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We are experiencing the expanding use of location-baseadcesrsuch as AT&T TeleNav GPS Navigator and Intel's
Thing Finder. Existing location-based services have ctdlk a large amount of location data, which have great gatent
for statistical usage in applications like traffic flow ars$y infrastructure planning and advertisement disseinimaThe
key challenge is how to wisely use the data without viola#agh user’s location privacy concerns. In this paper, we firs
identify a new privacy problem, nameiyference-routgroblem, and then present our anonymization algorithmprfeacy-
preserving trajectory publishing. The experimental rssuhve demonstrated that our approach outperforms ttet tatated
work in terms of both efficiency and effectiveness.
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1. INTRODUCTION

The extensive use of location-based services, such as ARSENEv GPS Navigator, Sprint's Fam-
ily Locator, and Intel's Thing Finder, have collected a amount of location data. If information
like vehicle IDs and moving directions on roads can be phblis people in many fields will benefit
from it. For example, with respect to the public sector ficdfow information can be extracted from
published IDs and moving directions. Such information pifly an important role in infrastructure
construction and traffic light control. With respect to thesiness domain, traffic information can
help decide the location of company branches, and also éskmients can be customized and dis-
seminated at the most advantageous locations. With repeat daily lives, traffic information is
certainly useful for detecting and predicting traffic jamgdacalculating better routes for travelers
[Xue et al. 2013a; Xue et al. 2013b] or in an emergency (ecg.afmbulances). However, in the
meantime, location privacy concerns [Mokbel 2007; Tan€& Huo et al. 2013] may hinder the
development of such attractive usage of traffic informatibis well known that using a pseudonym
is not sufficient to prevent the linkage of a published lamato a real ID [Bettinil et al. 2005]. The
key challenge is how to wisely use the location data withdalating each user’s privacy concerns.
This problem is termed gwrivacy preserving historical location data publishing

Historical location data forms a sequence of locations imblogical order, termed dgajec-
tory. In general, one’s trajectory consists of roads he hasedsitor instance, in Figure 1, user
u1's trajectory can be represented B4BC and userny’s trajectory isABD. Many approaches
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Fig. 1. An Example of Inference-Route Problem

[Wei et al. 2012] have been proposed to construct populaesduom trajectory datasets. Publish-
ing trajectories consistent with the road network will eleathhe data mining algorithms to extract
more precise routes patterns in comparison to represeatirajectory as a sequence of symbols
[Andrienko et al. 2009]. After taking into account the payaconcerns, the goal becomes to prevent
adversaries from mapping published locations to a speaifiividual.

One may think that a trajectory resembles a conventionalesgdpl pattern. Hence, a naturally
raised question is that if we can directly employ privacysereing data publishing approaches
[Agrawal and Srikant 2000; Atzori et al. 2008; Pei et al. 200&ki 2001] developed in non-spatial-
temporal databases? The answer is negative, and the maonrisathat a trajectory distinguishes
itself from the conventional sequential patterns due tatamtdl constraints (e.g., road-network in-
formation) which do not exist in the traditional sequenéésre specifically, elements in traditional
sequences are usually independent of one another, whilelttimnship of elements in the trajectory
sequence is fixed under a particular road-network informmafi herefore, we cannot use traditional
algorithms to arbitrarily remove or replace elements indbguences because such operations will
create unrealistic trajectories consisting of non-cotettmad segments.

There have been several recent efforts [Abul et al. 2008pfaldi et al. 2007; Terrovitis and
Mamoulis 2008; Nergiz et al. 2009; Andrienko et al. 2009] grm@ymizing trajectories. Some
work [Terrovitis and Mamoulis 2008] considers trajectsras a sequence of landmarks, e.g., stores
and museums, which ignore the paths connecting these platesrs [Abul et al. 2008; Gidofalvi
et al. 2007; Andrienko et al. 2009] consider trajectoriea agquence of coordinates in Euclidean
space but do not fully consider the road-network constsaiBpecifically, their anonymization re-
sults mainly provide movement trends (e.g., centroid obtelts of trajectories [Monreale et al.
2010]). Since the centroid of clusters could even be off r@ag., a middle point of two parallel
roads, it is hard to tell the actual roads that a group of \lekiare traveling from the anonymized
results. Consequently, such anonymization results mapeas useful as real trajectories in terms
of providing good insight on traffic condition analysis fadividual roads, and traffic lights place-
ment. Therefore, in our work, we ensure that the anonynamaiutput is also trajectories on real
road-network.

In the literature, there is very few works that generate a@atoad-network-constrained trajec-
tories as the anonymization output. The most recent one Bdmsa et al. [Pensa et al. 2008],
who anonymize trajectories based kranonymity [Sweeney 2002]. The notion kfanonymity
guarantees that each anonymized trajectory is a commaattoay of at least users, and such
anonymized trajectories are called frequent trajectoHesvever, their approach may not preserve
trajectory information as much as possible. This can be dsitnated by the example given below.

In[Pensa et al. 2008], trajectories are stored and anorgghiy using a prefix tree which may not
be an appropriate structure to model the road-network.stance, consider four users who leave
theirhomesl, J, K, A) and head for work. Let be 3, which means a trajectory can be published if
at least three users have this trajectory. Suppose thatpiéto their algorithm is the following four
trajectoriesu, (I ABC), us(JABC), us(K ABC) andu,(ABD)?, their anonymization result will

Luy, uz, uz anduy can be thought as either a trajectory ID or a person’s symhbbli
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be an empty set since the prefix tree treats trajectoriesdiffégrent starting points independently.
Such result obviously loses too much useful informationa&bieve better information utility, an
alternative way is to directly take partial trajectoriesigsut, i.e., consider only busy roads with
more thank users. In this case, the input becomg$ABC), uz(ABC), us(ABC) andu4(AB),
and the new anonymization resultis;(ABC), u5(ABC), u5(ABC) andu)(AB), which is more
meaningful than the previous empty set.

In addition, since road maps can be found everywhere, indheath of privacy-preserving loca-
tion publishing, it is reasonable to assume road-netwddeimation is available to any adversary.
Thus, cautions are very much needed when publishing anaeghtiajectories. For instance, let
us continue from the previous example and assume that thlen@iavork in Figure 1 is accessible
to an adversary Bob. If Bob observes that Alice passes by Adaand BD at similar time every
weekday, then Bob can infer thaj is Alice who is the only one with trajectory enteridgD in
this published dataset. Upon knowing the anonymous ID of€AlBob can track Alice’s remain-
ing trajectories in the published dataset. Timference-route problens caused by the fact that
an adversary can infer someone’s unpublished trajectiydasthe published location dataset. Be-
cause the inferred trajectories are infrequent (i.e., reotynusers have such trajectories), with high
probability, these trajectories, combined with certaiteexal knowledge, can be used to identify a
particular individual’s trajectory information in the plighed dataset. In general, given a threshold
k, if the attacker can link any anonymous ID to Alice with prbbigy greater than}; by using the
above method, then we say there is an inference-route pnoble

In this paper, we address the problem of privacy-presendogtion data publishing under the
assumption that road-network data are public informat{dur approach has three main proper-
ties: (1) it guarantees-anonymity of published data, (2) it avoids the inferencate problem,
and (3) the anonymization results follow the road-netwankstraints. The basic idea is to employ a
clustering-based anonymization algorithm to group sintigectories and minimize the data distor-
tion caused by anonymization through a careful selectioepfesentative trajectories. We propose
a C-Tree (Cluster-Tree) to speed up the clustering proaagslavelop methods to incrementally
calculating error rates.

A preliminary version of this paper appears in [Lin et al. @)Wwhere we presented the basic
idea of the trajectory anonymization. In this paper, we nthkefollowing additional contributions.
First, we proved that the anonymization result of our apphcgatisfies strick-anonymity. Sec-
ond, we improved the anonymization approach by taking istmant both global and local error
rates. Third, we proposed a method to automatically detexthie threshold used during clustering.
Fourth, we conducted an extensive experimental study dimofudetailed analysis of our approach
and comparison to the most recent related work by using hotthstic and real datasets. In addi-
tion, we also provide more detailed description of our athaons.

The rest of the paper is organized as follows: Section 2 wevielated work. Section 3 gives
the problem statements. Section 4 presents our proposedaabp Section 5 reports experimental
results. Finally, Section 6 concludes the paper.

2. RELATED WORK

Most existing works on privacy-preserving location puliligy consider trajectories represented as
sequences of coordinates and output anonymization resutie form of cloaking regions or cen-
ters of clusters. However, these approaches do not gerseratymized trajectories that follow the
road network constraints. Their anonymization resultsemnee the user privacy but are not ben-
eficial for traffic analysis on individual roads, while ourajas to achieve both. In what follows,
we give an overview of these approaches. In [Gidofalvi e2@07], the spatial-temporal cloaking
technique is applied to generate cloaking regions covesgugnents of trajectories. In [Abul et al.
2008; 2010b], Abul et al. consider a trajectory as a cylicalrvolume where the radius represents
the location imprecision. Then they perturb and clustgettaries with overlapping volumes to en-
sure that each released trajectory volume encloses atdeastother trajectories. In [Nergiz et al.
2009], each trajectory is an ordered set of spatio-tem@@alolumes(e.g. points). It adopts a con-
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densation based grouping algorithm for trajectbrgnonymity. Each cluster is then anonymized
which ensures optimal point matching that will minimize tlog cost. Finally reconstruction is
deployed to output atomic trajectories to ensure privatyfMonreale et al. 2010], Monreale et
al. cluster trajectories and transform them into into a sege of centroids of Voronoi cells. Such
anonymized trajectories are no longer real trajectoriégyTcan be located even in the middle of
two parallel roads. In [Domingo-Ferrer and Trujillo-Rafd 2], trajectories are clustered based on
a distance function and then a location time triple in an gnared trajectory is replaced by an ex-
isting triple with close proximity in original trajectoryptsatisfy k-anonymity. However, two triples
though close in proximity may belong to two different roadd &ence making it easy for the adver-
sary to identify fake trajectories given the road map is mljoknown. In [Abul et al. 2007], Abul
et al. used a coarsening strategy which removes one or matialgpoints in a trajectory to achieve
anonymization. An anonymized trajectory may contain dis@zted paths. This is different from
our approach which preserves continuous trajectorieslmsead-network information. Similarly,
in [Mohammed et al. 2009], Mohammed et al. adopt a greedyrigfgo to suppress locations in the
trajectories to achieve anonymity. However, using supgioesalone may decrease the utility of the
anonymization results. They did not provide any experirkstudy to prove the effectiveness of
the approach. Unlike the previous works which are based @sithilarity of trajectories, Yarovoy
et al. [Yarovoy et al. 2009] group trajectories based onated quasi-identifiers which is hard to
be selected in practice.

Some other works consider trajectories that are represegteandmarks or locations of interests.
However, such kind of trajectories provide mainly movindteans rather than real trajectories as
considered in our work. For example, [Andrienko et al. 2G#8isiders various behaviors of moving
objects like positions of start and end, significant turng significant stops to cluster the trajecto-
ries. [Monreale et al. 2011] proposes a generalizationaggtr of semantic trajectories, temporally
ordered sequence of important places visited by a movirgpohijith the help of a places taxonomy.
However, even though a sensitive location for instance acol@gy clinic may be generalized to
Clinic, there may be only one clinic at that location and feean adversary could still reveal the
sensitive information. Two other related works used timafasion and path confusion respectively.
The time confusion approach [Hoh et al. 2007] mixes locasimmples of different trajectories, and
the path confusion approach [Hoh and Gruteser 2005] crpsdhs in areas where at least two users
meet. The main problem of the two approaches is that traffiesflare no longer preserved.

In addition, a few works make the assumption that attackave lcertain prior knowledge and
take such prior knowledge as input for anonymization, whbile anonymization is more general
and does not need such assumptions. For example, in [Tesraad Mamoulis 2008], Terrovitis
and Mamoulis assume that the adversaries know partiattoageinformation of some individuals.
They use it as part of input to their anonymization algoritl8ach usage limits the generality and
feasibility of their approach. In [Abul et al. 2010a], trejeries are consistent with the road network.
However, the work serves a completely different purposepared to our work. They hide the
sensitive patterns from spatio-temporal patterns by takigiven set of sensitive patterns as input
parameters whereas our approach does not assume such kridrdnowledge. In [Chen et al.
2011], Chen et. al. propose algorithm to publish trajecttata which is differentially private by
adding noise to a prefix tree under Laplace transform. Thgir@ach has a totally different privacy
preserving goal compared to our work.

The most related work is by Pensa et al. [Pensa et al. 2008} proposed a prefix-tree based
anonymization algorithm which guarantdeanonymity of the published trajectories in a way that
no trajectories with support less tharwill be published. They defined the support of a trajectory
T'rj as the number of trajectories containifigj, which however causes the inference-route prob-
lem. Here, we can see that how the concept-ahonymity is applied will affect the quality of the
anonymization result.

To sum up, our work is superior to existing works in terms effibllowing two major aspects: (1)
our anonymized trajectories follow road-network constimand hence are more effective for traffic
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analysis; (2) our anonymized trajectories prevent infeegoroblems that have never been studied
by any others before.

3. PROBLEM STATEMENT

In general, raw data collected by location-based apptinatcontains user (object) information as a
four-tuple(I D, loc, vel, t), wherel D is the object IDJoc andvel are object location and velocity
at timestampt respectively. The anonymized dataset contains objectrivdtion in the form of
(aid, rid, dir, t;ne), Whereaid is an anonymized object IDyid is a road ID,dir is the object’s
moving direction, and;,,; is a time interval that includes the object actual travetine ¢. Here,
for privacy concerns, we replace specific locations andoités by road ID and moving direction;
we anonymize trajectories in the same time intetygl to preserve the time relationship among
trajectories. Such representation is sufficient to derajettories or traffic flow information.

The road network is modeled as a directed graph, where eaghcedresponds to a road with
objects moving at one direction, and each node represerntgearection. Specifically, an edge is
represented ag;7;, which means objects move from nodgto noden;. Each directed edge is
given a road IDr;.

We next define the frequent road and inference-route prablem

DEFINITION 1. LetW be a time interval, and lét be a threshold. We say a road is a frequent
road if the number of moving objects moving along one dimtidn this road is no less than
within time . We call the number of moving objects the frequency of thelroa

In case the trajectory dataset covers a long time frame ¢eygs, weeks or months), we will
divide the time frame into shorter intervals (e.g., hours) anonymize trajectories falling into the
same time interval. The motivation is that trajectoriesristzaroads may not have enough impact
on each other if they are far apart temporally. The unit ofsitin of time frame should be selected
such that trajectories sharing roads may influence each othearious conditions like increase in
traffic or accidents. We support two types of time dimensiartifloning. One is to let users define a
time frame which depends on their time period of interesttaedther is that we uniformly divide
the time frame. The unit of division we chose is one to five kour

DEFINITION 2. LetY be an intersection of roads, ..., 7,,, and IetUz.*, U;” be the sets of
objects moving toward and outwa?@ on roadr; (1 < i < m) during W, respectively. I3 U;",
U U >k, US| > k,and (0< |U;" —U;"| < kor0< |U; —U;"| < k), then we sayl’ has an
inference-route problem.

In the above definition, the constraints| > k, \U;"| = k ensure that only frequent road seg-

ments are considered, and(QU;" —U"| < kor 0< |Uj’—Uf| < k) checkifthereis an inference-
route problem. To have a better und’erstanding, let us tekisiexample in Figure 1. Nod® is an
intersection of three roads. On rodd, Uz = {u1,u2,us, us}; on roadBC, Ug-={u1,u2,us}.
SinceU |z — Uge = {ua}, [Usp — Ul = 1< k, nodeB has an inference-route problem.

Next, we present how to evaluate the quality of the anonydmiz¢aset of trajectories. Intuitively,
the less difference between the anonymized dataset anditfieab dataset, the better quality the
anonymized dataset is. Therefore, we use two commonly &atepetrics: average error rate and
standard deviation. Suppose there &reoads (or edges in a road-network graph) ancepresents
roadi. Let original,, andanonymized,, denoter;’s original frequency and frequency after the
trajectories have been anonymized. Thenin Equation 1rtbefenction is defined as the average
difference betweenriginal,, andanonymized,, (i.€., E;), ando is the standard deviation of the
error rates. A low standard deviation indicates that thengnozation quality of each road is similar
and close to the average error rate.
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4. OUR APPROACH

In this section, we present our anonymization algorithntoltsists of two main steps. First, we
partition the time axis into intervals, and group recordthimi the same interval. In each obtained
sub-dataseD, we remove records associated with infrequent roads,roads with less thark
objects within same time interval. We denote the obtaineas#d as)’. In D’, we construct partial
trajectories for the remaining objects based on movingctioas. Note that one user may have
several disconnected partial trajectories because he miysome infrequent roads. Each partial
trajectory will be assigned an anonymous ID. For the resthefpaper, words “trajectory” and
“partial trajectory” are interchangeable.

The second step is the core of the anonymization process. rdf@oge a clustering-based
anonymization algorithm which guarantees that by achgginict k-anonymity (defined in Sec-
tion 4.1) among partial trajectories, our anonymizatiaguttis free of the inference-route problem.
Compared to traditiondl-anonymization approaches, our approach not only needgiimine er-
rors caused by anonymization but also needs to satisfy somgeeirequirements. Road-network
constraints should be enforced during the entire anonytinizprocess, especially when computing
the representative trajectories. The first step is relgtisgaightforward. Therefore, the following
discussion focuses on the anonymization step.

4.1. An Overview of Clustering-based Anonymization

The essential idea of clustering-based anonymization al-

gorithm is to find clusters of similar trajectories and Ng
anonymize them by using a representative trajectory. The
details are the following.

First, we need to select a proper way to represent trajec-
tories. Trajectories are initially represented as a secgien
of timestamped locations. In our anonymized dataset, e
do not disclose exact locations because detailed informa-
tion increases attackers’ chances to link published lonati
to specific individuals. Instead, we report only informatio
about which object passing by which road. There are two
options: (i) representing a trajectory by road IDs; or (ii)
representing a trajectory by node IDs. As illustrated inFig ~ Fig- 2. Trajectory Representation
ure 2, trajectorie¥’rj, T'rjo andT'rj3 can be represented
asryrs, 7173, andryrs respectively following the first option. Using the secondiap, trajectories
Trj1, Trjo andT'rjs can be represented asnsns, nineng, andninong respectively. Both types
of representations well capture the similarity betweejettaries’rj, and7rj;3 which share one
common road. However, the first option tredtgj, and7T'rj, as two irrelevant trajectories even
though they intersect. To better reflect relationships apmmajectories, we adopt the second option
and represent a trajectory by a sequence of node IDs.

The second issue is to define the distance between trajext&ince a trajectory can be seen as a
string of road-segment IDs, we employ theit distancdWagner and Fischer 1974]to compute the
amount of different road-segment IDs in the two trajectripecifically, the edit distance between
two trajectories is given by the minimum number of operatioreded to transform one trajectory

ns Ne
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Clustering-based Anonymization (T'RJ, k)
Input: TRJ is a set of trajectories to beanonymized

1. Group same trajectories and fofiiRzJ’

2. Sort trajectories ii'R.J’ in a descending order of supports
3. for eachTrjin TRJ' do

4 if Trj.support > k then

5. create a new cluster farrj

6. else

7 check existing clusters

8 if Find_Cluster("'rj,C) then

9. insertT'rj to clusterC

10. SelectRepresentativArajectory(C,Trj,)
11. updateC’s error rate

12. update” — tree

13. else

14 create a new cluster fairj

[* Clustering Adjustment Phase */
15. for each clustet”
16. if C.Total TRJ > p, then setC. Total TRJ =k
17.  elseremoveC
/* Data Publishing */
18. Translate representative trajectories into outpumhéir

Fig. 3. An Outline of Clustering-based Anonymization Algorithm

into the other, where an operation is an insertion, deletioisubstitution of a node. For example,
the edit distance betwedrj; (nsnans) andT'rjz(ninany) is 4, while the distance betwe@rj,
andTrjg(nannG) is 2.

Now we are ready to present our clustering-based anonyiarizalgorithm. An outline is given
in Figure 3. First, we group same trajectories and coustifgport Supportis defined as the number
of users who have the same trajectories (Definition 3).

DEFINITION 3. Letu be a user's anonymous ID afit-;j,, denote his trajectory i’. We have
the support of trajectory’rj as follows: Support(Trj) F{u|Trj, = Trj, V u}|.

Distinct trajectories are arranged in a descending ord#vedf supports. If a trajectory’s support
is more than the anonymization threshéldhe trajectory itself forms a cluster. For the remaining
trajectories, sa§'rj, we compare it with existing clusters. If there exists aahlé cluster, we insert
the new trajectory into that cluster and update the clustafbrmation. Otherwise, a new cluster
will be created forT'rj. At the end of clustering, there is @dustering adjustment phasghich
deals with clusters containing less thiatrajectories. In particular, if a cluster contains lessitha
(pa < k) trajectories, we directly remove it. Otherwise, we add duntrajectories to the cluster
by increasing the support of the representative trajedtoky The selection of a proper, will be
discussed in Section 4.5.

Finally, we translate representative trajectories togiethith their supports into output format,
which contains object anonymous IDs, road names, and abjacving directions. For example,
we obtain the following intermediate result after anonyimgzthe trajectories shown in Figure 1:
u} (ABCQC), ub(ABC), u5(ABC) andu,(ABC), wherek = 3. The published dataset will look like
this: (u’l, Rl,ﬁ), (u'l, RQ,W), (UIQ, Rl,E), (U/Q, Rg,m), ey (uil, RQ,W), whereR; is the
name of a road.

The algorithms for finding candidate clusters and selectpgesentative trajectories along with
definitions of local error rates and threshold will be elatted in the following subsections.

4.2. Finding Candidate Clusters
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Figure 5 outlines the procedure to find a candi- N;
date cluster for a new trajectory. The first step TR RS A A N
is to check whether a new trajectory can be [ty Flelnafuafis ||
absorbed by an existing cluster. As the numy N
ber of clusters increases, comparifig; with

' I, r (e [
all clusters becomes very costly. Therefore, Wli ofs} | {hslofe § | [(Fofhao}| (ol }] |
employ an in-memory index structure, the C- @

tree (Cluster-tree), to prune unnecessary co
parisons. In particular, each node in the C-tree
contains multiple entries and each entry in a Fig. 4. An Example C-tree
node has two fields: a pointgtr and a set of
road IDs (denoted aB! D). In leaf nodes, each entry has a pointer to a cluster andtbeflroads
occurring in that cluster. In internal nodes, each entryshpsinter to a child node and the union of
roads IDs in its child node. It is worth noting that since wed®loroads as directed edges, a trajec-
tory can be represented as a set of road IDs without confuBmmexample, the trajectomnyr, in
Figure 2 can be represented{as, r4 } since there does not exist a trajectosy, that is against the
moving direction. The use of road IDs for representing tjges here facilitates easy comparison
of supports on each road as presented below. Such représeiganly used for locating candidate
clusters, thus it does not affect the final selection of thetramnilar trajectory.

Figure 4 illustrates an example C-tree. Given a new trajgcto j, starting from the root of the
C-tree, we calculate the similarity betwe@nj and RID in every entry of the node by using the
following similarity function.

|S(Trj) N RID|

Sim.(Trj, RID) = ST

(3)

Sim,. computes the percentage of common roads includédjrand RI D, whereS(T'rj) denotes
the set of road IDs in trajectoryrj. If Sim.. is above a thresholgd,, we continue to visit the child
node of this entry. This process is repeated until we findrdties in the leaf nodes withim,. above
the threshold. All the clusters belonging to these entriid@ considered as candidate clusters. For
example, suppose that a new trajectory contains reads; andrg, and the threshold, is 60%.
The similarity Sim,. between the new trajectory and the first and second entrigginoot node
N7 are 100% and 0% respectively. The tree below the second isnprpned and thus we do not
need to visit nodéVs;. We continue to visit the child nod¥, pointed by the first entry. Th&im,
between the trajectory and the first and second entrid&iare 33% and 67% respectively. Since
the second entry has the similarity score above the thrdst®lcorresponding clustér; becomes
the candidate cluster for further consideration.

Among candidate clusters, we calculate the edit distantvedss their representative trajectories
and the new trajectory'r;. Based on the edit distance, we then compute a local éitdqdefined
in Section 4.4) and select the candidate cluster with thdlestd& <. Only whenE* is lower than a
thresholdp,. (defined in Section 4.5)rj will be inserted into the corresponding candidate cluster.
Otherwise, a new cluster will be created for;.

When actually adding@'r; to a cluster, we need to update both the representativetajeand
the corresponding entries in the C-tree. The algorithm énputing the representative trajectory
is presented in Section 4.3. After the representativediaig is determined, we check whether the
node in the C-tree with respect to current cluster needs tpdated. If current cluster contains road
IDs which are not included in the road ID list of the corresgioig C-tree entry, we will append the
new road IDs to the road ID list. This change will be propadatehigher levels of the C-tree until
an entry containing all road IDs in current cluster is react@onsider the C-tree in Figure 4 and
suppose that a new trajectory that consists of roadss andry will be inserted into cluste€’s.
We check the road list af';’s entry in the C-tree, which iér3r5rsrg } and does not contain,. We
then addr, to the road list. Now the second entry Wy, becomegrorsrsrsre}. Next, we check
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Find_Cluster (7'rj,C)
Input: T'rj is a trajectory
Output:C'is a cluster

1. NODE < {C-tree.roo}
2. while(NODE is not empty)do
for each nodeV in NODE do
for each entryen in N do
if Simc(Trj,en.RID) > p, then
if IV is not a leaf nodéhen
adden’s child node toNODE
else adden’s cluster to candidate list,.
9. for all clustersinL, do
10.  find clusters with smalledi“ regardindgl'rj
11.  if B¢ < p. then
12. return the cluster found

NG AW

Fig. 5. Algorithm of Finding Clusters

its parent entry, the first entry iivy. Sincers is included in the first entry iV, the tree update
operation completes.

In the other case when a new cluster is createdfgr, we need to insert a new entry for this new
cluster to the C-tree. Recall that each entry in the nodeeCiltree has two fields: (i) a set of road
IDs and (ii) a pointer. The maximum number of entries in eamtienis the same. All insertions start
at a leaf node which is identified during the process of findiagdidate clusters. We insert the new
entry into that node (denoted a8 with the following steps:

(1) Ifthe nodeN contains fewer than the maximum legal number of entries) there is room for
the new entry. Insert the new entry in the node.

(2) OtherwiseN is full, and we evenly split it into two nodes. In particulare randomly select
an entry as seed. Then we compften. (Equation3) between other entries and the seed. The
average of allSim. serves as a separation value. Entries ith:. above the average are put
in the nodelV, and the remaining entries are put in the new right nvde

(3) Next, we update the entry pointing #. The road ID set in the parent is updated to include all
roads occur inV. The update may be propagated to the upper levels of theM@eover, if
there is a split in the previous step, we need to insert a néwy @ich includes road IDs in the
new nodeN’ to the parent level. This may cause the tree to be split, amehst current node
has no parent (i.e., the node is the root), a new root will leaterd above this one.

4.3. Selecting Representative Trajectory

There are two key requirements when selecting a representedjectory. First, the global error
rate £ should be minimized. Second, the representative trajgcturst satisfy the road-network
constraint. By keeping these in mind, we design the follgnafgorithm.

In a cluster, we find the trajectory with the highest suppod then trim the trajectory from both
ends to obtain the final representative trajectory. Toftitate it, we use the example in Figure 6.
The cluster contains three types of trajectoriésj,, 7'rj. and7'rjs. Each trajectory is associated
with a number of support, e.gupport(Trj1) = 10. Numbers on the last line indicates the original
numbers of users on each road, eagiginal(nin2)=15. Sincel'rj; has the highest support, let
us have a further look at it. We compute the error r&tdy treating7'rj; as the representative
trajectory. The support of the representative trajectotlye sum of the supports of all the trajectories
in the cluster. The reason behind is to maintain the same anodtrajectories after anonymization.
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Trj1 (10): n1—— no—— ng——ny—— ng—ng
TTjg (5) nNi—— nNo—— Ng—— Ny

TTj3 (6) No—— Ny—— N7—— Ny
original: 15 21 21 16 10

Fig. 6. An Example of Selecting Representative Trajectory

In this example, if we us&'rj; as the representative trajectory, we will haves 58%.

E= (Emnz + Enyng + Enane + Engng + Ensng)/5

_ (211515 4 212121 4 2125121 4 211616 4 211010) _ 58%

Observe that,,,,, is higher than 100%. If the roagsng is excluded from the representative
trajectoryT'rj;, the overall error can be reduced to 34%. Based on this odseny the second
step is to trim the roads in the trajectory that can help redbe overall error rate. Due to the
road-network constraint, we cannot arbitrarily removea®ttom a trajectory. Our strategy is to
remove nodes starting from both ends of the selected toajechlso, we should not remove too
many nodes, which otherwise leads to poor pattern presenvdb reach the balance, we only con-
sider removing the nodes with error rate above certain ttiwlds In our case, we set the threshold
to be 100% in order to ensure that the overall error rate doegxceed 100%. Specifically, if a
roadr which is located at the end of the trajectory and has an eaterlarger than 100% (i.e.,
original, < support(Trji) — original,), this road will be removed from the representative tra-
jectory. The process continues until we cannot find such @ ab@ither end of the trajectory. The
final representative trajectory for the example case is,nyn7ng. The algorithm is summarized in
Figure 7.

Select_Representative_Trajectory (C,Trj,)
Input: C'is a cluster
Output:T'rj, is the representative trajectory

1. support{’rj,)«< 0

2. for eachT'rjin C do

3. if support{"rj) >support{"rj,) then

4. Try. < Trj

5. support{'rj,.) < support{"rj)

6. i< 1;j <« length(Trj,)-1

7. continue— 1

8. while (i < j andcontinue) do

9. continue— 0

10. if original(r;) <support{'rj,)-original(;) then
11. i <+ i+ 1;continue— 1

12.  if original(-;) <support{'rj,)-original(r;) then
13. j <+ j—1;continue— 1

14. Trj, +(r;...r;)
15. returnl’rj,

Fig. 7. Algorithm of Selecting Representative Trajectory
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4.4, Definitions of Local Error  E°

In the following discussion, we us€ to denote a cluster andirj, to denote its representative
trajectory. Letr; andanonymizet. denote the road; andrlsfrequency afteranonym|zat|on within
clusterC, respectively. Note that heteionymized;, is specific to a cluster and it is different from
(just a portion of) globatnonymized,.,. Formally the relatlonshlp betweemonymized;, and
anonymized,, is given in Equation 4, where clustets, ..., C,, are clusters containing roagl

m
anonymized,, = Z(anonymizedﬁ{) (4)
Jj=1
Given a new trajectornirj,..,, £¢ is computed by assuming thdk;,.., has been inserted into

clusterC'. Let us denote the new cluster with,., asC’ and assume that the representative
trajectory of C’ is still the same ag’ but with an increased support bypport( Trjpes ). The
definition of £¢ is shown in Equation 5, wherg& is the set of roads appearing in the new cluster
C’, and|R| denotes the total number of roadsfin For each road; in R, we calculate two values,
trans,, andchange,,. The valuerans,., is the difference of frequency of in C andC’. The value
change,, is the change of frequency of in the anonymized results of clustéf, i.e.,change,,=
(|an0nymizedﬁ; — anonymizeds, |).

|R| Z = | | Z (change,. — trans,,)* (5)

rER

For better understanding of Equation 5, we illustrate tHeutation through the following ex-
ample. Consider the clustér containing two types of trajectorie§:rj; (ninansnrngng) and
Trjo(ninengnyz), wheresupport(Trj,)=10, support(Trjs)=5. Suppose that the representative
trajectory iST'rj, (ninanan7ng) and support(Trj,)= 15. We now computdsc upon the inser-
tion of a new trajectoryl'rjs(nananyng) with support(Trjs) = 6 into the clusterC. Table |
summarizes the changes for each road after the insertiolneofiéw trajectory, where roads are
listed in the first column of the table, followed by its origllanonymization valuexfionymized®),
the anonymized value in the new clustenénymized<'), and corresponding values téns and
change Specifically, after the insertion, the anonymized valukethe roads inT'rj,. will be in-
creased bywupport(Trjs) = 6 as shown in the second column in Table | and the last column
change denote the value of this change. The difference betweenfregdency in cluste’ and
(" is shown in the third column of the table, from which we can e the insertion of the new
trajectory does not change the overall frequency of roads andngng since the new trajectory
does not contain the two roads.

Table I. An Example of E¢ Calculation

Road | anonymized® | anonymized® trans | change
ning | 15 15+6=21

nang 15 15+6=21 6 6

nany | 15 15+6=21 6 6

ntng | 15 15+6=21 6 6

ngng | 0 0 0 0

Accordingly, E¢ can be computed as follows.
E°=(E; ,. +E .  +E;

ninz nang nany

+ E;

nrnsg

+ Ergn)
_(6-02+(6-6)+(6—6)*+(6—6)*+(6-6)°

=72
5
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Compared to the approach using meréhyduring clustering /¢ is more effective since it cap-
tures the effect of error change after inserting a new ttajgcMore specifically, the value df is
dominated byriginal,;. If a cluster contains many roads which have a large value-@final,;,
the insertion of even a dissimilar trajectory into the cdustill result in a lowFE. In other words,
globaloriginal,; does not truly reflect the situation in a cluster. As moreidigar trajectories are
accumulated in the same cluster, the global eEaxlso increases. Unlik&, E° is defined with
respect to each individual cluster, and hence conquerddenaentioned problem.

E*¢ has another advantage in that it can be quickly computedit@sedit distance. In this way,
we avoid a great number of comparison between original nuoflbjects and anonymized number
of objects during error calculation. Specifically¢ can be expressed in terms of the edit distance
between the representative trajectdryj,. and the new trajector§'rj; as shown in Equation 6,
whereE' D denote the edit distance.

1
E¢ = EED(TMT’ Trjnew) - support(Trj)2 (6)
Considering the same example discussed in this subsedticontains five roads and the edit
distance betweef'rj,. andT'rjs is 1. Therefore, we can compui& as follows, which yields the
same result as using Equationf: = 1(6%) = 7.2

4.5, Selection of Threshold

The threshold selection is a critical task which affectstdting speed and anonymization accuracy.
In this subsection, we discuss how to determine the thrdghdibor the clustering adjustment phase
and the threshold. for the clustering process.

After clustering all the trajectories, some clusters maytaim less thaik trajectories. For these
clusters, the threshold, is used to determine whether to remove the clusters or addgitrajec-
tories to them. To minimize error after the adjustment, wetsethresholg, as follows.

k

Pa = 5 (7)

The basic idea of Equation 7 is that insertion or deletionevidr trajectories induces less error.
Specifically, if the total number of trajectories in a clusteless than or equal to/2, removing the
cluster will introduce less error by adding more thigf2 dummy trajectories. In the other case, if
a cluster has more thdty2 trajectories, adding less than2 trajectories will introduce less error
than removing the entire cluster.

The thresholh. determines whether a new trajectory can be inserted intxiatirgy cluster or
not. If a low threshold is used, fewer trajectories will bearted into a cluster as only highly similar
trajectories will be selected. This may result in having endusters with less thantrajectories at
the end of the clustering. Such clusters will either be remdlox include dummy trajectories, which
in turn can increase the error rate. If a high error thresk®lthosen, even the trajectories which
are less similar may be inserted into the same cluster whséchimroduces more errors. To reach a
balance, we define the threshgldas shown in Equation 8.

po= (g) (®)

This threshold is derived according to the clustering adjest algorithm. As aforementioned, if a
cluster needs to be adjusted, the maximum number of trajestimserted into or deleted from the
cluster is equal t&/2. The value ofp. is equivalent to the errab® induced wherk /2 trajectories
are inserted into or deleted from the cluster computed usingation 5. Given a new trajectory, if the
corresponding?° exceedg,, this trajectory will not be inserted into the cluster beaamsidered.
Therefore, even if the cluster needs to be removed duringdhestment phase, it will not introduce
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an error more thap.. Moreover, we can observe that the valug oflepends on the value 6f That

is, a largerk yields a higher thresholg.. This is beneficial for the clustering due to the following
reason. A largek may increases the risk of letting more clusters go to thesaaljent phase and
hence may increase the global error. A higher thresholdasilinteract this effect as it will group
more trajectories into a cluster and reduce the number sfels with trajectories less than

4.6. Strict k-anonymity

In this section, we define the notionsifict k-anonymitylt is called “strict” because the calculation
of trajectory supports is based on an exact match of enéijedtories.

DEFINITION 4. (Strict k-anonymity over trajectories): Lét'rj be a trajectory. We say'rj
satisfies strick-anonymity if Support(Trj) is no less than

Our anonymization results guarantees strieinonymity over all trajectories in dataget. In this
way, we ensure that the anonymization result will not cangaiy inference-route which is given in
the following theorem.

THEOREM 4.1. Trajectories that satisfy stridt-anonymity do not contain any inference-route.

PrROOFE We prove it by contradiction. Let us assume that our anorgtioiz result contains at
least one intersection (denoted &3 of roadsry, ..., 7, Which has the inference-route problem.
Then by definition 2, among roads, ..., 7., there exist at least two roads and r; such that
\UF| =k, U7 | > k, but (0< |U;" —U; | < kor0< |U;” —U;"| < k) (whereU;" andU;~ denote
the sets of o%jects moving towards and outwafdsespectively).

If 0< |U;" — U; | < k, that means less thah objects enterY' from roads other tham;. It

implies that the tfajectories of objects {7, — U;") have support less thah. Similarly, if 0<
|Uj_ — U;"| < k, that means less thanobjects leaveél’ and enter roads other than;. It implies

that the trajectories of objects iU, — U;") have support less thain Both cases contradict with
the property of our anonymization result which only conta@jectories with support no less than
k. Therefore, we conclude that our approach does not haverdayeince-route problem.o

4.7. Complexity Analysis

In this section, we analyze the time and space complexityofpproach. In what follows, we use
n to denote the total number of original trajectories, andiusedenote the maximum number of
roads in a trajectory in the raw dataget

First, we analyze the time complexity. Our approach cossittwo main phases: (1) removal of
infrequent roads; and (2) the clustering-based anonyiuizalo remove infrequent roads from the
raw dataset, we need to scan the road segments containéthie tibjectories just once. The total
number of such road segmentsis< [. Givenl being a small and constant number, the complexity
of the first step i) (n).

For the clustering-based anonymization, the major costéssearch of the C-tree. L¢tdenote
the average number of entries in a node of the C-tree, ankl. ldenote the average number of
trajectories per cluster. The height of the C-tree can bimagtd asogs(n/k.). For each identified
candidate cluster, we search from the root down the leaf odthe C-tree. The total number of
entries to be checked can be estimated by the height of therudtiplied by the number of entries
pernode, i.elog;(n/k.) x f.If multiple candidate clusters are identified, the costity increased
by a small constant number of additional entries being cb@ckherefore, the time complexity of
finding candidate clusters is stil}(log(n)). The remaining step is to check each trajectory in the
candidate clusters to select a representative trajedtagost of which is about. x [. Sincek. is
proportional ton and!l is a small constant number, the time complexity of seleateépyesentative
trajectory isO(n). Summing up the time complexity of the two steps, we obtamttital time
complexity of the clustering-based anonymization, whe®{log(n)) + O(n).
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Finally, the total time complexity of our approach is the swfthe two phasesO(n)+
(O(log(n)) + O(n)), which isO(n). This indicates that the time complexity of our approach is
linear to the total number of trajectories, which is alsofeomed by the following experimental
results.
As for the space complexity, our approach stores all thedtajies and the C-tree. The total
number of road segments in the trajectoriesrare [. The total number of nodes in the C-tree is

Zf;ol /%, whereh is the height of the tree and equaldag(n/k.) as previously discussed. Recall
that f is the average entries per node and is a constant numbertBhsgace complexity is x [

+ Zﬁ:ol f*, whichisO(n) + O(flo9(™),

5. EXPERIMENTAL STUDY

In this experimental study, we first compare our two appreac@lustering-Based Anonymization
(CBA) [Lin et al. 2010] and Improved Clustering-Based Anarigation (ICBA). CBA usedE
(Equation 1) during the clustering while ICBA used the newtnmeE“ (Equation 5). Then, we
study the effect of the C-tree adopted by ICBA. After that,ceenpare ICBA with the latest related
work (denoted as Prefix [Pensa et al. 2008]) by testing thgira@i source code provided by the
authors of [Pensa et al. 2008]. We use both synthetic andbaaed datasets and varying a variety
of parameters including the data size, data distributiverage trajectory length and valuelof

In the synthetic datasets, objects are moving on a randoemlgmted road map which has about
700 roads. The roads are generated by randomly selectintgfaihich serve as intersections) in the
space and then connecting nearby points to create the rblaelsverage degree of an intersection
is 4. Objects can have different speeds which are contrbethe parameter “average trajectory
length”. As for the map-based datasets, we use the genbsaBsmkhoff [Brinkhoff 2004]. Objects
are moving on real road networks. A road consists of multg@gments and each segment is a
straight line. An object is initially placed on a randomlyesged road segment and then moves along
this segment in a randomly selected direction. When thecobgaches the end of the segment, an
update is issued and a connected segment is selected. €)gects are varied within a given speed
range which controls the “average trajectory length”. dalaoted otherwise we use the data set
containing 50,000 moving objects as the default setting. @drameters used in the experiments are
summarized in Table I, where values in bold denote the diefalues.

The performance is evaluated based on five criteria: (i) ymization time; (i) average error rate
as given by Equation 1; (iii) standard deviation as given lqudion 2; (iv) number of inference-
routes in the anonymization result; (v) number of frequeattgyns after anonymization. All the
experiments were run on a PC with 2.6G Pentium IV CPU and 3GBIRA

Table Il. Parameters and Their Settings

M ap-based Dataset

Synthetic Dataset Zaramexer fgttzlggao 40,50
Parameter Setting i i 25K, 50K
¥ 10,2030,40.50 Number of moving objects 5K, 25K, 50K, 75K, 100K

Number of moving objects

5K, 25K, 50K, 75K, 100K

Average trajectory length (km

3.8,5.0,5.8,6.4,9.2

Average trajectory length (km

20, 30, 40, 50, 60

5.1. Anatomy of Our Approaches

5.1.1. CBA vs. ICBA. The first round of experiments compares the performance ofvau ap-
proaches: CBA and ICBA, by using synthetic datasets. Fi§(ag shows the average error rate of
the anonymization results obtained from CBA and ICBA wheryivey the number of moving ob-
jects from 5K to 100K. Observe that the error rate of ICBA iwdo than that of CBA for all cases.
This is because CBA adopts a fixed threshold which is set taxparenced value (60%) for all

Number of roads (Map)

209(St Charles), 434(St Clair),
550(Phelps), 874(Jefferson),
1689(St Louis)
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Fig. 9. Effect of the C-tree

cases, while ICBA benefits from the optimal threshold sedacfEquation 8) as well as the newly
defined metricZ¢ (Equation 5). Figure 8(b) reports the standard deviatioeretwe can see that
ICBA performs similarly to CBA. Figure 8(c) compares the g@gssing time. As shown, ICBA is
much faster than CBA. This is because that ICBA uBégo measure the intermediate error and
E*€ can also be expressed in terms of the edit distance whichltezgly been calculated in other
steps during the anonymization. In other words, ICBA reegiless computation than CBA and
hence ICBA is more efficient. In summary, the above obsermaatprove that ICBA improves CBA.
Therefore, in the remaining experiments, we will only colesilCBA.

5.1.2. Effect of the C-tree. In this set of experiments, we study the effect of the C-tyeedmpar-
ing two versions of the ICBA approach: one with the C-tree ané without using the C-tree (de-
noted as “ICBAno_C-tree”). Figure 9(a) and (b) report the average error natkestandard deviation
with respect to the two versions, and Figure 9(c) compareis ffniocessing time. We can observe
that the use of C-tree does not affect the accuracy of theyamiaation result, but significantly
reduces processing time (more than an order of magnitudefaiK datasets), which demonstrates
the effectiveness of the C-tree. More specifically, wherGkeee is not used, a new trajectory needs
to be compared against all existing clusters, which is tiovesaming. When the C-tree is used, the
new trajectory just needs to be compared with a fewer nunmfbearaidate clusters.

5.1.3. Measuring the Probability of Re-identification. We also analyze the probability of re-
identification of a user in our anonymized dataset. Noteg #ikthe users in the same anonymization
cluster will be represented by the same representativectray, and hence they are indistinguish-
able from one another regardless the amount of prior knayeedat an attacker may have. Thus,
the re-identification rate of each user in the same clustdresame and computed %s where
k. is the number of trajectories in the cluster. As discusse®kiction 4.6, our approach guarantees
k-anonymity which means the re-identification probabilityl wot be higher than,%. In the actual
experiments, we observe a much lower re-identificationaatesported in Figure 10. In particular,
we record the maximum, the average and minimum probabifitg-edentification rate of all the

clusters. The minimum re-identification rate can be as g@oﬁ;%}\l of the theoretical bound when
the dataset is 100K. This is because the number of trajestami each anonymization cluster is
usually more thaik, and hence it provides better privacy protection than teerthtical guarantee.

ACM Transactions on Embedded Computing Systems, Vol. V\drticle A, Publication date: January YYYY.



A:16 S. Gurung et al.

G 10% T S 10% T Ava Re.identificats

g w o Avg Reddentification g ., o Min Re.dentication

c —=— Min Re-identification s - Tearh

S —— Max Re-identification S —+— Max Re-identification

6% + T 6% T

3 g

E (=

= 4% + = 4% +

2 g

2ot A T S

& 3

0% I | | | | 0% } } } ¢ {
5K 25K 50K 75K 100K 10 20 30 40 50
Number of moving objects k

(a) Varying Dataset Size (b) Varying Parametek

Fig. 10. Probability of Re-identification

5.2. Experimental Results in Synthetic Datasets

5.2.1. Effect of Data Sizes. We now compare the performance of our ICBA with Prefix appinoac
by varying the number of moving objects (i.e. number of ttgeies) from 5K to 100K. Figure 11(a)
shows the average error rate of the anonymization resutésnaa from ICBA and Prefix. We can
observe that ICBA yields much less error than Prefix in alesa¥Vhen the dataset is small (e.g.,
5K), the anonymization results obtained from both algongthave relatively high error rates. This
is because the number of objects on each road is few and eveallachange of an object trajectory
by the anonymization process will have a big impact on thereate. With the increase of the data
sizes, the error rate caused by ICBA keeps decreasing asdribie than 5 times less compared
to that of Prefix for 100K dataset. The reason of such behasitinat ICBA effectively groups
similar trajectories and carefully selects represergattigjectories, which minimizes the overall
error rate. We also measure the standard deviation of theyampation results obtained from two
approaches. As shown in Figure 11(b), the anonymizatiaritrgenerated by ICBA has much lower
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Fig. 11. Effect of Data Size
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standard deviation than that by Prefix, which indicates dhatanonymization result on each road
has similarly good quality.

Figure 11(c) shows the number of nodes (i.e., road intdm®dtaving the inference-route prob-
lem. It is not surprising to see that the anonymization tgmulduced by our ICBA algorithm con-
tains O inference-route. However, the anonymization tesotiained from Prefix contains a large
number of nodes with the inference problems and the probkrorhes more and more severe with
the increase of the data sizes, which is caused by their tlefiruf trajectory support.

We also compare the processing time of both approaches. @vensim Figure 11(d), ICBA is
up to 5 times faster than Prefix. This can be attributed to tiiee€that helps prune the clusters to
be compared with each new trajectory and hence avoids ussegecalculation. The total time is
inclusive of the construction and update cost of the C-trbelwis almost negligible compared to
the benefits brought by the C-tree.

5.2.2. Preservation of Frequent Patterns. We also evaluate the quality of anonymization results
by comparing the anonymized trajectories obtained fromA@Bd Prefix with the frequent patterns
discovered from original datasets using the traditiong daining tool (i.e., PADS software [Zeng
et al. 2009]). When using PADS, each transaction is corredipg to an original trajectory. Each
item is corresponding to a road ID in the trajectory. We useahonymization parametgras the
minimum support threshold in PADS. The mining results consets of sub-trajectories, each of
which is represented as sets of road IDs.

In general, the more frequent patterns are preserved, ttex b@aonymization result is. To mea-
sure this, we use the widely adopted F-measure as defined,befere P, and P, denote the sets
of trajectories in the data mining results and anonymizatésults respectivelyy,, denotes the
number of trajectories in the anonymization results thatm#hose in the data mining results, and
N, and N, denote the total number of trajectories in the data minisglte and anonymization
results respectively.

Precision - Recall

F(Pr Fo) =2 Precision + Recall ©)
Precision = %, Recall = N

Figure 12(a) reports the F-measure values of the Prefix apprand our ICBA approach. Ob-
serve that the ICBA approach yields much higher F-measuuesdhan the Prefix approach in all
cases, which indicates that ICBA preserves more frequetdrpa. This is because the Prefix algo-
rithm directly removes infrequent trajectories which da sivare the prefix of a frequent trajectory,
while ICBA attempts to preserve the best possible pattefrtiseoinfrequent trajectories within the
error threshold.
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Fig. 13. Varying Parametekt

Since trajectory anonymization always needs to distojdtaries in the output, it is unrealistic
to expect to receive a perfect F-measure value which mebasaiymized trajectories fully match
the original frequent trajectories. Therefore, we alsduate how many trajectories that partially
match the data mining results. For this, we record the anirgdrrajectories that have at least 50%
road segments matching a frequent pattern in the origirtalméning results, and add them Ag,,
for computing the F-measure. Figure 12(b) shows the redtidten this figure, we can see that the
F-measure values have been almost doubled compared tonthagfure 12(a). This indicates that
the anonymization results preserve partial frequent paitdormation very well.

5.2.3. Effect of Parameter k. This set of experiments aims to evaluate the performancetf b
algorithms regarding different values bf As shown in Figure 13(a), the error rate increases dras-
tically with & by using the Prefix algorithm, while has only minor effect on our ICBA approach.
Such behavior can be explained as follows. Prefix removésfediquent trajectories and adds their
supports to most similar frequent trajectories. Wleis large, there are more infrequent trajec-
tories, which thus causes more errors. The standard daviggigure 13(b)) also demonstrats the
similar pattern as the error rate. Moreover, Prefix agaifessifrom the inference-route problem
as can be observed from Figure 13(c). Regarding processieg(in Figure 13(d)), ICBA has a
consistent performance and is much faster than Prefix whersmall. Whenk grows bigger, the
processing time of Prefix decreases. This is because Prefilsrie handle less number of frequent
trajectories for a largék, which in turn results in higher error rates.

5.2.4. Effect of the Average Trajectory Length. We now evaluate the effect of the average length
of the trajectory in terms of number of roads. The length igerined by two factors: the length
of time interval being considered and object moving speesisihown in Figure 14(a) and (b),
Prefix incurs much higher error rate and standard deviatian tCBA does for various lengths of
trajectories. This behavior can be attributed to the feattltimger trajectories increase the possibility
of getting more trajectory pattern with support less thatsing the Prefix algorithm, the support
of a trajectory pattern will be added only to the common prbé&veen the trajectories. Therefore,
if the starting node of trajectories differ, the supportwit be added even though these trajectories
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Fig. 14. Varying Average Length of the Trajectory

may share the suffix or an infix. On the other hand, ICBA attesmgtcapture similarity between
trajectories either as prefix or suffix or an infix. This leaddess error in ICBA than the Prefix
algorithm.

As for the inference-route problem (Figure 14(c)), the ltotamber problematic nodes gener-
ated by Prefix decreases as the trajectory length becomgsrldrhis is possibly because that the
increase of trajectory length results in less frequenettayies and reduces the chance of having
inference-route problems.

As shown in Figure 14(d), there is a drastic increase in amazrgtion time with the increase of
average length of the trajectory when using the Prefix algari The reason is that longer trajectory
increases the depth of the prefix tree, and hence more tineeibedl for the anonymization process.

5.3. Experimental Results in Map-based Datasets

We proceed to evaluate the performance of ICBA and Prefix lgutatasets generated based on
real road maps using the generator in [Brinkhoff 2004]. Waneixe the same four aspects: variation
of data sizes, frequent patterns, valué @ind average trajectory length, as that in synthetic dataset
In addition, we also study the effect data distribution bingglifferent road maps.

5.3.1. Effect of Data Sizes. In this set of experiments, the datasets are generated baske road
map of Phelps County (Missouri, USA) which contains about &f&ads. As shown in Figure 15 and
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Fig. 15. Effect of Data Sizes (Real Road-network)
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Fig. 16. Effect of Data Sizes (Real Road-network)

Figure 16, ICBA consistently outperforms Prefix in terms offbeffectiveness and efficiency. The
reason is similar to that explained when evaluating syitttiettasets. In addition, both approaches
have high error rates when the number of objects (i.e.,di@jes) is small and the error rates go
down with the increase of objects. This is because in the saa map, fewer objects result in
fewer frequent trajectories, and hence the impact of ttajganodification during anonymization
is more severe.

5.3.2. Effect of Parameter k. Figure 17 shows the performance of ICBA and Prefix when varyin
k from 10 to 50. From the figure, we have the following obseoradi First, both approaches yield
more errors wheh increases. The possible reason is that lakgesults in less frequent trajectories,
and hence any change to trajectories for the anonymizatigmge has bigger impact on the final
result. Second, it is also interesting to see that Prefix dver standard deviation, less inference
channels and even faster processing speed with a largéiis is because that Prefix removes more
infrequent trajectories for largdr, which means Prefix needs to handle much fewer number of
frequent trajectories. Consequently, the standard dewieggarding each frequent trajectory pattern

Error rate (%)

Standard deviaition
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Fig. 17. Effect of Parametek (Real Road-network)
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Fig. 18. Effect of Average Length of Trajectory (Real Road-network

is lowered, the total number of nodes with inference-routdlems is reduced and processing time
is shorten.

5.3.3. Effect of Average Trajectory Length. This set of experiments evaluates the effect of average
trajectory length. As shown in Figure 18, ICBA again outperis Prefix in general. We also observe
that the error rate increases for both approaches whennflef trajectory becomes longer. The
reason is similar to that for the case with a largen the previous experiments. That is that the
reduced number of frequent trajectory patterns with thevtirof trajectory length, in turn increases
the impact of trajectory modification during the anonymi@aprocess. Moreover, with the increase
of trajectory length, Prefix suffers more from the inferemoate problem. The possible reason is
that in the real road-network, the number of roads conndwteah intersection is usually small (e.g.,
two to four). This increases the chance of having nodes widrénce-route problems especially in
long trajectories. In addition, the trend of the processimg of two approaches resembles the case
in synthetic datasets and the reason is also similar.

5.3.4. Effect of Data Distribution. At the end, we study the effect of the data distribution bygsi
various road maps. The total number of objects (or trajeztdis the same, 50K, in all cases. The
result is shown in Figure 19. Given different maps, the rafifrequent to infrequent trajectories
is different. This explains the different behavior of errates for each map. In general, when there
are more roads, the number of frequent trajectories bectasgswvhich may increase the error rate
in the anonymized datasets obtained from both approaclsderAhe inference-route problem, the
more complex the map is (e.g., St. Louis), the higher chamaeRrefix generates more inference-
route problems in its anonymization result. Moreover, sioalakes more time for Prefix to handle
larger and complex maps, while our ICBA has relatively stadiid much faster processing speed.
In a summary, the result demonstrates that ICBA has befpegraphy independency compared to
Prefix.

6. CONCLUSION

Privacy preserving location data publishing has receinedeiasing interest nowadays. In this pa-
per, we address this newly emerging problem by taking intmaint an important factor, the road
network constraint, which has been overlooked by many iegjistorks. We identified and de-
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Fig. 19. Effect of Data Distribution

fined a new privacy problem (i.e. the inference-route pnob))@nd proposed an efficient and effec-
tive clustering-based anonymization algorithm. We hawwed that our clustering-based algorithm
guarantees stridt-anonymity of the published dataset and avoids the inferenate problem. To
minimize the global error rate after anonymization, we hiaken into account the following major
aspects: calculation of representative trajectoriespiiefh and employment of local error rates, and
selection of threshold used at different stages of anorgtioiz. \WWe conducted an extensive exper-
imental study on both synthetic datasets and real datddetsesults demonstrated the superiority
of our approach compared to the latest related work and diereagrsion of our work.
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