⃦⃦2
2
. (12)

4 INCORPORATING PRIORI
KNOWLEDGE

In this section, we propose an improved network inference
model by incorporating two types of priors: the power-law
distribution prior and the data prior.

4.1 Power-Law Distribution Priori

The first type of priori is the priori distribution of network
edge weights inG. Traditional methods usually use the Gauss-
ian (L2 regularization) or Laplace (L1 regularization) distri-
butions as priori distributions of variables to be inferred [4].
However, the Gaussian and Laplace distributions are not
suitable for our model. As reported in many empirical stud-
ies [3], spatial individual mobility networks usually behave
as scale-free networks — the degree of network nodes follows
a power-law distribution rather than Gaussian or Laplace
distribution. Therefore, we need to incorporate the power-law
prior to regularize the node degrees in G.

We assume the out-degree of node 𝑛 in G follows a power-
law distribution, which means

𝑃

(︃
𝑁∑︁

𝑚=1

𝑔𝑛𝑚 = 𝑥

)︃
= 𝑎 · 𝑥−𝑘, (13)

where 𝑘 is usually set as 2 < 𝑘 < 3. For the interaction
network, the priori probability of G is

𝑃 (G) =

𝑁∏︁
𝑛=1

𝑎 ·

(︃
𝑁∑︁

𝑚=1

𝑔𝑛𝑚

)︃−𝑘

. (14)



Because the G is a symmetrical matrix, our model only
considers the out-degree.

Inserting the priori probability into the likelihood proba-
bility in Eq (10), we obtain the posterior distribution of G

for given v(𝑡) and u(𝑡) as follows:

𝑃
(︁
G
⃒⃒⃒
u(𝑡),v(𝑡)

)︁
=

𝑃
(︁
u(𝑡)

⃒⃒⃒
G,v(𝑡)

)︁
𝑃 (G)

𝑃 (u(𝑡))
. (15)

Then the log posterior distribution of G is

ln𝑃
(︁
G|u(𝑡),v(𝑡)

)︁
∝−

1

𝜎2
𝑒

𝑁∑︁
𝑛=1

(︁
𝑢
(𝑡)
𝑛 − g𝑛: · v(𝑡)

)︁2
− 𝑘

𝑁∑︁
𝑛=1

ln

(︃
𝑁∑︁

𝑚=1

𝑔𝑛𝑚

)︃
.
(16)

Therefore, the Maximum A Posteriori (MAP) estimation of
G is to minimize the objective function 𝒥2 as follows:

𝒥2 =

𝑇∑︁
𝑡=1

⃦⃦⃦
u(𝑡) −G · v(𝑡)

⃦⃦⃦2
2
+ 𝜆

𝑁∑︁
𝑛=1

ln

(︃
𝑁∑︁

𝑚=1

𝑔𝑛𝑚

)︃
. (17)

where 𝜆 = 𝑘𝜎2
𝑒 is a preset parameter.

4.2 Data Priori

The other type of priori to be incorporated is the knowledge
extracted from related data. In our model, the network edge
weight 𝑔𝑛𝑚 is proportional to the individual mobility intensity
between the sub-population 𝑛 and 𝑚. Therefore, we could
use some mobility related data to estimate 𝑔𝑛𝑚. For example,
if 𝑔𝑛𝑚 denotes resident visiting between two urban zones,
taxi GPS trajectory, bus/metro smart card records, or LBS
check-in data could be considered as priori knowledge. In
our model, we adopt a linear regression-based regularization
method to incorporate the date priori.

Suppose altogether we have 𝐾 features extracted from
related data sets. Then for any 𝑔𝑛𝑚 ∈ G, we have a feature
vector x𝑛𝑚 = (𝑥𝑛𝑚,1, . . . , 𝑥𝑛𝑚,𝑘, . . . , 𝑥𝑛𝑚,𝐾)⊤, where 𝑥𝑛𝑚,𝑘

is the 𝑘-th feature. Then, a linear regression is used to model
the relations between 𝑔𝑛𝑚 and x𝑛𝑚 as

𝑔𝑛𝑚 = w⊤x𝑛𝑚 + 𝑒𝑛𝑚, (18)

where w = (𝑤1, . . . , 𝑤𝑘, . . . , 𝑤𝐾−1)
⊤ is a trainable weight

vector, and 𝑒𝑛𝑚 is an i.i.d. random regression error.
We define a tensor 𝒳 ∈ R𝑁×𝑁×𝐾 composed by x𝑛𝑚 as the

(𝑛,𝑚) fiber. The linear regression in Eq. (18) can be written
in a matrix form as

G = 𝒳 ×𝑘 w +E, (19)

where ×𝑘 is the 𝑘-mode product [15] between tensor 𝒳 and
vector w, and E is a matrix composed by 𝑒𝑛𝑚.

We adopt a zero-mean Gaussian noise with variance 𝜎2
𝑥 to

model the regression error as 𝑒𝑛𝑚 ∼ 𝒩 (0, 𝜎2
𝑥). Then the con-

ditional distribution of G with a regression model determined
by w is given by

𝑃 (G|w,x) =

𝑁∏︁
𝑚=1

𝑁∏︁
𝑛=1

𝒩
(︁
𝑔𝑛𝑚

⃒⃒⃒
w⊤x𝑛𝑚, 𝜎2

𝑥

)︁
. (20)

We then introduce a zero-mean Gaussian prior on the regres-
sion weight vector w, which gives

𝑃 (w) =

𝐾∏︁
𝑘=1

𝒩
(︀
𝑤𝑘|0, 𝜎2

𝑤

)︀
. (21)

The log posterior probability distribution of the regression
weight vector w and network adjacent matrix G is

ln𝑃 (G,w|x) = ln𝑃 (G|w,x)𝑃 (w)

∝− 1

𝜎2
𝑥

𝑁∑︁
𝑛=1

𝑁∑︁
𝑚=1

(︁
𝑔𝑛𝑚 −w⊤x𝑛𝑚

)︁2
− 1

𝜎2
𝑤

𝐾∑︁
𝑘=1

𝑤2
𝑘.

(22)

Therefore, maximizing posterior probability of w and G for
given data priori 𝑥 is equivalent to minimizing the objective
function 𝒥3 as

𝒥3 =
1

𝜎2
𝑥

‖G−𝒳 ×𝑘 w‖2𝐹 +
1

𝜎2
𝑤

‖w‖22 , (23)

where ‖ · ‖𝐹 is the Frobenius Norm.

4.3 The D2PRI Model

We here integrate the objective functions 𝒥2 and 𝒥3 to get
a joint model, which is named as D2PRI (power-law Degree
and Data Priori jointly Regularized non-negative network
Inference). The objective function of D2PRI is

argmin
G,w

𝒥 =

𝑇∑︁
𝑡=1

⃦⃦⃦
u(𝑡) −G · v(𝑡)

⃦⃦⃦2
2
+ 𝜆

𝑁∑︁
𝑛=1

ln

⎛⎝∑︁
𝑚 ̸=𝑛

𝑔𝑛𝑚

⎞⎠
+ 𝜂 ‖G−𝒳 ×𝑘 w‖2𝐹 + 𝜇 ‖w‖22

𝑠.𝑡. G ≥ 0,w ≥ 0,

(24)
where 𝜂 = 𝜎2

𝑒/𝜎
2
𝑥, 𝜇 = 𝜎2

𝑒/𝜎
2
𝑤 and 𝜆 = 𝑘𝜎2

𝑒 are preset param-
eters. Note that since the individual mobility intensity cannot
be negative we introduce a non-negativity constraint to G.
Moreover, we also introduce a non-negativity constraint of w
to reduce solution space. It requires the features x𝑛𝑚 to have
positive correlations with the individual mobility intensity,
which is easy to be satisfied in data preprocessing.

5 OPTIMIZATION

In this section, we propose a Semi-supervised Proximal Gra-
dient Descent (SPGD) algorithm to solve the D2PRI model.

As shown in Algorithm 1, SPGD iteratively optimizes 𝒥
defined in Eq. (24). In each iteration, the algorithm alter-
nately uses G to train w and uses w to predict G, which
could be considered as a semi-supervised training process for
a model to predict G. Specifically, in the 𝑙-th iteration, we
use the Proximal Gradient Descent to update G𝑙 from G𝑙−1

with w𝑙−1 as

G(𝑙) = max

(︃
0,G(𝑙−1) −

1

𝐿

𝜕𝒥
(︀
G(𝑙−1)|w(𝑙−1)

)︀
𝜕G(𝑙−1)

)︃
, (25)

and train w(𝑙) using G𝑙 as

w(𝑙) = max

(︃
0,w(𝑙−1) −

1

𝐿

𝜕𝒥
(︀
w(𝑙−1)|G(𝑙)

)︀
𝜕w(𝑙−1)

)︃
. (26)



Algorithm 1 Semi-supervised Proximal Gradient Descent
(SPGD)

Require:
{︁
u(𝑡),v(𝑡), 𝑡 ∈ {1, 2, . . . , 𝑇}

}︁
, 𝜆, 𝜂, 𝜇

1: Initialization: Randomize G(0) and w(0)

2: for 𝑙 = 1, 2, . . . do
3: Update G(𝑙) by Eq. (25).
4: Update w(𝑙) by Eq. (26).
5: if converged then
6: Return

(︀
G(𝑙),w(𝑙)

)︀
.

7: end if
8: end for

Here, 𝐿 is a Lipschitz constant that satisfies
⃦⃦⃦

𝜕𝒥
𝜕Z1

− 𝜕𝒥
𝜕Z2

⃦⃦⃦
𝐹
≤

𝐿 ‖Z1 − Z2‖𝐹 , ∀ Z1,Z2, where Z respectively represents G
and w in (25) and (26).

According to Eq. (24), the partial derivative of 𝒥 to 𝑔𝑛𝑚

and 𝑤𝑘 are calculated as

𝜕𝒥
𝜕𝑔𝑛𝑚

=2

𝑇∑︁
𝑡=1

(︁
g𝑛: · v(𝑡) − 𝑢(𝑡)

𝑛

)︁
𝑣(𝑡)𝑚 +

𝜆∑︀𝑁
𝑘=1 𝑔𝑛𝑘⏟  ⏞  

Penalty Term

+ 2𝜂
(︁
𝑔𝑛𝑚 −w⊤x𝑛𝑚

)︁
𝜕𝒥
𝜕𝑤𝑘

=2𝜂

𝑁∑︁
𝑛=1

𝑁∑︁
𝑚=1

(︁
𝑔𝑛𝑚 −w⊤x𝑛𝑚

)︁
𝑥𝑛𝑚,𝑘 + 2𝜇𝑤𝑘,

(27)
Remark. As shown in Eq. (27), the power-law degree reg-

ularization introduces a penalty term to the partial derivative
of 𝒥 w.r.t. 𝑔𝑛𝑚. The penalty term is inversely proportional
to the out-degree of node 𝑛, i.e.

∑︀𝑁
𝑘=1 𝑔𝑛𝑘. Therefore, if node

𝑛 has a large degree, the algorithm gives small penalty to
𝑔𝑛𝑚, and 𝑔𝑛𝑚 thus tends to converge to a large value, and
vice versa. This is consistent with the “Matthew Effect” in
scale-free networks [2] — a node with large degree has higher
possibility to connect other nodes.

6 EXPERIMENTS

6.1 Data Description

We use a real-life data set collected from Shenzhen 2, a major
city in southern China with a population over 11 million, to
verify the proposed model D2PRI. The variables used in our
model include the sub-population size 𝑃𝑛, the sub-population

states 𝑢
(𝑡)
𝑛 and 𝑣

(𝑡)
𝑛 , the data prior features x𝑛𝑚, and the

human mobility intensity network G̃. All these variables are
set using real world data as follows.

We use the administrative boundaries to segment Shenzhen
into 127 urban zones. The residents in the same zone are
considered as a sub-population. The sub-population size 𝑃𝑛

is obtained from the population census data of Shenzhen.
The map of these zones are plotted in Fig. 2, where the color
denotes the population size of each zone, and the deeper the
more.

2https://en.wikipedia.org/wiki/Shenzhen

Figure 2: Zone segmentation of Shenzhen with hu-
man mobility intensity network.

The sub-population states 𝑢
(𝑡)
𝑛 , 𝑣

(𝑡)
𝑛 are calculated from

the clinical report data set offered by the Center for Disease
Control and Prevention (CDC) of Shenzhen. The data set
contains all airborne disease cases of Shenzhen from February
to September in 2014. The fluctuation of daily new infection
numbers in Shenzhen is plotted in Fig. 3. As can be seen, there
are two outbreaks in the data, which happened in two periods,
i.e., March - May and May - August. In what follows, we
call the two outbreaks as FirstOutbreak and SecondOutbreak,
respectively, for convenience. The total infected persons in the
two outbreaks respectively reached to 479 and 567 thousands.

In the experiments, we adopt two-feature x𝑛𝑚 as data
priori. The first feature is extracted from a taxi trajectory
data set, which contains the GPS trajectories of all taxies
in Shenzhen during one week in April, 2014. We take the
traffic volumes of taxies that carried passengers between
two urban zones as a feature. The second feature is the
visitor volumes estimated by the Gravity model [1]. The
visitor volume between two zones 𝑛,𝑚 is given by 𝑥𝑔

𝑛𝑚 =
𝑃𝑛×𝑃𝑚/𝐷2

𝑛𝑚, where 𝐷𝑚𝑛 is the distance between two zones.

G̃ serves as a reference for the infection network G, which
is built using a mobile phone location data set containing
the location (approximated by base station location) records
for 11 million mobile phone users in Shenzhen during one
week in April, 2013. The location of a user is updated in
every half an hour. We count the number of visitors between
urban zones as ℎ𝑚𝑛, and build a network with edge weights

𝑔𝑛𝑚 =
(︁

ℎ𝑚𝑛
𝑃𝑚

+ ℎ𝑛𝑚
𝑃𝑛

)︁
. Compared with the infection network

𝑔𝑛𝑚 defined in Eq. (6), 𝑔𝑛𝑚 does not contain the infection
rate 𝛼. Therefore, in our experiments, we use the similarity
between 𝑔𝑛𝑚 and 𝑔𝑛𝑚 to measure model performance. Fig. 2
plots the edges of G̃ with top 10% weights.

6.2 Results of Network Inference

The first experiment is network inference. In the experiment,
we use the proposed model to infer the infection network

form the state series 𝑢
(𝑡)
𝑛 , 𝑣

(𝑡)
𝑛 of the FirstOutbreak. The

propagation of airborne diseases has close relations with
resident mobilities. If the real propagation process of the
airborne disease coincides with our model, the network in-
ferred by our model (G) should be very similar to the hu-
man mobility network extracted from the mobile phone data

https://en.wikipedia.org/wiki/Shenzhen
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Figure 3: Daily new infections of airborne diseases
in SZ.

(G̃). In the experiments, we use the cosine similarity be-

tween G and G̃ as the measure of model performance. Our
D2PRI model is compared with the following baselines: Ba-
sic, which uses the objective function 𝒥1 in Eq. (12) with
the non-negativity constraint of G to infer the network. PL-
PRI, which uses the Basic model with power-law prior to
infer the network. The objective function is 𝒥2 in Eq. (17)
with the non-negativity constraint of G. DatPRI, which
uses the Basic model with data priori to infer the network.
The objective function is defined as 𝒥1 + 𝒥3 with the non-
negativity constraints of G and w. L1PRI, which uses the
L1 term to regularize the Basic model. Its objective function

is 𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝐽4 =
∑︀𝑇

𝑡=1

⃦⃦⃦
u(𝑡) −G · v(𝑡)

⃦⃦⃦2
2
+ 𝜁1 ‖G‖1. L2PRI,

which uses the L2 term to regularize the Basic model. Its

objective function is 𝒥5 =
∑︀𝑇

𝑡=1

⃦⃦⃦
u(𝑡) −G · v(𝑡)

⃦⃦⃦2
2
+𝜁2 ‖G‖2𝐹 .

The regularization parameters were set with trial and error.
Fig. 4 gives a comparison of the network inference per-

formance between D2PRI and the baselines. As shown in
the figure, even the network inferred by the Basic model
could achieve more than 0.5 similarity with the real mobility
network. This implies that the proposed model framework
can effectively describe the real-world disease propagation
process. The performance of PLPRI is much better than
L1PRI and L2PRI. The L1 and L2 regularizations actually
did not achieve any significant performance improvement.
This result demonstrates the merit of the power-law distribu-
tion prior in describing real-world human mobility patterns.
The performance of DatPRI is better than PLPRI, which
indicates the data prior can offer more accurate information
than the distribution prior. Combining both data and power-
law distribution priors, the proposed D2PRI model achieved
the best performance, which implies that D2PRI coincides
with the real-life airborne disease propagation process.

6.3 Results of Infection Prediction

The second experiment is infection prediction, in which we
apply the network inferred in FirstOutbreak to predict the
infections in SecondOutbreak.

As shown in Fig. 3, the two outbreaks appeared in suc-
cession, so the human mobility network should not have
any dramatic change. Therefore, the experiment of applying
the network of one outbreak for the prediction of the other
outbreak can verify the robustness of the network inference
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Figure 4: Comparison of network inference perfor-
mances.

Table 1: Comparison of prediction performances.

Models 1-Day 3-Days 5-Days 7-Days

MAPE

D2PRI 0.070 0.190 0.300 0.409
DatPRI 0.072 0.194 0.306 0.418
PLPRI 0.074 0.201 0.319 0.436
L1PRI 0.076 0.207 0.328 0.450
L2PRI 0.076 0.206 0.327 0.449
BASIC 0.076 0.206 0.327 0.449
ARIMA 0.083 0.247 0.396 0.510
LSTM 0.073 0.200 0.310 0.422

model. Because the infection rate 𝛼 in different outbreaks
may change, we use the data in the first 1/3 days of Sec-
ondOutbreak to train an infection rate adjustment factor as

�̃� = argmin�̃�

∑︀𝑇
𝑡=1

⃦⃦⃦
u(𝑡) − �̃� · G̃v(𝑡)

⃦⃦⃦2
2
.

In the experiment, given any time point 𝑇 of SecondOut-
break, we use the G inferred in FirstOutbreak to iteratively

predict 𝛿
(𝑇+Δ)
𝑛 , where ∆ varies from one to seven days. The

prediction performance is evaluated using the Mean Absolute
Percentage Error (MAPE).

In addition to the baselines for the network inference exper-
iment, we adopt two more time series models, i.e., ARIMA [5]
and LSTM [13], as the baselines. ARIMA is a benchmark
of the classical time series prediction models, and LSTM
represents deep learning methods. The ARIMA model treats
the states of urban zones as time series to predict. The LSTM

model uses v(𝑡) as features to predict 𝑢
(𝑡)
𝑛 , and calculates 𝛿

(𝑡)
𝑛

using the method described in Sect. 3.
Table 1 lists the prediction performances of all models. As

shown in the results, the D2PRI model achieved the best
performance than all baselines. The performance of PLPRI is
better than L1PRI and L2PRI, and DatPRI is again better
than PLPRI. These are consistent with the results of the
network inference experiment. Even the Basic model has a
better performance than ARIMA, which indicates that the
infection network information is very important for epidemic
prediction. The neural network based LSTM could model
non-linear relations of daily infections among urban zones, so
it achieved good performance. However, a weakness of neural
network models is lacking of interpretability. In contrast,
all variables in D2PRI have clear physical meanings. We
will show D2PRI’s interpretability advantage again in the
application study below.
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Figure 5: Comparison of epidemic outbreak simula-
tions.

6.4 Results of Outbreak Simulation

The third experiment is epidemic outbreak simulation, in
which we use the infection network inferred in FirstOutbreak
to predict (simulate) all process of SecondOutbreak. In the
experiments, we use the first 10 days states of SecondOutbreak
as an initial value to recursively calculate 𝑆, 𝐼,𝑅 states in
the rest of the outbreak. The infection rate 𝛼 is also adjusted
using the first 10 day’s data. Compared with the short-time
predictions, the long-term simulation is more valuable for
epidemic control and prevention. The accurate long term
disease propagation simulation can help the epidemic preven-
tion personnel to prepare enough medical resources at the
beginning stage of a outbreak. But meanwhile, the long-term
simulation is also very challenging, because the simulation
errors of each step can accumulate. If the infection network
cannot model real condition very accurately, a minimal error
or deviation may result in wide simulation divergence.

Fig. 5 gives the simulation results, where the black line
is the daily changes of real infectious individual numbers.
The Basic and D2PRI lines are simulated results using the
network inferred by corresponding models. The SIR line is
simulated by a non-networked SIR model, which considers
all residents of Shenzhen as a single population.

As shown in Fig. 5, the non-networked SIR model obviously
overestimated the outbreak speed and underestimated the
duration. In the non-networked SIR model, all residents of the
city have the same probability to contact others. A disease
can rapidly propagate all over the population, which causes
the outbreak to burst very quickly and soon disappear (most
of individuals rapidly switch to the Recovered state). This
implies that it is improper to assume all residents in the
same city as a single population, although the assumption
was adopted by many inter-city epidemic analysis works.

The curve simulated by the Basic model has better per-
formance than the non-networked SIR model. In the Basic
model, except for the visitors, individuals can only contact
with others within the same sub-population, which limits
the outbreak speed of epidemics and increases the duration.
Nevertheless, from the figure we can see the problem of
overestimating breaking speed and intensity has not been
fully eliminated in the Basic’s curve. We seek the reason
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Figure 6: Degree distributions of inferred networks.

through analyzing the degree distribution of the Basic’s net-
work. The normalized degree distribution of the network is
plotted in Fig. 6(a), which tends to be a Poisson distribution
and therefore the network is a Random Graph [18]. Nodes in
a Random Graph have homogeneous probability to connect
with other nodes, which means that the residents in different
sub-populations have the same cross-population contact prob-
ability. It does not coincide with the real world, where the
cross-population contact probabilities for two neighboring
zones and two remote zones are obviously different.

We also plot the degree distribution of the network inferred
by D2PRI in Fig. 6(b). As shown in the figure, regularized
by both the power-law distribution prior and data prior, the
network degree distribution is much closer to a power-law
distribution, which implies that the infection network is a
scale-free network. A disease cannot propagate very quickly
in a scale-free network due to the limitation of low degree
nodes, but can continue for very long time because hub nodes
with large degrees continually transmit disease from one sub-
population to another. As shown in Fig. 5, by leveraging the
power-law distribution and data priors, the proposed D2PRI
model simulates the outbreak process very accurately.

Remark. In the prediction and simulation experiments,
the network inferred in one outbreak is used in the application
of the other outbreak, which implies that the proposed model
is very robust in different epidemic propagation conditions,
and the inferred infection network is stable and universal for
the Shenzhen city.

7 REAL-WORLD APPLICATION

The infection network inferred by our D2PRI model has been
applied by Shenzhen to detect important urban zones in
epidemic propagation.

The traditional method directly uses the total infection

number, i.e.,
∑︀𝑇

𝑡=1 𝛿
(𝑡)
𝑛 , as the importance measurement of

urban zones. The implicit assumption behind it is: urban
zones with more total infections are more important to the
epidemic control work of CDC.

However, this straightforward method does not consider
the impact of human mobility to disease transmission. Usually,
urban zones with large population sizes have more infection
numbers. Fig. 7(a) gives the map of importance for the urban
zones in Shenzhen using the infectious number based method.



(a) Importance by Infection Numbers

(b) Importance by Pagerank Scores from the D2PRI Network

Figure 7: Comparison of importance evaluation
methods.

The points on the map are geographic centers of urban zones,
and the sizes of points denote importance level of each zone.
As shown in the figure, the two most “important” zones locate
at the downtown areas of Shenzhen, where the population
densities are relatively higher. After excluding the two zones,
however, the importance of the remaining zones seem are very
similar to each other. This type of zone importance cannot
give adequate help to epidemic control and prevention.

In our method, we applied a PageRank algorithm on the in-
fection network inferred by the D2PRI model in FirstOutbreak.
The ranking scores were used as the importance measure-
ment. Fig. 7(b) gives a map of the pagerank importance. As
shown in the figure, the high score zones are geographically
clustered on four areas: The first is in the northwest area of
Shenzhen, which is a gathering place of industrial parks. The
second is in the southwest area, which is the university town.
The third is in the central region of Shenzhen, which is the
headquarter of the Huawei company, the biggest high-tech
enterprise in Shenzhen with more than 0.1 million employ-
ees working in the headquarter. The fourth is the Shenzhen
Railway Station, which is very close to the port between
Shenzhen and Hong Kong. We can see these areas have a
very similar characteristic: there are many residents, e.g.,
workers, students, employees, or passengers, visiting to these
areas every day.

Compared with the infection number based method, the
D2PRI network based method detected more key areas, and
the importance distinctions between urban zones were more
significant. Based on the knowledge offered by Fig. 7(b), the

Shenzhen government allocated more health resources to the
key areas to prevent and control epidemic outbreaks.

8 RELATED WORKS

Epidemic Propagation: In the literature, epidemic propa-
gation models could be divided as three classes: compartment
models, network epidemiology models, and metapopulation
models [26]. The compartment model [12] is the simplest
epidemic model, which assume all individuals in a single
population and have the same probability to contact each
others. It is suitable for epidemic propagation in “well-mixed”
populations, such as smallpox in a village of a developing
country [16]. The network epidemiology models assume indi-
viduals in a single population are connected by an underlying
network. The disease propagates through network edges. Em-
pirical works of the network epidemiology models such as
transmission of HIV/ADIS over a sexual relationships net-
work [19]. Limited by the issue of network complexity and
availability, very few works use network epidemiology models
to analyze large spatial scale epidemic propagation.

The metapopulation network model adopted by this paper
is designed for analyzing dynamics of spatially separated
populations with interactions. One kind of work in this model
is using empirical network data to analyze disease outbreaks
in real world. For example, using global aviation networks to
study outbreaks of SARS and H1N1 [6, 14], and using mobile
phone data to analyze Malaria propagation in Kenya [28]. The
other kind is to study the dynamic laws of the metapopulation
network, such as the Zipf’s law and the Heaps’ law [27]. To
the best of our knowledge, this paper is the first work that
studying the network inference problem for metapopulation
models. Besides, most of empirical works of metapopulation
focus on inter-city disease propagation. This paper is also the
first empirical intra-city epidemic propagation work using
the metapopulation model.

Network Inference: The Network Inference problem
refers to recovering the edges of an unknown network from
the observations of cascades propagating over the network.
The most widely used network inference framework is first
proposed by [11], in which state propagation is modeled as
generative probabilistic model. Many improved methods are
proposed to extend the framework, such as NETRATE [10],
ConNIe [17] and etc [7]. However, most of the existed network
inference methods are designed for single population scenario,
where network nodes are used to denote individuals, and the
state of network nodes are discrete or binary, e.g. infected or
uninfected. Therefore, we can not use these network inference
methods in the metapopulation network.

Urban Computing: This paper also have relations with
urban computing [29]. In this area, research works related
to our study include: data-driven urban analysis [21, 23],
resident behavior prediction [22, 24, 25], and urban safety [20].
To our best knowledge, our work is the earliest studies in
urban computing area that try to study the urban epidemic
propagation issue.



9 CONCLUSIONS

In this paper, a metapopulation based epidemic propaga-
tion model not requiring detailed resident mobility data was
proposed. The performance of the proposed model has been
verified over an empirical data set collected from a metropolis
with a population of 11 million. The performances showed
that the proposed method can accurately infer the underly-
ing sub-population network and predict a disease outbreak
with 567 thousand infected persons. Our model has also been
adopted by the metropolis for key areas detection.
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