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Location-based services allow users to perform geo-spatial recording actions, which facilitates the mining 

of the moving activities of human beings. This paper proposes to recommend time-sensitive trip routes, 

consisting of a sequence of locations with associated time stamps, based on knowledge extracted from 

large-scale time-stamped location sequence data (e.g. check-ins and GPS traces). We argue a good route 

should consider (a) the popularity of places, (b) the visiting order of places, (c) the proper visiting time of 

each place, and (d) the proper transit time from one place to another. By devising a statistical model, we 

integrate these four factors into a route goodness function which aims to measure the quality of a route. 

Equipped with the route goodness, we recommend time-sensitive routes for two scenarios. The first is 

about constructing the route based on the user-specified source location with the starting time. The second 

is about composing the route between the specified source location and the destination location given a 

starting time. To handle these queries, we propose a search method, Guidance Search, which consists of a 

novel heuristic satisfaction function which guides the search towards the destination location, and a 

backward checking mechanism to boost the effectiveness of the constructed route. Experiments on the 

Gowalla check-in datasets demonstrate the effectiveness of our model on detecting real routes and 

performing cloze test of routes, comparing with other baseline methods. We also develop a system 

TripRouter as a real-time demo platform.  
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1. INTRODUCTION 

Location-based Services (LBS), such as Foursquare1 and Gowalla 2, allow users to 

perform the action of location recording that pins the geographical information of 

current locations and time stamps onto their personal pages. By continuously 

recording such actions by users, a large-scale location sequences dataset can be 

generated. The rapid accumulation of location sequence data can not only collectively 

represent the real-world human activities, but also serve as a handy resource for 

constructing location-based recommendation systems. Since the user-moving records 

implicitly reveal how people travel around an area with rich spatial and temporal 

information, including longitude, latitude, and recording timestamp, one reasonable 

application leveraging such user-generated location sequence data is to recommend 

the travel routes. Indeed, many of existing works recommend and construct traveling 

routes using GPS trajectories [Chen et al. 2011; Wei et al. 2012] or geo-tagged photos  

[Arase et al. 2010; Cheng et al. 2011; Yin et al. 2011]. 

 

In this paper, instead of relying on past moving trajectories to recommend 

traveling paths, we propose a novel time-sensitive trip route recommendation 

 

1 Fouresquare: https://foursquare.com/ 
2 Gowalla: http://gowalla.com/ 
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framework using the time-stamped route data. To do so, we argue that a good route 

recommendation system should consider the following factors when constructing a 

route:  

— The popularity of a place. Popular landmarks by definition should attract 

more visitors. 

— The proper time to visit a place. In general, the pleasure of visiting a place 

can be significantly diminished if arriving at the wrong time. Some places have 

a wider range of preferred visited time while others are constrained to certain 

particular time slots. For example, most people do not want to visit a beach 

during boiling hot noon, but rather arrive in the late afternoon to enjoy the 

sunset scene. Or certain sports game events usually take place at particular 

time period (e.g. in the evening). As shown in Figure 1, derived from the 

Gowalla check-in data described in Section 5, visitors visit some places with 

higher probability during certain time slots. For example, (a) people usually 

visit the Empire State Building from about 12:00 to the mid night (note that 

this place is famous for its night view), (b) people tend to visit the Madison 

Square Garden in the early evening for a basketball game, (c) the proper time 

to visit the Central Park is during daytime, and (d) Time Square is preferred 

from afternoon to midnight. 

 

          
(a)                                                                        (b) 

           
(c)                                                                       (d) 

Fig. 1. The distribution of the visiting probability at each time unit (hour) for (a) Empire State Building, (b) 

Madison Square Garden, (c) Central Park, and (d) Time Square. These distributions are derived from the 

Gowalla check-in data. 

 

— The amount of time required to transit from one place to another. The 

transit time between places is critical to the design of a suitable route. To 

recommend the next place to visit with the proper visiting time, we should 

consider the amount of time spent on traveling. For example, if one has bought 

tickets to a football game at a stadium 2 hours away, then he or she shall 

logically choose to start traveling toward the stadium 2 hours ahead of the 
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official kick off time instead of going to a nearby museum 30 minutes away 

then. 

— The visiting order of places. The visiting order of places is highly correlated 

to the nature of places and human preference, and it can affect the quality of 

the recommended trip to the user. For example, going to the gym first then 

going to nearby restaurant for dinner might be a better plan than the other 

way around since it might not be unhealthy to exercise right after a meal. 

 

While some places are extremely sensitive to the visiting time, the others (e.g. 

movie theaters) might not possess such strict constraint. An intelligent route 

recommendation system should consider such diversity and be able to create a route 

that has higher chance of satisfying users’ needs. This paper argues that by exploring 

the time-stamped location sequence dataset, it is possible to design a statistical 

model to achieve such goal. 

 
Fig. 2. An example for recommending a trip route starting from a given position at 10:00 AM, in 

Manhattan area, New York City. 

 

What we employ for measuring and constructing time-sensitive routes is the time-

stamped location sequence data. Currently there are two major resources that can 

provide such location sequence data. One is the user moving trajectories from the 

GPS trace recorders (with famous spots annotated) while the other is the online 

check-in data. Although from this point on we assume it is the check-in data that are 

used, our model can in fact be trained using any given time-stamped route dataset.  

 

In our experiment we use online check-in data from location-based services (LBS) 

to acquire the time-stamped route information to train our model. The online check-

in data provide plenty of explicit or implicit information that allows us to fulfill the 

abovementioned requirements for the sake of planning a proper trip route. First, we 

can distill from the check-in data the number of people who have visited a certain 

place, and thus derive the popularity of places. Second, users in LBS tend to perform 

check-in actions to keep track of their trips. As a result, we can obtain and consider 

the visiting order of places. Third, the check-in records contain the visiting time 

stamps of locations. Users in LBS are able to collectively reveal the proper visiting 

time of places. Fourth, followed by the check-in time stamps from existing routes, we 
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are able to hypothesize the transit time between places. Equipped with such 

elements, we utilize the check-in data to recommend the trip routes. Figure 2 is an 

example outcome of our time-sensitive trip route recommendation. Assuming a 

certain user starts to travel from his hotel, marked with a star in Figure 2, at 10:00 

AM. According to the distribution of the locations to be visited at each time unit in 

Figure 1, a possible trip route consists of going to Central Park first, followed by 

Empire State Building, Madison Square Garden, and finally Time Square.  

 

Formally, the goal of this paper is to construct a time-sensitive route from the 

time-stamped location sequence data. We propose to tackle two real-world demands 

of recommending time-sensitive routes. The first is to construct a route given a source 

location, and the second is to create a route given the source-destination pair of 

locations. Both queries consider the starting time of the trip. Given a query, our 

model finds a sequence of recommended places, in which each location can be visited 

at a proper time with a reasonable transit time from one place to another in the route. 

A time-sensitive route is supposed to be more effective than a simple route without 

time stamp as it allows the users to better manage their time during the trip. 

 

We propose statistical approaches to construct the time-sensitive routes with 

respect to the proposed queries. In general, our model consists of two phases. In 

phase one, the quality of a route is measured using a goodness function, which 

integrates the abovementioned four requirements about a proper trip route. In phase 

two, given the user-specified query, we design an effective and efficient search 

method, the Guidance Search, to identify the places to be visited by optimizing the 

route goodness function. 

 

We summarize the contributions of this paper in the following. 

— We propose a novel time-sensitive trip route recommendation problem. We 

fulfill the idea by developing a TripRouter system based on the real-world 

Gowalla check-in data. 

— Conceptually, we propose that a good route should consider four elements: (a) 

the popularity of a place, (b) the visiting order of places, (c) the proper visiting 

time of a place, and (d) the proper transit time between places. 

— Technically, we devise a goodness function to measure the quality of a route. 

By exploiting certain statistical methods, we model the four requirements into 

the design of the goodness function. 

— We propose two time-sensitive query scenarios about route recommendation. 

To deal with these queries, we develop the Guidance Search algorithm to 

construct the route by optimizing the goodness function. 

 

This paper is organized as follows with the accompaniment of the flowchart, as 

shown in Figure 3. The input and output of our route recommendation are the Time-

Sensitive Query and the Time-Sensitive Route respectively. After describing the 

related work in Section 2, we will formally describe these terms and the problem 

definition in Section 3.1. The main proposed method consists of two parts: Route 

Goodness Function and Route Construction. The former aims to measure the 

goodness of a given route while the latter is to construct the route satisfying the 

query. As the route construction algorithm proceeds, the route goodness function is 

exploited to intelligently determine the next location in the route. We will first 

describe how to design the route goodness function in Section 3 and elaborate the 
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proposed route construction algorithm in Section 4. We evaluate the proposed method 

in Section 5 and demonstrate the TripRouter system in Section 6. Section 7 concludes 

this work. 
 

 
Fig. 3. The flowchart of the proposed time-sensitive route recommendation framework. 

2. RELATED WORK 

2.1 Route Planning by GPS Trajectory Data 

There are lots of related works about route planning using the GPS trajectories. J. 

Yuan et al. [Yuan et al. 2011a; Yuan et al. 2011b] find the fastest routes to a 

destination. Z. Chen et al. [Chen et al. 2011] and L.-Y. Wei et al. [Wei et al. 2012] 

search for popular and attractive trajectories for recommendation. Z. Chen et al. 

[Chen et al. 2010] find the top-k trajectories connecting some user-given locations. H. 

Yoon et al. [Yoon et al. 2011] and Y. Zheng et al. [Zheng et al. 2011] propose the 

itinerary recommendation by considering user preference based on mined trajectory 

attributes. Y. Zheng et al. [Zheng et al. 2009; Zheng et al. 2011] aim to discover 

interesting and classical travel sequences. L.-A. Tang et al. [Tang et al. 2011] find the 

top-k nearest neighboring trajectories with the minimum aggregated distance to 

some query locations. L.-Y. Wei et al. [Wei et al. 2010] construct the top-k routes 

which sequentially pass through the query locations within the specified time span. 

Considering the travel cost (i.e., the financial cost and the time cost), Y. Ge et al. [Ge 

et al. 2011] provide a focused study of cost-aware tour recommendation. Q. Liu et al. 

[Liu et al. 2011] develop a Tourist-Area-Season Topic (TAST) model, which extract 

the topics conditioned on both the tourists and the intrinsic features of the 

landscapes, to recommend topic-dependent and/or season-based travel packages. L.-A. 

Tang et al. [Tang et al. 2012a; Tang et al. 2012b] investigate the problem of 

discovering groups that travel together from trajectory data streams. Their system 

can discover companions without accessing the object details. J. Bao et al. [Bao et al. 

2012] consider both user preference and social opinions to develop a location 

recommender system that allows users to specify a set of venues within a geospatial 

range. 

 

Though there are many successful proposals to solve different kinds of route 

planning problems, the issues of proper visiting time of places and proper transit 

time between places are not tackled adequately. This work proposes to soundly 
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measure and construct the time-sensitive trip routes using large-scale time-stamped 

location sequence data. 

 

We use Table I to summarize the differences between our work and other relevant 

studies. Here we list some important issues about route planning, including: whether 

it allows the Query of certain Locations (QL), and whether it considers the following 

ideas: Popularity (PO), Visiting Order (VO), Visiting Time (VT), Transit Time (TT), 

User Preference (UP), Distance (DI), Travel Duration (TD), Top-k retrieval (TK), 

financial costs (CO), and group and/or social consideration (GS). 

 
Table I. Summarization of differences between this paper and other related works. 

 QL PO VO VT TT UP DI TD TK CO GS 

[Yuan et al. 2011a;  
Yuan et al. 2011b] 

              
  

[Chen et al. 2011]               

[Wei et al. 2012]                

[Chen et al. 2010]               

 [Yoon et al. 2011]                   

[Zheng et al. 2009; 

 Zheng et al. 2011] 
              

  

[Tang et al. 2011]               

[Wei et al. 2010]                

[Ge et al. 2011;  
Liu et al. 2011] 

             
   

 [Tang et al. 2012]                

[Bao et al. 2012]                  

This work                   

 
2.2 Route Recommendation Using Social Media 

The rapid rise of social media applications generates huge-volume geo-spatial data of 

human activities, such as geo-tagged photos in Flickr and check-in records in 

Foursquare. Both geo-tagged photos and check-in data can reveal how people 

sequentially visit places in an area. Using geo-tagged photos, Y. Arase et al. [Arase et 

al. 2010] mine frequent route patterns for recommendation. A.-J. Cheng et al. [Cheng 

et al. 2011] propose personalized travel recommendation based on personal profiles 

and visual attributes of geo-tagged photos. X. Lu et al. [Lu et al. 2010] and T. 

Kurashima et al. [Kurashima et al. 2010] construct routes based on user preference 

of must-go destinations, visiting time, and travel duration. Z. Yin et al. [Yin et al. 

2011] mine and rank trajectory patterns from geo-tagged photos and diversify the 

ranking results. L.-Y. Wei et al. [Wei et al. 2012] infer the top-k routes traveling a 

given location sequence within a specified travel time from uncertain check-in data. 

Different from these works, we aim to perform knowledge discovery to construct the 

time-sensitive routes. 

3. ROUTE GOODNESS MEASURE 

3.1 Basic Definitions 

Definition 3.1 (Location). A location li is a tuple, li = (xi, yi), where xi is the 

longitude, yi is the latitude. 

Definition 3.2 (Route of Time-stamped Locations). A route is a sequence of 

locations with the corresponding time stamps, denoted by s, s=<(l1,t1), (l2,t2), ..., 

(ln,tn)>, where n is the number of locations. Throughout this paper, we focus on 

recommending single-day route, which implies tn-t1 is no more than 24 hours. 
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Definition 3.3 (Time-sensitive Query). We define the Time-sensitive Query as Q = 

(lq, tq), where lq is the initial location of a user, and tq is the starting time for this trip. 

Note that in the following we will further define the source query and source-

destination query (in Section 4), which are two kinds of Time-sensitive query. 

Definition 3.4 (Time-sensitive Route). Given a time-sensitive query, we define the 

Time-sensitive Route as a sequence of time-stamped locations sr = <(l1,t1), (l2,t2), ..., 

(lk,tk)>, which can have higher score under the following defined route goodness 

function (in Section 3.2), where l1 = lq, t1 = tq, and k is the number of locations in the 

route, which can be either specified by users or be determined automatically based on 

the proposed algorithm (in Section 4). Note that the time-sensitive route is simply a 

common spatial-temporal sequence, just like a regular route. The main novelty lies in 

that the generation of them considers temporal information as constraints to 

optimize. 

In the following we will describe how to measure the quality of a time-sensitive 

trip route. Based on the proposed goodness definition, we are able to search and 

recommend better time-sensitive routes given an initial time-sensitive query. 

 
3.2 Measuring the Quality of a Trip Route 

In order to construct a high-quality route for recommendation, we need to first design 

a proper metric to measure the quality of any given route. We propose that a good 

trip route should consider the following four factors: (a) the popularity of a place, (b) 

the proper visiting time of a location, (c) the proper transit time traveling from one 

location to another, and (d) the visiting order of places in the route. We attempt to 

model these factors into the goodness function, and utilize such function to greedily 

selecting locations for the construction of the final trip route. 

  
3.2.1 Route Popularity  

A popular place, by definition, should be somewhere that attracts more visitors in 

general. If a route contains more popular places, it has higher potential to satisfy a 

user. The popularity of a place can be represented by the number of recording actions 

performed at that place. In our goodness measure of a route, we first consider the 

popularity of places in the route. We define the relative popularity of a location li as: 

   (  )  
 (  )

    

 

where N(li) is the number of recording actions performed on location li, and Nmax is 

the maximum number of recording actions among all the locations in the location 

sequence data. Given a route s=<(l1,t1), (l2,t2), ..., (ln,tn)>, we define the popularity-

based goodness function fpop(s) as: 

    ( )  (∏   (  )

 

   

)

 
 

 

3.2.2 Proper Visiting Time  

The time-stamped location sequence data reveals that while some locations (e.g. park 

and movie theater) are popular regardless of the visiting time in a given day, other 

locations (e.g. stadium and beach) are more attractive during certain time period of 

the day. We propose to learn such time-dependent popularity of each location from 

the location sequence data. We begin from defining the Temporal Visiting 

Distribution as the following. 
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Definition 3.5 (Temporal Visiting Distribution (TVD) of a Location). We define a 

Temporal Visiting Distribution for a location l, TVDl (ti), as the probability 

distribution of a randomly picked recording action of location l occurs at time ti. For 

example, in a 24-hour span, TVD can be a legal probability distribution shown in 

Figure 4. TVD can easily be learned from the time-stamped location sequence data, 

representing how popular a place is at a given time. 

Using TVD, we can determine whether it is proper to visit a place at a given time. 

For example, assuming we want to know how well a decision is to visit a place at 

8AM, given the location’s TVD is represented as the green dotted line in Figure 4. To 

do that, we propose to first generate a thin Gaussian distribution  (      ) whose 

mean value   is 8 with a very small variance    (e.g. standard deviation is 1). And 

then we can transform the original task into measuring the difference between the 

Gaussian distribution with the learnt TVD of such location. Here we use the 

symmetric Kullback-Leibler (KL) Divergence between  (      )  and     ( )  to 

represent the fitness of the assignment. The formal mathematical definition of a 

fitness score between a place l and a time t can be defined as: 

 

   ( (      )      ( )) 

 ∑ (      )

 

   
 (      )

    ( )
 ∑    ( )

 

   
    ( )

 (      )
 

 

Conceivably, a smaller KL value indicates better match between the assignment 

and the distribution learned from data. Consequently, we formally define the 

temporal visiting goodness function fvisit(s) of a route s=<(l1,t1), (l2,t2), ..., (ln,tn)>, as a 

combination of the popularity of places together with the fitness of each location over 

time, in the following equation. 

      ( )  (∏   ( (      
 )       

( ))  
 

   (  )

 

   

)

  
 

 

If the places in a route s are visited during the proper time period, the       ( ) value 

would become higher. 

 
Fig. 4. Examples of the temporal visiting distribution (TVD) (the green dotted curve) for a certain location 

li, and the duration distribution (DD) (the blue dashed curve) between location li and lj. The black solid 

curve represents a normal distribution of a particular time assignment to measure the fitness values. 

3.2.3 Proper Transit Time Duration 

To schedule a good trip route, another key element to be considered is the visiting 

time of each place as well as the transit time from one place to another. Although the 
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time-stamped location sequence data (user check-in data in this paper) cannot 

explicitly tell us the above two kinds of information, we can simply treat the duration 

between two checked-in places as the summation of the visiting time of the first place 

plus the transportation time from the first to the second place. Such duration can 

further be utilized to evaluate the quality of a trip. Here we propose the Duration 

Distribution, as defined in the following, to model such ‘visiting plus transit time’ 

between places. 

Definition 3.6 (Duration Distribution (DD) between Two Locations). We define the 

Duration Distribution (DD) between locations li and lj as the probability distribution 

over time duration  ,       
( ), which can be obtained from the following random 

experiment: randomly pick two consecutive location recording actions (li, ti), (lj,tj) of a 

person, and calculate the probability that tj-ti=t. 

 

Again, we consider only one-day trip, and therefore treat the outcome space of DD 

between hours 0 through 24. For example, any legal probability distribution between 

hours 0 through 24 can be a DD (e.g. the blue dashed line in Figure 4). 

 

Similar to what we do to TVD, given a pair of locations li and lj together with an 

assignment of a given time duration   among them, we can model   as a thin 

Gaussian distribution and compare it with       
( ) using symmetric KL divergence. 

Consequently, for a route s=<(l1,t1), (l2,t2), ..., (ln,tn)>, it is possible to know how good 

the route is based on the durations between places by defining a goodness function of 

duration: 

         ( )  (∏   ( (          
 )        

( ))

   

   

)

  
   

 

 

A route s with higher value of fduration(s) indicates such route can be visited with 

proper “transit+visiting” time between places. 

 

Here we use Figure 5 as an illustration to summarize our idea of utilizing TVD 

and DD to measure the goodness of a trip route. Given a route s=<(l1,t1), (l2,t2), ..., 

(ln,tn)>. We use symmetric KL divergence to measure the visiting fitness of each 

location li by calculating a DKL(li) value between TVDli and a narrow Gaussian 

distribution. We also use KL divergence to measure the fitness of each transition 

li→lj and derive a DKL(ij) between       
 and a thin Gaussian distribution. 

Eventually we compute the geometric mean of such DKL values to be the time-related 

route goodness. 



39:10                                                                                                                             H.-P. Hsieh et al. 
 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY 

 
Fig. 5. For a route s=<(l1,t1), (l2,t2), ..., (lk,tk)>, we compute 2k-1 values of KL-divergence and then take the 

geometric mean of such values as the time-dependent goodness of a route. 

 
3.2.4 Proper Visiting Order 

Due to the characteristic of each place, there might be certain latent patterns about 

the order of the places to be visited. With the time-stamped location sequence data, 

we are able to learn such orders and exploit them to evaluate the quality of a route. 

For example, going to restaurant for dinner and then going back to hotel is better 

than the other way around. In this section, we propose to exploit the idea of the n-

gram language model to measure the quality of the order of visits in a trip route. 

Using the location sequence corpus, we can first generate the n-gram probabilities of 

locations. Then, given a route s=<(l1,t1), (l2,t2), ..., (ln,tn)>, we can compute its n-gram 

probability. We consider such n-gram probability as the goodness of visiting order. 

Technically, we use the average value of the probabilities of uni-gram, bi-gram, and 

tri-gram to estimate the goodness of orders. Note that the uni-gram probability is 

corresponding to the popularity-based route goodness. We can formally write the 

probabilities as follows. 

 
    ( )      ( ) 

   ( )  ( (  ) (     ) (     )  (       ))
 
  

    ( )  ( (  ) (     ) (       )   (           ))
 
  

 

Therefore, the goodness of visiting order of a route can be defined: 

      ( )  
(    ( )     ( )      ( ))

 
 

Higher forder(s) value represents better quality of route. Note that we utilize the 

add-one technique for smoothing. Also note that since the trip route would not be too 

long, and visiting a certain place usually depends on only the previous and the next 

locations, we consider only up to tri-gram. 
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3.2.5 Final Goodness Function 

Here we integrate the goodness measures of the proper visiting time, the proper 

transit time duration, and the proper visiting order into the final goodness function 

 ( ). Our design of the route goodness function integrates these factors accordingly. 

We divide the goodness function into two parts and provide a weighting parameter 

for users to determine the significance and balance of such two parts. The first part is 

the average value of the temporal visiting goodness fvisit(s) and the location transition 

goodness fduration(s). The second part is the visiting order goodness forder(s). Note that 

the first part fvisit(s) is time-sensitive while the second part is not. We use a 

parameter         to devise a linear combination of such two parts. This parameter 

provides users the flexibility to specify whether they prefer the time-sensitive routes. 

The final goodness function  ( ) is defined in the following. 

 ( )    (
      ( )           ( )

 
)  (   )        ( ) 

 

A route   with higher value of  ( )  will be considered as a better route. 

Experiments in Section 5.3 suggest       being more effective on measuring route 

quality. Such result exhibits the usefulness of the proposed time-sensitive route 

recommendation. 

4. ROUTE CONSTRUCTION ALGORITHM 

In this section, we define the time-sensitive trip route recommendation problem 

based on the proposed route goodness measure. We design two types of queries, 

source query and source-destination query, which correspond to the two real-life route 

recommendation tasks. To solve such problems, we propose a route search algorithm, 

Guidance Search. 

 
4.1 Problem Statement 

We first provide the definitions of the source and source-destination queries in the 

following. 

Definition 4.1 (Source Query). The input consists of (a) the source/starting location 

Qs = (ls, ts), where ls contains the longitude and the latitude of such location, and ts is 

the starting time stamp (e.g. 8AM), and (b) The number k of locations in the final 

route to be recommended.  

Definition 4.2 (Source-Destination Query). The input consists of (a) the 

source/starting location Qd = (ls, ts, ld), where ls contains the longitude and the 

latitude of such location, ts is the starting time stamp (e.g. 8AM), and ld is the 

destination/end location, and/or (b) the number k of locations in the final route to be 

recommended.  

Both queries are very common for real-world trip planning. For source query, 

people might want to know where they can visit in a city given their available 

starting time. For the source-destination query, people might need to arrive at a 

destination place starting from the current place at a certain time, but want to know 

along the line where they can visit.  

 

Therefore, our trip recommendation system can be regarded as given (a) the 

routes extracted from the time-stamped location sequence data, and (b) either the 

source query Qs = (ls, ts) or the source-destination query Qd = (ls, ts, ld), the goal is to 
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construct a route sr = <(l1=ls,t1=ts), (l2,t2), ..., (lk,tk)> that optimizes f(sr). Note that lk is 

required to be ld for the source-destination query. 

THEORE 4.3. The Time-sensitive Route Construction Problem with the Source-

Destination Query is NP-hard. 

PROOF. We prove this theorem by a reduction from the Longest Path Problem 

(LPP) [Cormen et al. 2009]. In the decision version of LPP, we are given a weighted 

graph   (   ), where             is the set of nodes and   is the set of edges, as 

well as a source node    and a destination node   . Each edge (     )    is associated 

with a non-negative weight    . The length of a path   〈                〉 is 

defined by:  ( )  ∑       
   
   ,        . The objective is to find a simple path 

  (     ) (i.e., path without any repeated nodes) with the maximum length among all 

paths from    to    in  .  

Now we are transforming an instance of the LPP to an instance of our Time-

sensitive Route Construction problem with Source-Destination query    (        ), 
termed by TRCSD, as follows. Based on the route database constructed from user 

check-in sequences (the details is given in Section 5), we can build a graph   (   ), 
where   is the set of check-in locations and   is the set of edges connected by two 

consecutively visited locations (     ). Let      be the route starting from location    to 

   in  . Consider a special case of TRCSD: all the locations and all the routes 

between locations are visited once (led to       ( )    for any given route  ), and both 

the temporal visiting distributions on all the locations and the duration distributions 

between locations are generated by any kinds of monotonically increasing functions 

with respect to time (led to       ( ) and          ( ) are non-decreasing for any given 

route  , i.e.,       (      )        (        ) and          (      )           (        )). 

Therefore, the route goodness function  ( ) is monotonically increasing. Based on 

such special case, for every edge (     )    in LPP, we use the route goodness 

function  ( ) of TRCSD to create the corresponding edge weight    . By assigning the 

starting locations    and    in TRCSD to nodes    and    in LPP respectively, we 

compute the edge cost of edge (     )  by      (        )   (      ) . Hence, the 

graph   in TRCSD is identical to the graph   in LPP. Resulting from this mapping, 

we can find that there exists a path solution to the LPP problem with maximum path 

length if any only if there exists a route solution to the TRCSD problem with 

maximum route goodness. Therefore, the proof is complete.                                          

4.2 Route Construction Algorithm: Guidance Search 

We develop the Guidance Search algorithm to deal with the route recommendation 

task for the source and source-destination queries. The general idea aims to find a 

proper time-sensitive route (whose locations possess proper visiting time, transition 

time, visiting order, and higher popularity), and requires the constructed route to 

start from the source location for the source query (and finally reach the destination 

location for the source-destination query). Therefore, in addition to construct the 

route up to length k from the source location, we further need to implement a certain 

guiding mechanism to direct the search algorithm to move towards the destination if 

the destination is specified. To fulfill such goal, we develop a novel search algorithm, 

Guidance Search, which takes advantage of the idea of best-first search that attempts 

to find a least-cost path from a given initial node to the goal. The central idea of 

Guidance Search consists of two main parts. The first is to design the heuristic 

satisfaction function, which is in charge of the guidance to determine the next most 
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promising location towards the destination. The second is the backward checking 

mechanism that keeps the historical search tree (all the expanded routes starting 

from the source location) for reconstructing the route with higher satisfaction score.  

 

We first describe the deployment of the heuristic satisfaction function   ( ). Since 

our central goal is to recommend a trip route with a great time-sensitive satisfaction, 

we consider the time-sensitive route goodness function  ( )  (described in Section 

3.2.5) as the fundamental to design the heuristic satisfaction function   ( ). The 

input of the heuristic satisfaction   ( ) is a location  . The goal of   ( ) is to measure 

the satisfaction of selecting location   as the next visiting location considering the 

sub-route from the source location    to the location   and from the location   to the 

destination location   . On one hand, if only the former part (i.e., from    to  ) is 

considered, the source query can be tackled. On the other hand, we can address the 

source-destination query when both the former and the latter parts (i.e., from   to   ) 

are considered. 

 

   ( )  can be decomposed into two parts. The first is the time-sensitive route 

goodness function  ( )    (    ).  ( ) computes the goodness score of the sub-route 

starting from the source location    to the location  . The second is the heuristic 

function  ( ).  ( ) considers both the route goodness  (    ) and the geographical 

distance  (    ) of a sub-route from the location   to the destination   . The former 

part  (    ) aims to estimate the route goodness of a certain sub-route from   to   . 

The latter part  (    )  serves as the role of guidance. Specifically, we use the 

geographical distance between   and    as the steering force to direct the search 

process to move towards the destination location. When selecting next visiting 

location during the route construction, those locations with shorter distance to the 

destination has higher chance to be picked, if the rest of the criteria are equally 

satisfied. Moreover, because there could be many sub-routes from   to    in the route 

database, we will compute all the scores and take the best one as the final  ( ) value. 

Consequently, the heuristic function can be formally written as:  

 

 ( )     (    )  (    ) √ (    )  (   (    ))  

 

where  (    ) is the set of sub-routes starting from   to    extracted from all the 

routes derived from the time-stamped location sequence data. Note that the  (    ) 
is normalized to      . Eventually, we write down the final heuristic satisfaction 

function as: 

  ( )  (   )   ( )     ( ) 
 

where         is the weighting parameter to control the strength of the guidance 

to the destination. Higher   values indicate stronger guidance. When    ,   ( ) is 

considered as a greedy search with the backward checking mechanism, and can be 

utilized to tackle the source query (because in  ( )  function, no destination 

information is needed).  

 

Here we give an example to elaborate the idea of the proposed heuristic 

satisfaction function   ( )  for selecting the next visiting location towards the 

destination location in Figure 6. Assume our search is current at location      and has 

to find the next best location to expand from     . In the route database, assuming 

there are some candidate locations    ,   , ..., and    which have ever been visited after 
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    , then the satisfaction scores   (  ),   (  ), ..., and   (  ) can be generated. For 

instance, to derive   (  ), all the sub-routes starting from    and ending at    (such as 

                ,              , and                  ) are considered to find the one 

with the maximum score among them as the  (  ) value. On the other hand, we can 

derive  (  )    (     ) . Eventually we have  (  )  (   )   (  )     (  ) . By 

applying such computation process to    ,   , ..., and   , it is possible to choose the next 

visiting location with the highest satisfaction. 

 
Fig. 6. An example to elaborate the idea of the proposed heuristic satisfaction function for tackling the 

source-destination query. 

 

The backward checking mechanism is the key to the best-first search and can be 

applied to our route construction algorithm. Specifically, while exploiting the 

heuristic satisfaction function to choose the next location to visit, it is necessary to 

expand all neighbor locations to generate the corresponding satisfaction scores. We 

keep track of such scores in the expansion tree. When it is needed to select the next 

visiting location, not only the expanded locations from the current location, but also 

those had ever been expanded during the previous rounds can be considered. In other 

words, in addition to continue expanding the current location, the algorithm can 

possibly go backward to consider the previously expanded nodes for finding the ones 

with the highest satisfaction score. 

 

The Guidance Search algorithm to construct the route for tackling either the 

source query or the source-destination query is given in Algorithm 1. We first 

construct the initial route    by including the source location    (line 1). A 

              is employed for the purpose of the backward checking mechanism (line 

2). Each element in the               consists of a route   and the corresponding 

heuristic satisfaction score. The               automatically sorts its elements 

according to their satisfaction scores. We add    to initialize the              . After 

setting the final route    as the initial one    (line 3), we perform the iterative 

expansion search process until the route    is constructed up to length   (line 4-12). 

For each iteration, the last location       in the route    with the highest satisfaction 

score is identified (line 5 and line 12) and each possible next visiting location       is 

put into a candidate set   (line 6). Then for each candidate for the next location   , we 

can derive the heuristic satisfaction score   (  )  (if     , we set the weighting 

parameter     for the function   ; otherwise      ). We put   (  ) together with 

the corresponding route      into the               (line 7-11). The               
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will then pick the next best route and location to conduct the further expansions (line 

12). Finally (line 13), the route    is reported as the result of recommendation. 

ALGORITHM 1.  Guidance Search algorithm 

Input: (a) RouteDB: routes extracted from the time-stamped location sequences data; 

(b)    (        ): if     : the source query, 

if     : the source-destination query;  

(c)  : the number of locations in the final route   . 

Output: a time-sensitive route    〈(     ) (     )  (     )〉. 
   〈(           )〉.  
               (    ) . 
                       
while         OR          do: 

                              
                                          
        for each      do 

                        〈(     )〉. 

                        (  ). 
                                    ((          )). 

        end 
                              ()  
Return:       

 

Time Complexity. The time complexity of Guidance Search mainly depends on 

three parts: the number of search expansion  , the number of candidates of next 

location    , and the operation of the                (    (   )) , where   is the set of 

elements in the              . We can simply write down the complexity as  (  
        (   )). In the worst case, both the candidate set    of each next location and 

the number of search expansion could be all the locations in the route database. By 

denoting the set of all locations in the database as  , the complexity is  (     
    (   )) for the worst case. 

5. EXPERIMENTS 

5.1 Dataset and Data Analysis 

We utilize the Gowalla dataset [Cho et al. 2011] which has been exploited for 

location-based analysis in several places (such as [Scellato et al. 2010] and [Scellato 

et al. 2011]) to construct our time-sensitive route recommendation. The Gowalla 

dataset contains 6,442,890 check-in records from Feb. 2009 to Oct. 2010. The total 

number of check-in locations is 1,280,969. Considering a route as a sequence of 

check-in locations of a user within a day, we construct the route database RouteDB 

containing 1,136,737 routes whose length is more than one (the average length of 

them is 4.09). Figure 7(a) shows the distribution of the route length, which is highly-

skew and heavily-tailed. Figure 7(a) also shows that people usually do not prefer 

visiting too many locations in a day, but with some exceptions. Figure 7(b) shows the 

distribution of the time difference between the visiting of two places. It indicates that 

people consider places closer to where they are while planning the next destination. 
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         Fig. 7. (a):Distribution of route length.             (b): Distributions of time duration in RouteDB. 

 

We extract three subsets of the check-in data, which corresponds to cities of New 

York, San Francisco, and Paris. Some statistics are reported in Table II. Figure 8 

shows the distribution of route length in the three subsets of check-in data while 

Figure 9 shows the distribution of the time duration. 

 

Table II. The statistics of RouteDB and the three subsets 
 Total Number  

of Check-ins 

Avg. Route  

Length 

Variance of Route 

Length 

RouteDB (all data) 6,442,890 4.09 48.04 

New York  103,174 4.46 71.24 

San Francisco  187,568 4.09 58.36 

Paris  14,224 4.45 75.73 

 

 
Fig. 8. Distribution of route length for 3 cities. Fig. 9. Distribution of time duration for 3 cities. 

 

5.2 Evaluation Plan 

In this section, we introduce two experiments to test the effectiveness of our goodness 

model and demonstrate the performance of the proposed search methods. In the first 

experiment, we conduct the pairwise time-sensitive route detection to compare 

the quality of our goodness model with several baseline methods. In the second 

experiments, we design the time-sensitive cloze test of locations in routes to 

validate the quality of the recommended routes by our search algorithm, comparing 

to not only our previously proposed greedy method [Hsieh et al. 2012] but also a 

series of baseline methods. We show the results in Section 5.3 and provide some 

discussions in Section 5.4. 

 

Experiment 1: Pair-wise Time-sensitive Route Detection. In this 

experiment, we would like to verify whether our goodness model can rank the 

existing routes higher than the non-existing ones. We first randomly choose one 

thousand real routes from the check-in data. Note that the time stamp is associated 
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with each location l. For each route, we replace a portion of the locations with other 

locations in the same city to generate a pseudo route. Note that each existing route 

will be paired with a pseudo route. To make the task non-trivial, we adopt a 

replacing strategy to replace a location with a ‘plausible’ one instead of a randomly 

selected one. That is, to replace a location at position i of a route, we only choose from 

candidate locations that have ever appear right after the location at position i-1 (e.g. 

the bigram probability of them is non-zero). Furthermore, after the replacement, we 

double-check to make sure the generated pseudo routes do not exist in the database. 

That is, there is no such route in the database of the same location sequences 

together with the same associated time stamps. As can be seen in Figure 10 to 12, the 

amount of replaced locations occupies from 10% to 50% of a route. That is, for each 

route at least half of the locations are correct. We then use our goodness model to 

examine each pair of the existing route and its pseudo route, and record how 

frequently our method ranks the correct one higher. Finally, we report the accuracy 

of our method and compare it with the baseline results. The accuracy is defined as 

the number of correctly ranked pairs (i.e. an algorithm assigns higher score to the 

existing route than the pseudo route) divided by the total number of pairs. 

 

Similarly, we can generate another kind of pseudo route by perturbing the time 

stamps of certain locations in an existing route. For example, given an existing route 

s=<(l1,t1), (l2,t2),… (li-1, ti-1), (li,ti), (li+1,ti+1),..., (ln,tn)>, we change ti to a different time tj, 

where ti-1 < tj < ti+1. We expect a proper fitness function to assign lower score to such 

pseudo routes. In general, the baseline approaches cannot handle the case of time 

perturbation so that the identification rate is 50%. 

 

Experiment 2: Time-sensitive Cloze Test of Locations in Routes. Given 

some real trip routes with time stamp in each location, through randomly removing 

m consecutive locations in each route, it is possible to test whether a method can 

successfully recover the missing locations. With the increasing of m, consecutive 

removal of locations does impose decent level of difficulty to this cloze test. It is 

because that when m increases, the information that can be utilized becomes sparse, 

and mistakes in the earlier position can lead to follow-up errors in the next positions 

to be predicted. Here we use the Hit Rate as the accuracy measure for this cloze test. 

Given there are totally N removals of locations over all routes, and assumed M places 

out of N is successfully predicted, the hit rate is defined as M/N. Higher hit rate 

indicates better quality of recommendation. For each city, we extract all the existing 

routes of length is larger than 6 for experiments. There are a total 3702 routes with average 

route length 10.26 for this experiment. Note that when there are multiple missing places 

in the cloze test, we only consider the fully-recovered sequences as hits. For instance, 

if the system fills (A X Y Z E) in a cloze route (A_ _ _ E) while the original sequence 

being (A B C D E), all X Y Z will be considered as missing even another sequence (A 

B Y D E) exists in the database. 

 

Baseline Approaches. To evaluate the effectiveness of our method, we design 

the following four baseline methods. 

— Distance-based Approach. This method chooses the closest location to the 

current spot as the next spot to move to. It rates a route using the goodness 

function   ( )  (∏
 

 (       )
 
   )

 

 , where  (       )  is the geographical distance 

between two consecutive locations. 
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— Popularity-based Approach. This method chooses the most popular spot of a 

given time in that city as the next spot to move to. It rates the path using the 

goodness function     ( ) as have been defined previously in Section 3.2.1. 

— Forward Heuristic Approach. The forward heuristic chooses a location li 

that possesses the largest bi-gram probability with the previous location 

 (       ) as the next location to move to. Its goodness function is      ( )  

   ( ), as defined previously in section 3.2.4. 

— Backward Heuristic Approach. The backward heuristic chooses a location li 

that possesses the largest bi-gram probability with the next location  (       ) 
as the next location to move to. The fitness function can be described 

as      ( )  ( (     ) (     )  (       ))
 

 . 
 

5.3 Experimental Results 

Section 5.3.1 shows the results of pairwise route detection and Section 5.3.2 presents 

the outcome of cloze test. For both experiments, we implement four baseline methods 

to compare with. We also compare our method with the greedy search method of our 

previous work [Hsieh et al. 2012]. 

 
5.3.1 Pairwise Time-sensitive Route Detection 

We first vary the number of replaced locations from 10% to 50% and report the 

accuracy of different methods. We set α of our goodness function as 0.5. Figure 10 

contains the results for San Francisco City. Our fitness model achieves around 98% 

accuracy in distinguishing the real routes from replaced ones. The accuracy scores of 

the forward and backward heuristics reaches about 80%. The popular-based and 

distance-based methods do not do a good job as they only reach 50% or lower in 

accuracy. Similar trend happens in New York and Paris (Figure 11 and 12). The 

results are not surprising because our method does consider the location preference 

over time and location order. 

 

 
Fig. 10. Accuracy by varying the number of replaced locations in San Francisco. 
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Fig. 11. Accuracy by varying the number of replaced locations in New York. 

 
Fig. 12. Accuracy by varying the number of replaced locations in Paris. 

 

Figure 13 shows the results of creating pseudo paths by shifting time stamps for 

some locations in three cities. Again we vary the ratio of change from 10% to 50%. 

The results show that our model can almost perfectly detect such change, better than 

the popularity-based method (around 15% accuracy). The other competitors, such as 

distance-based, forward heuristic and backward heuristic methods do not have the 

capability to distinguish such pairs because they do not consider time information 

during route generation, and therefore their can only achieve 50% for such pair of 

routes in Figure 13. 

  
(a) New York                                                               (b) Paris 

 
(c) San Francisco 

Fig. 13. Accuracy by varying the number of replaced time stamp for our method in (a) New York (b) Paris, 

and (c) San Francisco. 
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5.3.2 Time-Sensitive Cloze Test in Routes 

In cloze experiment of locations in routes, we first report the hit rate in three cities 

by varying   (i.e., the weight for  ( )) from 0 to 1, as shown in Figure 14 to 16. Our 

goal is to investigate whether the heuristic function  ( ) mentioned in Section 4.3 can 

improve the hit rate. We set the number of missing locations as 3 and   (for goodness 

function) as 0.5. The results indicate that increasing the weight of a heuristic 

function  ( ) provides a positive influence to the performance. When  =0.5, it can 

consistently produce the best (or close to the best) results. The hit rates of the four 

baseline models are lower than 3% in these three cities. Moreover, we compare this 

with a greedy-based approach proposed previously by ours [Hsieh et al. 2012], and 

found that our search can consistently outperform the previous method. It is not 

surprising because the previous greedy method does not embed a heuristic function 

to consider the quality of selection to the destination. 

 

 
Fig. 14. Hit rate by varying the varying the weight of    in New York. 

 
Fig. 15. Hit rate by varying the weight of   in San Francisco. 

 
Fig. 16. Hit rate by varying the weight of   in Paris. 
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Next, we vary the number of missing instance per route and report the hit rate in 

three cities. Here, we set the weight of   as 0.5 (i.e., the  ( )  function and  ( ) 
function is considered as equally important). General speaking, the hit rate of each 

methods is decreasing while the number of missing instance increases. Our proposed 

method still outperforms the greedy search method [Hsieh et al. 2012] and other 

baselines significantly. The results in three cities are shown in Figure 17 to 19. 

 

 
Fig. 17. Hit rate by varying the number of guessing instance per route in New York. 

 

 
Fig. 18. Hit rate by varying the number of guessing instance per route in San Francisco. 

 

 
Fig. 19. Hit rate by varying the number of guessing instance per route in Paris. 

 

5.4 Discussions 

5.4.1 The relationship between  ( ) and  ( ) 

While sequentially recommending the route, our search model utilizes destination 

information  ( )  as heuristics. In this section, we would like to investigate the 

interaction between  ( ) and  ( ) of through varying  . 
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Given a random chosen source location, destination location and starting time, we 

exploit the Guidance search to recommend a route r. In this discussion, we generate a 

total of 1000 routes, and control the route length so that there are 200 routes each for 

the length from 4 to 8. 

 

In Figure 20, we vary the parameter   for the Guidance search and examine the 

corresponding  ( ) score as well as the time needed to produce a route in New York 

city. Similarly, same settings are applied to San Francisco and Paris city. The results 

are reported in Figure 21 and 22. It shows that when   becomes larger, it considers 

to pay more attention to the heuristic satisfaction score  ( ), rather than simply 

optimizes  ( ). Therefore,  ( ) decreases as   increases. 

 

 Because the  ( ) function utilizes the destination information to guild the search, 

increasing   (i.e. emphasizing on h) allows us to reach the destination more quickly. 

However, it pays the cost of not optimizing the fitness function  ( ). Figure 20 to 22 

demonstrates that by setting for an inferior  ( ) value, we can indeed improve the 

efficiency through increasing     

 

 
Fig. 20. Score of  ( ) for Guidance Search and the corresponding average construction time by varying   in 

New York. 

 
Fig. 21. Score of  ( ) for Guidance Search and the corresponding average construction time by varying   in 

San Francisco. 
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Fig. 22. Score of  ( ) for Guidance Search and the corresponding average construction time by varying   in 

Paris. 

5.4.2 Impact of α for cloze experiment 

We examine how sensitive the Guidance Search is to the parameter α (higher α 

means we pay more attentions to time-sensitive route), ranging from 0 to 1. We 

evaluate on the hit rate of the cloze test, and display the results in Figure 23. In New 

York and Paris, the best α value is around 0.9. That is, time-sensitive information is 

preferable than the visiting order on the cloze test task. In San Francisco City, α 

performs well at 0.5. 

 
Fig. 23. The impact of α for our Guidance Search method on the time-sensitive cloze test for the three cities. 

 
5.4.3 The approximation ratio of Guidance Search compared with Exhaustive Search 

In this section, we conduct an evaluation to measure the closeness of Guidance 

Search and other baseline methods towards the optimal route (i.e. the route that 

maximize the goodness function) generated by exhaustive search. We randomly 

generate 1000 queries from each city and compare the goodness scores of the 

proposed Guidance Search, f(sGS) and other baseline methods. Since the 

optimization problem is NP-hard, we obtain the optimal solution relying on the 

exhaustive search method. We can then calculate the approximation ratio (from 0 to 

1) as how close is the goodness measure of each method toward the optimal goodness 

value. In Figure 24, we vary the parameter   for the Guidance search and examine 

the corresponding approximation ratio. In general, the approximation rate for our 

Guardian Search outperforms the other methods when   ≤ 0.8, and reaches as high 

as 87% optimal when   is around 0.4. In addition, the results show that the proposed 

Guidance Search is actually an efficient search process (average route construction 

time <=0.0043 second, which is 65814 times faster than Exhaustive Search which 

teaks on the average 283 seconds.) due to the imposition of the heuristic function  ( ) 
into the best-first search mechanism. 

0.0037

0.0038

0.0039

0.004

0.0041

0.0042

0.0043

0.0044

0.63

0.64

0.64

0.65

0.65

0.66

0.66

0.67

0 0.25 0.5 0.75 1

A
vg

 R
o

u
te

 C
o

n
st

ru
ct

io
n

 T
im

e(
se

c.
) 

Sc
o

re
 o

f 
g(

x)
 

β 

g(l)

Avg Route Construction Time

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0 0.1 0.3 0.5 0.7 0.9 1

H
it

 r
at

e
 

α value 

New York
San Francisco
Paris



39:24                                                                                                                             H.-P. Hsieh et al. 
 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY 

 
Fig. 24. The approximation ratio of all methods compared with the Exhaustive Search. 

 
5.5 User Study 

We conduct a user study to test whether the time-sensitive routes recommended by 

the proposed algorithm are rational, useful and acceptable to users. For each city, we 

randomly select two paired locations as source-destination to construct the routes for 

user study. The route length varies from 4 to 7. For comparison, we produce four 

routes for the user study. The first three routes are generated by our Guidance 

Search method with      ,       and    . The fourth is the popularity-based 

route construction which sequentially selects the most popular neighbors and the 

corresponding most popular visiting time slots. We invite 10 people to conduct the 

user study. The evaluation criteria for the user study includes the location popularity, 

visiting order, visiting time, transition time, whether moving towards destination, 

and the overall acceptance of the recommended route (see Table III for details). For 

each user, we ask him/her to give the 0~5 score to each criterion/question for each 

constructed route. Higher score represents better satisfaction for such criteria. Each 

user will provide 6 (criteria)*3(cities)*2(routes)*4(models) =144 scores. Finally we 

report the average value for each criterion in Figure 25. 

 

Table III. The criteria and the corresponding questions for user study. 

Criteria Question 

Location Popularity (LP) Do you think these recommended locations are popular ones? 

Visiting Order (VO) Is the visiting order of locations in the route suitable/acceptable? 

Visiting Time (VT) How do you feel about the visiting time of locations in the route? 

Transition Time (TT) Do you think the transition time between locations is rational? 

Towards Destination (TD) As traveling along the route, does it guide you to the destination? 

Overall Acceptance (OA) If you are a traveler, do you want to adopt this route? 

 

                  
Fig. 25. Results of subjective evaluation for four methods. 
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In general, our method with       produces scores greater than 4 for all the 

criteria. For the case of    , it also gets high score for LP, VO, VT and TT. However, 

it does not consider the distance between current location and destination, and 

therefore cannot guide users toward destination. The proposed method with     

has highest score for TD since it emphasizes on the heuristics that utilize the 

destination information. However, its scores for other criteria are lower than those of  

    and      . The baseline method, popularity-based route ensures that the 

visiting locations associated visiting time stamps are popular, but the scores for the 

remaining four criteria are significantly lower. The user study gives us a quick view 

that the   can be set as 0.5 to achieve a better satisfaction score. 

6. SYSTEM DEMONSTRATION 

Using our model, we develop an online time-sensitive trip route recommendation 

system, called TripRouter. The system snapshot is shown in Figure 26. In TripRouter 

users first determine the city they intent to travel, and then select one location as 

their starting location, together with the starting time. TripRouter allows users to 

specify their destination and the desired number of places to visit during a trip. We 

list the three major functions of TripRouter as below: (a) time-sensitive route 

recommendation, (b) displaying diverse information of locations and routes such as 

location attributes, route statistics, and some geo-tagged photos obtained from Flickr, 

and (c) recommending the transportation mode by querying Google Map API 

according to mined transit time duration. 

 

 
Fig. 26. The system interface of TripRouter. 

 

Below we vary   as 0, 0.5 and 1 to show three recommended routes querying from 

Central Park to Time Square starting at 10AM using Guidance Search method , 

where and the route length k is set to 4. The corresponding paths are highlighted 

with blue and shown in Figure 27 (a)(b)(c). 
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Route 1. (   ): Central Park (10AM) →Metropolitan Museum of Art (1PM) → 

American Museum of Natural History (4PM) → Time Square (9PM). 

Route 2. (     ): Central Park (10AM) → 5th Ave (1PM) → New York Public 

Library (5PM) → Time Square (7PM).  

Route 3. (   ): Central Park (10AM) → New York Public Library (2PM) → Bryant 

Park (7PM) → Time Square (9PM). 

                             

 
Fig. 27. Three recommended cases for varying  .  

(a)                                          (b)                                              (c)    . 

 

For    , it pays most attention to fit the time-sensitive score,  ( ). Therefore, for 

every visiting location, it will try to find a fitting score considering proper visiting 

time, transit time, visiting order and popularity. However, it can produce longer 

transit time to the final destination. The overall distance for route 1 is relatively 

large (3.9 miles, almost twice as much as the other cases). The     case provides 

routes for users who have much traveling time, and care about time-sensitivity of 

locations.  

 

    finds shorter route to the destination However, the visiting time, transit 

time, visiting order and popularity are not considered since it does not include 

 ( )            . The overall distance for route 2 is 2.1 miles.     is moe suitable for 

people who prefers to go to the destination sooner than later, but still wants to visit 

some places along the route. 

 

The case of        is suitable for general travelers because it tries to strike a 

balance between  ( ) and  ( ). The overall distance for route 3 is 2.6 miles and the 

time-sensitive factors are considered. 

 

Moreover, our system allows users to dynamically specify where they would like to 

go during the journey. Such user-feedback functions can easily be achieved by 

combing the source and source-destination queries. 

7. CONCLUSION 

This paper tries to address an important research question: can we measure and 

construct the time-sensitive trip route that considers the visiting time of each place 

for trip recommendation? Note that our approach is mostly data-driven, which 

assures diverse results can be learned from different cities in which visiting patterns 
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may vary with different culture and characteristics of the city. Moreover, despite that 

we emphasized on the check-in data in our experiments, in fact any kinds of route 

data can be exploited in our framework. For example, the GPS trajectory data can be 

used if we can perform some pre-processing in advance to identify the main locations, 

to compensate some of the drawbacks from the check-in data (e.g. missing records, 

coarse granularity, and noise). Our future works are focusing on three directions: (a) 

improving the quality of the check-in routes by detecting missing-locations in routes 

(b) using maximum likelihood estimator to accurately model the visiting time 

duration of a place and transportation time between places, and (c) exploiting the 

collaborative filtering approaches to take advantage of the user and location 

similarities. 
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