
No Longer Sleeping with a Bomb: A Duet System for Protecting
Urban Safety from Dangerous Goods

Jingyuan Wang†, Chao Chen†, Junjie Wu‡, Zhang Xiong†
† School of Computer Science and Engineering, Beihang University, Beijing China
‡ School of Economics and Management, Beihang University, Beijing China

{jywang,sxyccc,wujj,xiongz}@buaa.edu.cn

ABSTRACT

Recent years have witnessed the continuous growth of megalopolises
worldwide, which makes urban safety a top priority in modern city
life. Among various threats, dangerous goods such as gas and
hazardous chemicals transported through and around cities have
increasingly become the deadly “bomb” we sleep with every day.
In both academia and government, tremendous e�orts have been
dedicated to dealing with dangerous goods transportation (DGT)
issues, but further study is still in great need to quantify the prob-
lem and explore its intrinsic dynamics in a big data perspective. In
this paper, we present a novel system called DGeye, which features
a “duet” between DGT trajectory data and human mobility data
for risky zones identi�cation. Moreover, DGeye innovatively takes
risky pa�erns as the keystones in DGT management, and builds
causality networks among them for pain points identi�cation, at-
tribution and prediction. Experiments on both Beijing and Tianjin
cities demonstrate the e�ectiveness of DGeye. In particular, DGeye
a�er deployment has driven the Beijing government to lay down
gas pipelines for the famous Guijie food street.
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1 INTRODUCTION

Nowadays countries and regions all over the world face the chal-
lenge of urbanization. �e rapid agglomeration of population and in-
dustries not only creates monster megalopolises like Beijing, Tokyo
and Seoul, but also exposes them to potentially catastrophic risks
of various types. For instance, on August 12, 2015, a warehouse
storing dangerous goods at the port area of Tianjin exploded, with
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Figure 1: Tianjin port explosion on Aug. 12, 2015.

173 people killed and hundreds injured in the blast 1. In total 304
buildings, 12,428 cars and 7,533 intermodal containers were seri-
ously damaged, and still more surrounding buildings were declared
as “structurally unsafe”. Local environments and air were also
seriously polluted by exploded dangerous goods, which incurs im-
measurable loss (see Fig. 1). �is painful lesson brings urban safety
back to sight as top priority, and indicates the latent but deadly
“bomb” we sleep with every day: dangerous goods like gas and haz-
ardous chemicals tanks transported frequently through and around
cities.

In the literature, the problem of dangerous goods transportation
(DGT) has a�racts great a�ention, with the focuses on transporta-
tion route planning [20] and risk analysis [34], both from an op-
erations and optimization view. �ese studies, though providing
constructive managerial insights, usually lack of a micro view of
DGT threatens from a big data perspective. Speci�cally, for a prac-
tical application purpose, we �rst need to determine how to de�ne
a dangerous-goods-aware risky zone in a quantitative manner so as
to facilitate real-time general monitoring. Also, we should identify
the spatio-temporal pa�erns of DGT and �gure out the intrinsic
mechanisms behind them for key monitoring and sustainable urban
planning. �ese practical needs indeed motivate our study in this
paper, which aims to leverage heterogeneous big data for dealing
with DGT issues. Our study can also fall into the research category
of urban computing [37], and enrich the dangerous-goods-related
studies in this area based on obtained rich DGT trajectory data.

Our main research contributions are summarized as follows.
Firstly, we present and deploy a novel system called “City Eyes
on Dangerous Goods” (DGeye) for real-world DGT risks man-
agement (DGTRM). DGeye features a “duet” between DGT trajec-
tory data and human mobile-phone signaling data, and employs a
Mahalanobis-distance based measure for risky zones identi�cation.
Secondly, DGeye innovatively takes risky pa�erns as the keystones

1h�ps://en.wikipedia.org/wiki/2015 Tianjin explosions

https://en.wikipedia.org/wiki/2015_Tianjin_explosions
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Figure 2: Framework of DGeye.

in DGTRM, and is equipped with an e�cient algorithm for maximal
pa�erns mining. A novel trajectory-driven causal network is then
built upon these pa�erns for pa�ern importance ranking and risks
a�ribution analysis. �irdly, DGeye is capable of risks prediction by
adopting an EM-enabled Bayesian network model upon the causal
network of risky pa�erns. Comparative experimental studies with
various baselines demonstrate the excellent predictive power of
DGeye. Finally, DGeye has established itself as a successful deploy-
ment in various real-world applications. For instance, as a look
back to the Tianjin port explosion disaster, DGeye accurately cap-
tures the blast site as one zone inside the �rst-rank risky pa�ern.
More interestingly, DGeye discloses that the �rst ranking risky
source, which causes 5% downtown areas of Beijing under risk, is
the transportation of lique�ed gas cylinders to an old famous food
street: Guijie. �e quarterly report by DGeye has driven the Beijing
government to lay down gas pipelines for Guijie in 2016 [1].

2 THE SYSTEM OVERVIEW

Figure 2 shows the framework of DGeye with four layers. �e data
source of the system consists of DGT trajectory data, mobile phone
signaling data and city map data, which respectively represent
the information about dangerous goods, human populations and
city geography (see Sect. 3 for details). In the data processing
layer, the system partitions a city map into multiple squared zones,
and then uses mobile phone and DGT data to calculate the crowd
and DGT weights for each zone, respectively. Based on the two
kinds of weights, the system detects the urban zones with potential
dangerous goods risks in a given time slice of a day as time-sensitive
risky zones (see Sect. 4 for details).

�e knowledge modeling layer is concerned with the pain points
of DGT risks within a city. While risky zones are important for
real-time monitoring, they are just the “irregular symptoms” of the
underlying DGT risks, changing across di�erent time slices and in
di�erent days. For an urban management perspective, we would
like to unveil the relatively stable pa�erns, i.e., the pain points,
behind the time-variable symptoms, and dig deeply into the causal
relations for risk a�ribution. For this reason, the knowledge model-
ing layer mainly launches two functions: risky pa�erns mining and
causal network building. �e pa�ern mining function compresses
a group of risky zones that are spatially collocated and temporally
concurrent into a risky pa�ern, with the assumption that risky
zones in the same pa�ern might be caused by a same reason (see
Sect. 5.1 for details). �e causal network building function gener-
ates a causal network using risky pa�erns as vertexes and DGT

trajectories passed these pa�erns as directed edges (see Sect. 5.2 for
details). If the destination of DGT trajectories that have passed the
pa�ern px is the pa�ern py , we can say the dangerous goods threats
in px is caused by dangerous goods transportation requirement
from py . �erefore, we call the network as a causal network.

Based on the causal networks, in the user application layer, we
develop two applications for di�erent types of users. For urban
planners, the system generates pa�ern importance rankings for
risk causal analysis (see Sect. 6.1 for details). �e ranking gives high
priority to the pa�erns that lead to many other pa�erns of high
importance. According to the ranking list, urban planners can �x
the pain points gradually from high priority pa�erns to low priority
ones. For the emergency monitoring application, the system gives
accurate state predictions for every pa�erns, which is of great help
to o�cial emergency agencies in allocating emergency resources
appropriately and proactively (see Sect. 6.2 for details).

3 DATA SOURCES

�e data used in DGeye include: mobile phone signaling data, DGT
trajectories, and city maps. In what follows, we provide detailed
descriptions to the former two types.

Mobile Phone Signaling Data: Mobile operators build base
stations all over a city to o�er a “full coverage” signaling service to
mobile phone users, and the service records between mobile phones
and base stations are called “mobile phone signaling data”. A record
contains <user ID, station ID, user behavior code, time stamp>
�elds. �e user ID and base station ID are unique identi�cations for
cell phones and base stations. �e user behavior code �eld records
communication types between a cell phone and a base station. �e
time stamp records the occurrence time of a communication. �e
DGeye system uses the location of the base station that provides
signaling services to a mobile phone to approximate the position
of the phone user. Given the pre�y high penetration rate of mobile
phones in metropolises, we can use the amount of mobile phone
users to approximate the population in an urban zone.

DangerousGoodsTransporter (DGT)Trajectory: Any DGT2

in China is mandatorily equipped with a GPS terminal and reports
real-time locations to the local government, which are then aggre-
gated into DGT trajectory data. A DGT trajectory record contains
< vehicle ID, location, speed, timestamp > �elds, where the Vehicle
ID �eld is an unique identi�cation of a DGT, the location and speed
�elds record the real-time location and speed of a transporter, and
the timestamp �eld records the report time of the record. According
to the industry standard, the positions of a transporter are reported
every 10 seconds.

4 DATA PROCESSING

4.1 Crowd and DGTWeights

Suppose the DGeye system divides a city map into an I × J urban
zone checkerboard, and the zone in the i-th row and the j-th column
is denoted as zi j . Assume the data set contains data of M days, and
the system divides one day into N time slices. For then-th time slice
on the m-th day, we de�ne a DGT weight dmn

ij and a crowd weight

2We use DGT to denote both dangerous goods transportation and transporter inter-
changeably, which can be distinguished with reference to the context.
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cmn
ij to measure the number of DGTs and the human population at

zone zi j , respectively. We also denote the two weights as di j and
ci j or dx and cy for concision when there is no ambiguity.

DGTWeight: �e DGeye system extracts DGT weight di j from
the DGT trajectories. For a DGT, when its location lt is reported
at time t , we denote z (lt ) as the zone lt falls in, and process lt as
follows: If z (lt ) and z (lt−1) are spatially adjacent or the same, we
count a transporter for z (lt ); otherwise, we count a transporter for
every zones on the shortest path from z (lt−1) to z (lt ). In this way,
we re-sample a transporter if it stays at a zone for a long time. �is
is reasonable because this kind of places are very likely to be the
storage places of dangerous goods. At the end of a time slice, the
number of passed DGTs of an urban zone is set as the DGT weight
of that zone.

Crowd Weight: For each time slice, the system maintains a
binary user-zone matrix U, where a row vector corresponds to a
cell phone user and a column corresponds to a urban zone. �e
element uxy = 1 indicates user x appears in zone y during the time
slice, and 0 otherwise. At the end of a time slice, the crowd weight
of any zone y is calculated as

cy =
∑
x

uxy∑
y uxy

. (1)

In this way, if a user visits K zones in a time slice, we only count
the user 1/K times for each zone.

4.2 Risky Zones Detection

In the risky zones detection function, the system calculates a risk
score for each urban zone in a time slice. We say an urban zone is
at risk because the zone contains a large population and too much
dangerous goods. Accordingly, using the product of the crowd
weight and the DGT weight as the risk score is appropriate, since
we could get a high score only when both the two weights are large
enough. �ere is still an obstacle here — the two weights are not
in the same order of magnitudes. For example, the population in
Beijing is more than 20 millions, but the DGTs in our Beijing data set
is only 3,790. To deal with this, we adopt the Mahalanobis distance
for weight scaling. �e Mahalanobis distance of two vectors a and
b in a vector set is de�ned as

DM (a, b) =
√
(a − b)Σ−1 (a − b)>, (2)

where Σ is the covariance matrix of the vectors set. �e risk score
of zi j is then de�ned as

RSi j = DM
(
(di j , 0)>, 0

)
× DM

(
(0, ci j )>, 0

)
. (3)

If RSi j is greater than a threshold, we say zone zi j is at a risky state,
otherwise at a low-risk state. In practice, the threshold is set to the
90% upper quantile of all the risk scores.

5 KNOWLEDGE MODELING

5.1 Risky Patterns Mining

A risky pa�ern refers to a set of adjacent urban zones that are at the
risky state together frequently in a same time slice of a day. For the
n-th time slice on daym, we de�ne a risk matrix Rmn ∈ RI×J , where
the element rmn

ij = 1 indicates the risky state of zi j and 0 otherwise.
We further de�ne a time slice set Rn = {R1n ,R2n , . . . ,RMn }, which
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Figure 3: An illustration of risky patterns mining.

Algorithm 1 Risky Pa�erns Mining from Rn

1: Let the pa�ern candidate set L1 = {p̃ |p̃ = {zi j } ∧ supp(p̃,n) ≥
a threshold, ∀zi j }.

2: Let the pa�ern set as Pn = L1.
3: Let the pa�ern candidate size counter cnt = 2.
4: repeat

5: Lcnt = ∅
6: for pa�ern candidates p̃cnt−1 ∈ Lcnt−1 do

7: for zb ∈ {zi j |zi j is adjacent with p̃cnt−1} ∩ {zi j |zi j ∈
p̃′cnt−1 ∧ p̃

′
cnt−1 ∈ P̃

′} do

8: if supp(p̃cnt−1 ∪ zx ,n) ≥ a threshold then

9: p̃cnt = {p̃cnt−1 ∪ zx }, Lcnt = Lcnt ∪ p̃cnt
10: Pn = Pn ∪ p̃cnt , Pn = Pn − p̃cnt−1
11: end if

12: end for

13: end for

14: cnt = cnt + 1
15: until {zi j |zi j is adjacent with p̃cnt−1} ∩ {zi j |zi j ∈ p̃′cnt−1 ∧

p̃′cnt−1 ∈ P̃
′} = ∅

16: return Pn

contains the n-th time slices of all M days. When inW matrices of
Rn , a set of adjacent zones X are all at risky state, we de�ne the
daily support of X w.r.t. Rn as

supp(X ,n) =W /M . (4)

Based on the concept of daily support supp(X ,n), we give the
formal de�nition of the pa�erns of the time slice set Rn as follows.

De�nition 1 (Risky Pa�erns of Rn ) A risky pa�ern of the time
slice set Rn is a set of zones that satis�es: 1) the zones are spatially
adjacent; 2) the daily support of the set for Rn is larger than a given
threshold; 3) the set is not a proper subset of any other risky pa�erns
of Rn .

Figure 3 gives an illustration of risky pa�erns. �eDGeye system
mines risky pa�erns ofRn using an Apriori-like algorithm [4], with
the pseudo-codes given in Algorithm 1. �e algorithm maintains
a group of pa�ern candidate sets {L1, L2, . . . , Lcnt−1, Lcnt , . . .},
where Lcnt contains all cnt-size zone sets that satisfy the conditions
1) and 2) of De�nition 1. �e algorithm also maintains a risky
pa�ern set Pn that is used as a return value of the algorithm. In lines
1-2, the algorithm initializes L1 using all one-size pa�ern candidates,
and uses L1 to initialize the risky pa�ern set Pn . In the 6-13 lines,
for every pa�ern candidate p̃cnt−1 in Lcnt−1, we enumerate zx in
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Figure 4: An illustration of causal networks building.

a zone set, in which all zones are adjacent to p̃cnt−1 to generate a
new pa�ern candidate via p̃cnt = p̃cnt−1 ∪ {zx }. In lines 8-11, if the
daily support of p̃cnt is larger than the preset threshold, say 0.8 in
our DGeye system, we add p̃cnt to Lcnt and Pn . Because p̃cnt−1 is
a proper subset of p̃cnt , according to the condition 3) of De�nition
1, we remove p̃cnt−1 from Pn in line 10.

In order to avoid redundant daily support computation, we in-
troduce a “Fk−1 × Fk−1” method [31] to �lter zx in line 7. By
de�ning P̃ ′cnt−1 as a set of cnt − 1-size pa�ern candidates in which
all candidates p̃′cnt−1 share cnt − 2 zones with p̃cnt−1, i.e., P̃ ′ =
{p̃′cnt−1 |p̃

′
cnt−1 ∈ Lcnt−1 ∧ |p̃′cnt−1 ∩ p̃cnt−1 | = cnt − 2}, the algo-

rithm is required to select zx from a pa�ern candidate in P̃ ′.
When there is no zx could be used to increase size of the pa�ern

candidates, the algorithm returns Pn as the risky pa�ern set of
Rn in line 16. �e DGeye system uses Algorithm 1 to mine risky
pa�erns for all time slice sets Rn ,n = 1, 2, . . . ,N , and uses their
union P =

⋃N
n−1 P

n as the �nal risky pa�ern set of a city.

5.2 Causal Network Building

Causal network building is another function in the knowledge
modeling layer of the DGeye system. In this function, the system
uses risky pa�erns as vertexes and DGT tra�cs among the pa�erns
as edges to build a weighted directed network. Assuming there
are K pa�erns in the risky pa�ern set P , the system maintains an
adjacent matrix W ∈ RK×K where the element wxy is the weight
for the edge directed from pa�erns px to py . When a DGT orderly
passes px and py , we add one to wxy . Note that passing a pa�ern
here means a DGT passes at least one zone in the pa�ern. If a DGT
passes many pa�erns in sequence, we add an directed edge to any
pair of the pa�erns and count that DGT to all the edge weights.
To further illustrate the process of causal network building, we
go through a toy example in Figure 4. As shown in the �gure, a
DGT orderly passes the pa�erns p1, p4, p5, the weights of the edges
p1 → p4, p1 → p5 and p4 → p5 all should be increased by one.

In the causal network, an edge px → py with a weight greater
than one means that some DGTs passes px for py . In the other
words, the reason for px being risky is that there are some dan-
gerous goods requirements in py . �erefore, we can regard the
dangerous goods risk in py as a cause of the dangerous goods risk
in px . �at is why we call the network as a causal network.

6 USER APPLICATIONS

6.1 Pattern Importance Ranking

�e application of the pa�ern importance ranking is to o�er a rank-
ing list of risky pa�erns based on the causal network for urban
safety management. �e DGeye system ranks risky pa�erns fol-
lowing the rule as: a pa�ern that i) causes many pa�erns and/or
ii) causes important pa�erns should have a high importance pri-
ority in the ranking list. To this end, we apply a Random Walk
with Restart (RWR) model [32] to the causal network to generate
ranking scores for risky pa�erns.

Assume there are K pa�erns in the causal network. We de�ne
a ranking score vector s = (s1, s2, . . . , sk , . . . sK )

>, where sk is the
score of pa�ern pk . Given the weight wxy for the edge from px to
py , we de�ne a causal transition probability from px to py as an
out-degree normalized wxy , i.e.,

дxy =
wxy∑K
k=1wxk

. (5)

�e system iteratively updates the ranking score vector s using
a transition matrix G composed of дxy . In the (t+1)-th iteration
round, s is updated by

s(t + 1) = α G · s(t ) + (1 − α ) q, (6)

where q = (q1,q2, . . . ,qk , . . . ,qK )
> is a pa�ern-size ratio vector.

�at is, the k-th element of q is the normalized size of the risky
pa�ern px , i.e.,

qx =
size (px )∑K
k=1 size (pk )

. (7)

Note that we also q to initialize s, i.e., let s(0) = q.
It is easy to show that the above iterations will converge to the

following steady state when t → ∞ [40],

s∗ = (1 − α )q(I − αG)−1, (8)

which is �nally adopted to rank the importance of risky pa�erns.
�e pa�ern with a greater score has a higher importance priority. A
list of ranked pa�erns is valuable to urban planners and dangerous
goods management department of a city. Based on the list, urban
planners could undertake an operable plan to clear these risky
pa�erns progressively from the high priority ones to the low ones.

6.2 Risk State Prediction

Another application o�ered by the DGeye system is the risk state
prediction. Urban emergency departments need to monitor the
states of risky pa�erns before all clearance. An accurate prediction
of risky pa�erns’ states could also give a proactive guidance to
deploy limited urban emergency resources.

We use Bayesian inference for predictive modeling, which adopts
the causal network built in Sect. 5.2 as the Bayesian network. As
shown in Fig. 5, the pa�erns that have causal relations with the
pa�ern to be predicted can be categorized into two types, i.e., pat-
terns with observable states in historical times slices, and pa�erns
with unobservable states in the future. For example, suppose we
want to predict the pa�ern states at the time slice n. �e states
of risky pa�erns mined from R≤n−1 are observable but the ones
mined from Rn are unobservable. For convenience, we denote the
states of observable pa�erns as H = {h1,h2, . . . ,hx , . . . ,hK1}, and
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the states of unobservable pa�erns as F = { f1, f2,. . . , fy ,. . . , fK2}.
�e state of the pa�ern to be predicted is denoted as e , e < F .

According to the Bayes’ theorem, the posterior probability of e
conditioned on H and F is

Pr(e |H, F ) =
Pr(e )Pr(H, F |e )

Pr(H, F )
, (9)

which could be approximated using a naı̈ve Bayesian method as

Pr(e |H, F ) ∝ Pr(e )
K1∏
k=1

Pr(hk |e )
K2∏
k=1

Pr(fk |e )

∝ ln(1 + Pr(e )) +
K1∑
k=1

ln(1 + Pr(hk |e )) +
K2∑
k=1

ln(1 + Pr(fk |e )).

(10)

However, since the pa�ern states in F are unobservable, we cannot
directly use (10) to calculate the posterior probability of e . Moreover,
the impact of edge weights of the causal network are not considered
by the posterior probability in (10). To address these, we propose
an Expectation-Maximization (EM) algorithm to estimate F and
predict e through an iterative way.

Using the causal network as a Bayesian network, the EM algo-
rithm initializes fx and e using an edge-weighted naı̈ve Bayesian
model as follows:

fx (0) = argmax
fx ∈{0,1}

wfx ln(1 + Pr(fx )) +
K1∑
k=1

w (hk , fx ) ln (1 + Pr(hk |fx )) ,

e (0) = argmax
e∈{0,1}

we ln(1 + Pr(e )) +
K1∑
k=1

w (hk ,e ) ln (1 + Pr(hk |e )) ,

(11)

where w (x,y ) is the weight of the edge from px to py in the causal
network, we and wfx are the DGT tra�c inner the pa�erns corre-
sponding to e and fx . In the t-th round of the E-step, we use e (t −1)
and F (t −1) estimated in the last round as well as H to update fx (t )
as follows:
fx (t ) = argmax

fx ∈{0,1}
wfx ln(1 + Pr(fx )) +w (e, fx ) ln(1 + Pr(e (t − 1) |fx ))

+

K1∑
k=1

w (hk , fx ) ln(1 + Pr(hk |fx )) +
K2∑
k=1

w (fk , fx ) ln(1 + Pr(fk (t − 1) |fx )).
(12)

In the M-step, we predict e using H and estimated F as

e (t ) = argmax
e∈{0,1}

we ln(1 + Pr(e )) +
K1∑
k=1

w (hk ,e ) ln(1 + Pr(hk |e ))

+

K2∑
k=1

w (fk ,e ) ln(1 + Pr(fk (t ) |e )).

(13)

When the algorithm reaches a stable state, we use the �nal e (t ) as
the state prediction result. We let a pa�ern state equal to 1 for the
risky state, and 0 for the non-risky state. �e prior probability and
likelihoods are counted from the data set. Compared with tradi-
tional Bayesian methods, our predictive model has two advantages:
i) it exploits the causal dependency among pa�erns; ii) it makes
use of causal information in unobservable pa�erns.

7 EXPERIMENTS AND APPLICATIONS

7.1 Experimental Setup

We apply the DGeye system to two big cities of China: Beijing 3

and Tianjin 4. Beijing is the capital of China with a 20 million
population, and Tianjin is a municipality directed by the central
government with a 15 million population. �e urban safety of the
two cities is of the utmost importance undoubtedly. �e data sets
used in the experiments were collected from January 1 to March
31 in 2015 for Beijing, and from January 1 to February 31 in 2015
for Tianjin. In the experiments, the system divides one day into 24
time slices, i.e., one hour per slice, and divide the maps of the two
cities into 500m × 500m urban zones. �e covered area of the two
cities contain 80 × 160 zones, respectively.

7.2 Risky Zones Detection

We here verify the risky zones detection function of the system.
Figures 6(a) and 6(b) show the spatial distributions of crowd weights
and DGT weights in Beijing at the 10:00 time slice on one day in
Jan. 2015, and Fig. 6(c) depicts the distribution of the risky zones in
Beijing at the same time slice for comparison. �e colors indicate
the weights and risky score of each zone — the redder, the higher.

As shown in Figs. 6(a) and 6(b), the population of Beijing are
mostly distributed in the downtown area, but high DGT weight
zones are mainly distributed on an outer beltway surrounding
Beijing, i.e., the 5th ring road 5. As a result, it is interesting to see
from �g. 6(c) that many of high-score risky zones detected by the
system are not overlapped with the high DGT weight zones, e.g.,
the red areas inside the 2nd ring covering an entertainment district
of Beijing: Dongzhimen and Dongsi. �is indeed illustrates why
DGeye considers both human population and DGTs in a “duet” way.

Figures 6(d) to 6(f) exhibit the case of Tianjin at the same time
slice as Beijing. As shown in the �gures, the population of Tianjin
concentrates in two areas, the main urban area and the port area.
�e DGTs, however, are mainly distributed on beltways and ex-
pressways that connect the port area with the main urban area. As
to risky zones in Fig. 6(f), again we can �nd the inconsistency with
high DGT weight zones — the high score risky zones are mainly
distributed over urban-rural fringe of the main urban area and the
downtown of the port area. �is is also the result of taking human
population into consideration in DGeye.

Figure 7 shows the proportions of risky zones to all urban areas
of Beijing and Tianjin for the 24 time slices. Note that all these
values are averaged on all days in the data set. It is interesting
to see that the temporal distributions of risky zone proportions
for the two cities are similar to each other, which indeed coincide
more with the rhythms of human activities rather than that of
DGTs. Nevertheless, the di�erence does exist: the emergence of
risky zones in the morning peak seems more severe for Beijing.

7.3 Risky Pattern Mining

�is subsection demonstrates the risky pa�ern mining function of
the DGeye system. Figure 8 gives temporal distributions of pa�ern
amounts in Beijing and Tianjin, where di�erent colors indicate
3h�ps://en.wikipedia.org/wiki/Beijing
4h�ps://en.wikipedia.org/wiki/Tianjin
5h�ps://en.wikipedia.org/wiki/5th Ring Road (Beijing)

https://en.wikipedia.org/wiki/Beijing
https://en.wikipedia.org/wiki/Tianjin
https://en.wikipedia.org/wiki/5th_Ring_Road_(Beijing)
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(a) Crowd Weights in Beijing (b) DGT Weights in Beijing

Dongzhimen

and Dongsi

(c) Risky Zones in Beijing

The main 

urban areas

The port areas

(d) Crowd Weights in Tianjin (e) DGT Weight in Tianjin (f) Risky Zones in Tianjin

Figure 6: Spatial distributions of crowd weights, DGT weights, and risky zones in Beijing and Tianjin.
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Figure 7: Temporal distributions of risky-zone proportions.

pa�erns of di�erent sizes. As can be seen, the temporal distributions
of pa�erns in Beijing and Tianjin are very di�erent, which is in
sharp contrast to that of risky zones in Fig. 7. �is well illustrates
why we need risky pa�erns given risky zones already; that is,
pa�erns indicate relatively stable rules and zones depict instant
phenomenon. Two another observations are worth noting. First,
the temporal distribution of pa�erns has an obvious tide in Beijing,
but �uctuates much more smoothly in Tianjin. Second, compared
with Tianjin, Beijing has obviously more big-size pa�erns.

�e reason for the above di�erences lies in the diverse require-
ments of dangerous goods of the two cities. Dangerous goods in
Beijing are consumed by citizens in daily life, such as gasoline
requirements of gas stations and lique�ed gas of restaurants. �ere-
fore, the temporal distribution of risky pa�erns has a similar rhythm
with people’s daily life. Moreover, since dangerous goods must be
delivered to gas stations and restaurants in downtown area of Bei-
jing every day, DGTs have to drive through many high-population
zones in adjacent, which results in many big-size risky pa�erns in
Beijing. Figure 9(a) is a risky pa�erns’ map of Beijing at the 10:00
time slice. As can be seen, many big-size risky pa�erns are located
in the downtown area.

Unlike Beijing, dangerous goods requirement in Tianjin is driven
by chemical materials import and export in the Tianjin port. �ere-
fore, the correlation between pa�ern amount and city life rhythm
is very weak. Figures 9(b) and 9(c) show the maps of risky pa�erns
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Figure 8: Temporal distributions of risky patterns.

in Tianjin main urban area as well as the port area for the 10:00
time slice. As shown in the �gures, most of big-size pa�erns are in
the port area, and the main urban area is relatively safe.

�e above di�erences in pa�ern distributions suggest di�erent
DGT monitoring strategies for Beijing and Tianjin. �e Beijing
government should pay more a�ention to DGTs in many areas
of the downtown in the middle of a day. Oppositely, the Tianjin
government could only monitor some particular areas in the port
area but for a whole day.



No Longer Sleeping with a Bomb: A Duet System for Protecting Urban Safety from Dangerous Goods KDD’17, ACM SIGKDD,

(a) Downtown Area of Beijing (b) Main Urban Area of Tianjin (c) Port Area of Tianjin

Figure 9: Distributions of risky patterns in Beijing and Tianjin.
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Figure 10: Applications of pattern importance ranking.

7.4 Importance Ranking

We here give two showcases of the pa�ern importance ranking
application of DGeye. Figure 10 shows the �rst ranking pa�erns
(the red blocks in the maps) in Beijing and Tianjin, and the green and
blue blocks are the �rst and second ranking pa�erns, respectively,
that are caused by the red pa�erns.

As shown in Figure 10(a), the �rst ranking pa�ern in Beijing is
located at the Dongzhimen and Dongsi district, which is a famous
entertainment district of Beijing 6. Especially, the Dongzhimen area
has an extremely well known food street, Guijie 7. A major cuisine

6h�ps://en.wikipedia.org/wiki/Dongzhimen
7h�ps://www.travelchinaguide.com/a�raction/beijing/guijie-street.htm

o�ered by restaurants in Guijie is “hot pot” 8, which is a kind of
interesting cuisine that cooks raw foods in a simmering metal pot
at the center of dining tables. A hot pot table usually equips with a
mini gas stove that connects to a liquid gas cylinder, which forms an
enormous demand of gas cylinders transported by DGTs to Guijie
every day. As shown in Fig. 10(a), the blue and green pa�erns cover
three main roads heading to the red pa�ern from the north, east
and west, respectively. �is implies that DGTs transport liquid
gas cylinders from suburbs to the red pa�ern through these three
roads, and thus expose the zones in the blue and green pa�erns
to the threaten of explosion. On January 17, 2016, a truck fully
loaded with liquid gas cylinders was on �re at the road covered by
the green pa�ern [2]. �e destination of the �red truck is right a
restaurant in the Dongzhimen and Dongsi district. According to
the causality modeled by the causal network, there are 150 risky
zones that are directly caused by the red pa�ern, which cover about
5% downtown areas of Beijing.

As shown in Fig. 10(b), the �rst ranking pa�ern in Tianjin is
located in the port area, covering a north-south road aside a wharf.
�e �rst and second ranking pa�erns caused by the red pa�ern
cover an east-west road across residential areas of the port. Ob-
viously, the purpose of DGTs driving through the green and blue
pa�erns is going to the wharf aside the red pa�ern to load or un-
load dangerous goods. Based on above analysis, we can discover
an urban planning defect in the port area of Tianjin: the depots of
dangerous goods in the wharf are too close to residential areas, and
the government should not let DGTs drive across residential areas.
�is fatal defect actually has triggered an irreparable tragedy: the
Tianjin port blast of dangerous goods on August 12, 2015, which
was happened right at the intersection of the roads covered by the
red pa�ern and the green/blue pa�erns!

7.5 Patten State Prediction

In this subsection, we evaluate the performance of the pa�en state
prediction function in the DGeye system. �e benchmarks include:
i) the Prior model (Pr), which only uses prior probability Pr(e ) to
predict pa�ern states. Because the daily support threshold of risky
pa�erns is set to 0.8, the Prior model always predicts pa�erns at the
risky state. ii) �e Likelihood model (LL), which uses the likelihood
8h�ps://en.wikipedia.org/wiki/Hot pot

https://en.wikipedia.org/wiki/Dongzhimen
https://www.travelchinaguide.com/attraction/beijing/guijie-street.htm
https://en.wikipedia.org/wiki/Hot_pot
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Table 1: Prediction performance comparison.

Beijing
EM NB Pr LL LR SVM ANN

Pr-risky 0.89 0.83 0.80 0.84 0.80 0.80 0.79
Re-risky 0.93 0.94 1.00 0.66 0.90 0.92 0.88
F1-risky 0.91 0.88 0.89 0.74 0.85 0.85 0.83
Pr-all 0.79 0.74 0.65 0.72 0.70 0.71 0.70
Re-all 0.82 0.79 0.80 0.62 0.75 0.75 0.74
F1-all 0.80 0.76 0.72 0.67 0.73 0.73 0.72

Tianjin
EM NB Pr LL LR SVM ANN

Pr-risky 0.93 0.85 0.76 0.92 0.77 0.76 0.76
Re-risky 0.82 0.87 1.00 0.43 1.00 1.00 1.00

F1-risky 0.87 0.86 0.86 0.59 0.87 0.86 0.86
Pr-all 0.89 0.78 0.58 0.78 0.59 0.58 0.58
Re-all 0.82 0.79 0.76 0.54 0.77 0.76 0.76
F1-all 0.85 0.79 0.66 0.64 0.67 0.66 0.66

∑K1
k=1w (hj ,e )Pr(hj |e ) to predict pa�ern states. �e likelihood model

is used to evaluate the predictive e�ciency of observable pa�erns.
iii) �e Naı̈ve Bayes model (NB), which uses the initialization model
of the EM algorithm in (11) to predict pa�ern states. iv) �e Logistic
Regression model (LR), Support Vector Machine (SVM) model, and
Arti�cial Neural Networks (ANN) model. �e three models use the
states of observable pa�erns as inputs, which are used to evaluate
the performance of classical models in our prediction scenarios. �e
data set of Beijing contains trajectories and mobile phone records of
90 days, and that of Tianjin contains trajectories and mobile phone
records of 60 days. We use data of the �rst 2/3 days as training sets
and the remaining 1/3 days as test sets.

�e prediction results are listed in Table 1, where precision (Pre),
recall (Re) and F1 scores (F1) for the risky state and all states are used
as evaluation measures. As can be seen, in both Beijing and Tianjin
data sets, the proposed model (EM) achieves the best performances
compared with all baselines in terms of all measures except for
the recall of the risky state — the prior model always predicts
pa�erns as risky and therefore its risky state recall is 100%. Another
observation is the relatively poor performances of LR, SVM and
ANN. �is might be ascribed to the scarcity of training samples;
that is, we can only sample the state of a pa�ern one time in one
day, and hence only have 60 and 40 training samples for every
pa�erns in Beijing and Tianjin, respectively. In this kind of scenario,
Bayesian methods seem more e�ective than completely supervised
classi�cation models.

To sum up, we have: i) the causality relations in the causal net-
work is very e�ective for pa�ern state prediction; ii) the information
of unobservable states exploited by the proposed EM algorithm
could improve the prediction performance; iii) the Bayesian method
adopted by our model is very suitable to the prediction scenario
with small training sets.

7.6 Policy Applications

�e DGeye system has been deployed in Transportation Operations
Coordination Center (TOCC) of the Beijing government to monitor

risky zones and predict risky pa�ern states in Beijing. In every
quarter, the system generates a DGT risk analysis report to the
Beijing government. �e report contains the distribution, ranking
and causality analysis of risky pa�erns in the last quarter. �e
Beijing showcase introduced in Sect. 7.4 has been reported to the
Beijing government as the �rst report of the system. Driven by our
report, the Beijing government started a gas pipeline laying project
in the Guijie food street of the Dongzhimen and Dongsi district in
September 2016. As reported by the news [1], Beijing “Guijie” is
about to bid farewell to the gas-cylinder era in 2017.

8 RELATEDWORKS

Dangerous goods transportation becomes a very hot topic in haz-
ardous materials management and intelligent transportation system
(ITS) areas. In order to control societal risks caused by dangerous
goods, some DGT monitoring systems, such as MITRA [26] and
GOOD ROUTE [5], are deployed. Most of them focus on monitoring
and collecting locations of DGTs only but omit the important hu-
man activities for “duet playing”. In academia, ITS researchers focus
on DGT route planning [20] and transportation systems designing
such as rail way DGT [33]. In hazardous materials management, re-
searchers focus on DGT risk de�nition [9, 28] and analysis [12, 34].
Most of these works study DGT from an operations and optimiza-
tion view, and have a basic assumption: if a plan is well designed
and executed, DGT risks will be under control. In practice, however,
many uncertainties could disturb the deployment of plans. Data
driven approaches are becoming more desired to detect and analyze
risks of dangerous goods in real-world applications.

Spatial pa�ern mining is a key function of DGeye. Traditional
frequent pa�ern mining algorithms, such as Apriori [4] and FP-
growth [14], discover frequent pa�erns from a transaction set.
Many spatial clustering algorithms, such as CLARANS [23], DB-
SCAN [11], and ST-DBSCAN [7], generate spatial pa�erns from a
spatial distance view [13]. �e collocation [17] and spatio-temporal
sequential pa�erns mining [18] algorithms detect frequent collo-
cations and/or concurrences from spatio-temporal data sets. �e
risky pa�ern mining method in DGeye is a union of the above algo-
rithms, which mines frequent concurrences of spatial pa�erns for
collocated dangerous goods and populations. �erefore, we adopt
a zone-pa�ern two step mining scheme based on Mahalanobis
distance and an Apriori-like algorithm.

Another key function of DGeye is transportation causal analysis.
In this area, most studies focus on analyzing causality between
transportation and economic indicators from a macro view, such as
using the Granger test to analyze causality between transportation
and GDP [6] or regional economic growth [19, 22] in di�erent coun-
tries and regions [3, 8, 27] . In the micro level, Ref. [21] proposes an
outlier tree based causality discovery algorithm for spatio-temporal
interactions in urban tra�c data, and Ref. [10] proposes a two-step
framework for inferring the root cause of anomalies in urban tra�c
data. Few works have analyzed causality among pa�erns/events of
dangerous goods transportation.

Our study can also fall into the research category of urban com-
puting [37]. In this area, research works related to our study in-
clude: data-driven urban analysis [16, 38], urban anomaly detec-
tion [24, 25, 39], urban public security [29, 30], citizens behaviors
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prediction [15, 35, 36], and still many. To our best knowledge, our
work is among the earliest studies in urban computing area that
try to snu� out the threats from dangerous goods.

9 CONCLUSIONS

In this paper, we present a novel system call DGeye for urban dan-
gerous goods management. DGeye features in leveraging both DGT
trajectory data and human activity data for timely risk monitor-
ing as well as proactive risk mitigation. Speci�cally, DGeye �rst
adopts Mahalalnobis distance for scaling and de�nes risky zones in
a quantitative manner for real-time monitoring. �e keystone of
DGeye , however, lies in risky pa�erns that reveal the rhythms of
the risks in a city and are mined by a carefully designed Apriori-like
algorithm. A causal network is then built by taking pa�erns as
vertexes and trajectories as directed edges for risk ranking, a�ribu-
tion and prediction, which makes DGeye an ideal decision support
system for urban planning and emergency management. DGeye
has proven itself in successfully recognizing the hidden explosion
risks in Guijie food street of Beijing and in port area of Tianjin. In
particular, the report from DGeye has driven the Beijing govern-
ment to lay down a gas pipeline in Guijie and bid farewell to the
gas cylinder transportation history.
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