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We are experiencing the expanding use of location-based services such as AT&T TeleNav GPS Navigator and Intel’s
Thing Finder. Existing location-based services have collected a large amount of location data, which have great potential
for statistical usage in applications like traffic flow analysis, infrastructure planning and advertisement dissemination. The
key challenge is how to wisely use the data without violatingeach user’s location privacy concerns. In this paper, we first
identify a new privacy problem, namelyinference-routeproblem, and then present our anonymization algorithms forprivacy-
preserving trajectory publishing. The experimental results have demonstrated that our approach outperforms the latest related
work in terms of both efficiency and effectiveness.
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1. INTRODUCTION

The extensive use of location-based services, such as AT&T TeleNav GPS Navigator, Sprint’s Fam-
ily Locator, and Intel’s Thing Finder, have collected a large amount of location data. If information
like vehicle IDs and moving directions on roads can be published, people in many fields will benefit
from it. For example, with respect to the public sector, traffic flow information can be extracted from
published IDs and moving directions. Such information willplay an important role in infrastructure
construction and traffic light control. With respect to the business domain, traffic information can
help decide the location of company branches, and also advertisements can be customized and dis-
seminated at the most advantageous locations. With respectto our daily lives, traffic information is
certainly useful for detecting and predicting traffic jam, and calculating better routes for travelers
[Xue et al. 2013a; Xue et al. 2013b] or in an emergency (e.g., for ambulances). However, in the
meantime, location privacy concerns [Mokbel 2007; Tanner 2008; Huo et al. 2013] may hinder the
development of such attractive usage of traffic information. It is well known that using a pseudonym
is not sufficient to prevent the linkage of a published location to a real ID [Bettini1 et al. 2005]. The
key challenge is how to wisely use the location data without violating each user’s privacy concerns.
This problem is termed asprivacy preserving historical location data publishing.

Historical location data forms a sequence of locations in chronological order, termed astrajec-
tory. In general, one’s trajectory consists of roads he has visited. For instance, in Figure 1, user
u1’s trajectory can be represented asIABC and useru4’s trajectory isABD. Many approaches
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Fig. 1. An Example of Inference-Route Problem

[Wei et al. 2012] have been proposed to construct popular routes from trajectory datasets. Publish-
ing trajectories consistent with the road network will enable the data mining algorithms to extract
more precise routes patterns in comparison to representinga trajectory as a sequence of symbols
[Andrienko et al. 2009]. After taking into account the privacy concerns, the goal becomes to prevent
adversaries from mapping published locations to a specific individual.

One may think that a trajectory resembles a conventional sequential pattern. Hence, a naturally
raised question is that if we can directly employ privacy preserving data publishing approaches
[Agrawal and Srikant 2000; Atzori et al. 2008; Pei et al. 2004; Zaki 2001] developed in non-spatial-
temporal databases? The answer is negative, and the main reason is that a trajectory distinguishes
itself from the conventional sequential patterns due to additional constraints (e.g., road-network in-
formation) which do not exist in the traditional sequences.More specifically, elements in traditional
sequences are usually independent of one another, while therelationship of elements in the trajectory
sequence is fixed under a particular road-network information. Therefore, we cannot use traditional
algorithms to arbitrarily remove or replace elements in thesequences because such operations will
create unrealistic trajectories consisting of non-connected road segments.

There have been several recent efforts [Abul et al. 2008; Gidofalvi et al. 2007; Terrovitis and
Mamoulis 2008; Nergiz et al. 2009; Andrienko et al. 2009] on anonymizing trajectories. Some
work [Terrovitis and Mamoulis 2008] considers trajectories as a sequence of landmarks, e.g., stores
and museums, which ignore the paths connecting these places. Others [Abul et al. 2008; Gidofalvi
et al. 2007; Andrienko et al. 2009] consider trajectories asa sequence of coordinates in Euclidean
space but do not fully consider the road-network constraints. Specifically, their anonymization re-
sults mainly provide movement trends (e.g., centroid of clusters of trajectories [Monreale et al.
2010]). Since the centroid of clusters could even be off road, e.g., a middle point of two parallel
roads, it is hard to tell the actual roads that a group of vehicles are traveling from the anonymized
results. Consequently, such anonymization results may notbe as useful as real trajectories in terms
of providing good insight on traffic condition analysis for individual roads, and traffic lights place-
ment. Therefore, in our work, we ensure that the anonymization output is also trajectories on real
road-network.

In the literature, there is very few works that generate actual road-network-constrained trajec-
tories as the anonymization output. The most recent one is byPensa et al. [Pensa et al. 2008],
who anonymize trajectories based onk-anonymity [Sweeney 2002]. The notion ofk-anonymity
guarantees that each anonymized trajectory is a common trajectory of at leastk users, and such
anonymized trajectories are called frequent trajectories. However, their approach may not preserve
trajectory information as much as possible. This can be demonstrated by the example given below.

In [Pensa et al. 2008], trajectories are stored and anonymized by using a prefix tree which may not
be an appropriate structure to model the road-network. For instance, consider four users who leave
their homes (I, J ,K,A) and head for work. Letk be 3, which means a trajectory can be published if
at least three users have this trajectory. Suppose that the input to their algorithm is the following four
trajectories:u1(IABC), u2(JABC), u3(KABC) andu4(ABD)1, their anonymization result will

1u1, u2, u3 andu4 can be thought as either a trajectory ID or a person’s symbolic ID.
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be an empty set since the prefix tree treats trajectories withdifferent starting points independently.
Such result obviously loses too much useful information. Toachieve better information utility, an
alternative way is to directly take partial trajectories asinput, i.e., consider only busy roads with
more thank users. In this case, the input becomesu1(ABC), u2(ABC), u3(ABC) andu4(AB),
and the new anonymization result is:u′

1(ABC), u′

2(ABC), u′

3(ABC) andu′

4(AB), which is more
meaningful than the previous empty set.

In addition, since road maps can be found everywhere, in the domain of privacy-preserving loca-
tion publishing, it is reasonable to assume road-network information is available to any adversary.
Thus, cautions are very much needed when publishing anonymized trajectories. For instance, let
us continue from the previous example and assume that the road-network in Figure 1 is accessible
to an adversary Bob. If Bob observes that Alice passes by roadAB andBD at similar time every
weekday, then Bob can infer thatu′

4 is Alice who is the only one with trajectory enteringBD in
this published dataset. Upon knowing the anonymous ID of Alice, Bob can track Alice’s remain-
ing trajectories in the published dataset. Thisinference-route problemis caused by the fact that
an adversary can infer someone’s unpublished trajectoriesfrom the published location dataset. Be-
cause the inferred trajectories are infrequent (i.e., not many users have such trajectories), with high
probability, these trajectories, combined with certain external knowledge, can be used to identify a
particular individual’s trajectory information in the published dataset. In general, given a threshold
k, if the attacker can link any anonymous ID to Alice with probability greater than1

k
by using the

above method, then we say there is an inference-route problem.
In this paper, we address the problem of privacy-preservinglocation data publishing under the

assumption that road-network data are public information.Our approach has three main proper-
ties: (1) it guaranteesk-anonymity of published data, (2) it avoids the inference-route problem,
and (3) the anonymization results follow the road-network constraints. The basic idea is to employ a
clustering-based anonymization algorithm to group similar trajectories and minimize the data distor-
tion caused by anonymization through a careful selection ofrepresentative trajectories. We propose
a C-Tree (Cluster-Tree) to speed up the clustering process and develop methods to incrementally
calculating error rates.

A preliminary version of this paper appears in [Lin et al. 2010], where we presented the basic
idea of the trajectory anonymization. In this paper, we makethe following additional contributions.
First, we proved that the anonymization result of our approach satisfies strictk-anonymity. Sec-
ond, we improved the anonymization approach by taking into account both global and local error
rates. Third, we proposed a method to automatically determine the threshold used during clustering.
Fourth, we conducted an extensive experimental study including detailed analysis of our approach
and comparison to the most recent related work by using both synthetic and real datasets. In addi-
tion, we also provide more detailed description of our algorithms.

The rest of the paper is organized as follows: Section 2 reviews related work. Section 3 gives
the problem statements. Section 4 presents our proposed approach. Section 5 reports experimental
results. Finally, Section 6 concludes the paper.

2. RELATED WORK

Most existing works on privacy-preserving location publishing consider trajectories represented as
sequences of coordinates and output anonymization resultsin the form of cloaking regions or cen-
ters of clusters. However, these approaches do not generateanonymized trajectories that follow the
road network constraints. Their anonymization results preserve the user privacy but are not ben-
eficial for traffic analysis on individual roads, while our goal is to achieve both. In what follows,
we give an overview of these approaches. In [Gidofalvi et al.2007], the spatial-temporal cloaking
technique is applied to generate cloaking regions coveringsegments of trajectories. In [Abul et al.
2008; 2010b], Abul et al. consider a trajectory as a cylindrical volume where the radius represents
the location imprecision. Then they perturb and cluster trajectories with overlapping volumes to en-
sure that each released trajectory volume encloses at leastk − 1 other trajectories. In [Nergiz et al.
2009], each trajectory is an ordered set of spatio-temporal3D volumes(e.g. points). It adopts a con-
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densation based grouping algorithm for trajectoryk-anonymity. Each cluster is then anonymized
which ensures optimal point matching that will minimize thelog cost. Finally reconstruction is
deployed to output atomic trajectories to ensure privacy. In [Monreale et al. 2010], Monreale et
al. cluster trajectories and transform them into into a sequence of centroids of Voronoi cells. Such
anonymized trajectories are no longer real trajectories. They can be located even in the middle of
two parallel roads. In [Domingo-Ferrer and Trujillo-Rasua2012], trajectories are clustered based on
a distance function and then a location time triple in an anonymized trajectory is replaced by an ex-
isting triple with close proximity in original trajectory to satisfy k-anonymity. However, two triples
though close in proximity may belong to two different roads and hence making it easy for the adver-
sary to identify fake trajectories given the road map is publicly known. In [Abul et al. 2007], Abul
et al. used a coarsening strategy which removes one or more spatial points in a trajectory to achieve
anonymization. An anonymized trajectory may contain disconnected paths. This is different from
our approach which preserves continuous trajectories based on road-network information. Similarly,
in [Mohammed et al. 2009], Mohammed et al. adopt a greedy algorithm to suppress locations in the
trajectories to achieve anonymity. However, using suppression alone may decrease the utility of the
anonymization results. They did not provide any experimental study to prove the effectiveness of
the approach. Unlike the previous works which are based on the similarity of trajectories, Yarovoy
et al. [Yarovoy et al. 2009] group trajectories based on so-called quasi-identifiers which is hard to
be selected in practice.

Some other works consider trajectories that are represented by landmarks or locations of interests.
However, such kind of trajectories provide mainly moving patterns rather than real trajectories as
considered in our work. For example, [Andrienko et al. 2009]considers various behaviors of moving
objects like positions of start and end, significant turns and significant stops to cluster the trajecto-
ries. [Monreale et al. 2011] proposes a generalization approach of semantic trajectories, temporally
ordered sequence of important places visited by a moving object with the help of a places taxonomy.
However, even though a sensitive location for instance an Oncology clinic may be generalized to
Clinic, there may be only one clinic at that location and hence an adversary could still reveal the
sensitive information. Two other related works used time confusion and path confusion respectively.
The time confusion approach [Hoh et al. 2007] mixes locationsamples of different trajectories, and
the path confusion approach [Hoh and Gruteser 2005] crossespaths in areas where at least two users
meet. The main problem of the two approaches is that traffic flows are no longer preserved.

In addition, a few works make the assumption that attackers have certain prior knowledge and
take such prior knowledge as input for anonymization, whileour anonymization is more general
and does not need such assumptions. For example, in [Terrovitis and Mamoulis 2008], Terrovitis
and Mamoulis assume that the adversaries know partial trajectory information of some individuals.
They use it as part of input to their anonymization algorithm. Such usage limits the generality and
feasibility of their approach. In [Abul et al. 2010a], trajectories are consistent with the road network.
However, the work serves a completely different purpose compared to our work. They hide the
sensitive patterns from spatio-temporal patterns by taking a given set of sensitive patterns as input
parameters whereas our approach does not assume such kind ofprior knowledge. In [Chen et al.
2011], Chen et. al. propose algorithm to publish trajectorydata which is differentially private by
adding noise to a prefix tree under Laplace transform. Their approach has a totally different privacy
preserving goal compared to our work.

The most related work is by Pensa et al. [Pensa et al. 2008]. They proposed a prefix-tree based
anonymization algorithm which guaranteesk-anonymity of the published trajectories in a way that
no trajectories with support less thank will be published. They defined the support of a trajectory
Trj as the number of trajectories containingTrj, which however causes the inference-route prob-
lem. Here, we can see that how the concept ofk-anonymity is applied will affect the quality of the
anonymization result.

To sum up, our work is superior to existing works in terms of the following two major aspects: (1)
our anonymized trajectories follow road-network constraints and hence are more effective for traffic
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analysis; (2) our anonymized trajectories prevent inference problems that have never been studied
by any others before.

3. PROBLEM STATEMENT

In general, raw data collected by location-based applications contains user (object) information as a
four-tuple〈ID, loc, vel, t〉, whereID is the object ID,loc andvel are object location and velocity
at timestampt respectively. The anonymized dataset contains object information in the form of
〈aid, rid, dir, tint〉, whereaid is an anonymized object ID,rid is a road ID,dir is the object’s
moving direction, andtint is a time interval that includes the object actual travelingtime t. Here,
for privacy concerns, we replace specific locations and velocities by road ID and moving direction;
we anonymize trajectories in the same time intervaltint to preserve the time relationship among
trajectories. Such representation is sufficient to derive trajectories or traffic flow information.

The road network is modeled as a directed graph, where each edge corresponds to a road with
objects moving at one direction, and each node represents anintersection. Specifically, an edge is
represented asninj , which means objects move from nodeni to nodenj . Each directed edge is
given a road IDri.

We next define the frequent road and inference-route problem.

DEFINITION 1. LetW be a time interval, and letk be a threshold. We say a road is a frequent
road if the number of moving objects moving along one direction on this road is no less thank
within timeW . We call the number of moving objects the frequency of the road.

In case the trajectory dataset covers a long time frame (e.g,days, weeks or months), we will
divide the time frame into shorter intervals (e.g., hours) and anonymize trajectories falling into the
same time interval. The motivation is that trajectories sharing roads may not have enough impact
on each other if they are far apart temporally. The unit of division of time frame should be selected
such that trajectories sharing roads may influence each other on various conditions like increase in
traffic or accidents. We support two types of time dimension partitioning. One is to let users define a
time frame which depends on their time period of interest andthe other is that we uniformly divide
the time frame. The unit of division we chose is one to five hours.

DEFINITION 2. Let Υ be an intersection of roadsr1, ..., rm, and letU+
i , U−

i be the sets of
objects moving toward and outwardΥ on roadri (1 ≤ i ≤ m) duringW , respectively. If∃ U+

i ,
U−

j , |U+
i | ≥ k, |U−

j | ≥ k, and (0< |U+
i −U−

j | < k or 0< |U−

j −U+
i | < k), then we sayΥ has an

inference-route problem.

In the above definition, the constraints|U+
i | ≥ k, |U−

j | ≥ k ensure that only frequent road seg-
ments are considered, and (0< |U+

i −U
−

j | < k or 0< |U−

j −U
+
i | < k) check if there is an inference-

route problem. To have a better understanding, let us revisit the example in Figure 1. NodeB is an
intersection of three roads. On roadAB, U+

AB = {u1,u2,u3, u4}; on roadBC, U−

BC={u1,u2,u3}.
SinceU+

AB − U−

BC = {u4}, |U
+
AB − U−

BC | = 1< k, nodeB has an inference-route problem.
Next, we present how to evaluate the quality of the anonymized dataset of trajectories. Intuitively,

the less difference between the anonymized dataset and the original dataset, the better quality the
anonymized dataset is. Therefore, we use two commonly accepted metrics: average error rate and
standard deviation. Suppose there areN roads (or edges in a road-network graph) andri represents
roadi. Let originalri andanonymizedri denoteri’s original frequency and frequency after the
trajectories have been anonymized. Then in Equation 1, the error functionE is defined as the average
difference betweenoriginalri andanonymizedri (i.e.,Ei), andσ is the standard deviation of the
error rates. A low standard deviation indicates that the anonymization quality of each road is similar
and close to the average error rate.
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E =
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N
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√
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√

√

1

N

N
∑

i=1

(Ei − E)2 (2)

4. OUR APPROACH

In this section, we present our anonymization algorithm. Itconsists of two main steps. First, we
partition the time axis into intervals, and group records within the same interval. In each obtained
sub-datasetD, we remove records associated with infrequent roads, i.e.,roads with less thank
objects within same time interval. We denote the obtained dataset asD′. In D′, we construct partial
trajectories for the remaining objects based on moving directions. Note that one user may have
several disconnected partial trajectories because he may visit some infrequent roads. Each partial
trajectory will be assigned an anonymous ID. For the rest of the paper, words “trajectory” and
“partial trajectory” are interchangeable.

The second step is the core of the anonymization process. We propose a clustering-based
anonymization algorithm which guarantees that by achieving strict k-anonymity (defined in Sec-
tion 4.1) among partial trajectories, our anonymization result is free of the inference-route problem.
Compared to traditionalk-anonymization approaches, our approach not only needs to minimize er-
rors caused by anonymization but also needs to satisfy some unique requirements. Road-network
constraints should be enforced during the entire anonymization process, especially when computing
the representative trajectories. The first step is relatively straightforward. Therefore, the following
discussion focuses on the anonymization step.

4.1. An Overview of Clustering-based Anonymization

5 n6

n3

n1

r 5

r 2

r 4

n2
r 3

n4
r 1

1Trj

Trj
3

2Trj

n

Fig. 2. Trajectory Representation

The essential idea of clustering-based anonymization al-
gorithm is to find clusters of similar trajectories and
anonymize them by using a representative trajectory. The
details are the following.

First, we need to select a proper way to represent trajec-
tories. Trajectories are initially represented as a sequence
of timestamped locations. In our anonymized dataset, we
do not disclose exact locations because detailed informa-
tion increases attackers’ chances to link published location
to specific individuals. Instead, we report only information
about which object passing by which road. There are two
options: (i) representing a trajectory by road IDs; or (ii)
representing a trajectory by node IDs. As illustrated in Fig-
ure 2, trajectoriesTrj1, Trj2 andTrj3 can be represented
asr4r2, r1r3, andr1r5 respectively following the first option. Using the second option, trajectories
Trj1, Trj2 andTrj3 can be represented asn5n2n3, n1n2n4, andn1n2n6 respectively. Both types
of representations well capture the similarity between trajectoriesTrj2 andTrj3 which share one
common road. However, the first option treatsTrj1 andTrj2 as two irrelevant trajectories even
though they intersect. To better reflect relationships among trajectories, we adopt the second option
and represent a trajectory by a sequence of node IDs.

The second issue is to define the distance between trajectories. Since a trajectory can be seen as a
string of road-segment IDs, we employ theedit distance[Wagner and Fischer 1974] to compute the
amount of different road-segment IDs in the two trajectories. Specifically, the edit distance between
two trajectories is given by the minimum number of operations needed to transform one trajectory
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Clustering-based Anonymization (TRJ , k)
Input:TRJ is a set of trajectories to bek-anonymized

1. Group same trajectories and formTRJ ′

2. Sort trajectories inTRJ ′ in a descending order of supports
3. for eachTrj in TRJ ′ do
4. if Trj.support ≥ k then
5. create a new cluster forTrj
6. else
7. check existing clusters
8. if Find Cluster(Trj,C) then
9. insertTrj to clusterC
10. SelectRepresentativeTrajectory(C,Trjr)
11. updateC ’s error rate
12. updateC − tree
13. else
14. create a new cluster forTrj

/* Clustering Adjustment Phase */
15. for each clusterC
16. if C.Total TRJ ≥ ρa then setC.Total TRJ = k
17. else removeC

/* Data Publishing */
18. Translate representative trajectories into output format

Fig. 3. An Outline of Clustering-based Anonymization Algorithm

into the other, where an operation is an insertion, deletion, or substitution of a node. For example,
the edit distance betweenTrj1(n5n2n3) andTrj2(n1n2n4) is 4, while the distance betweenTrj2
andTrj3(n1n2n6) is 2.

Now we are ready to present our clustering-based anonymization algorithm. An outline is given
in Figure 3. First, we group same trajectories and count itssupport. Support is defined as the number
of users who have the same trajectories (Definition 3).

DEFINITION 3. Letu be a user’s anonymous ID andTrju denote his trajectory inD′. We have
the support of trajectoryTrj as follows: Support(Trj) =|{u|Trju = Trj, ∀ u}|.

Distinct trajectories are arranged in a descending order oftheir supports. If a trajectory’s support
is more than the anonymization thresholdk, the trajectory itself forms a cluster. For the remaining
trajectories, sayTrj, we compare it with existing clusters. If there exists a suitable cluster, we insert
the new trajectory into that cluster and update the cluster’s information. Otherwise, a new cluster
will be created forTrj. At the end of clustering, there is aclustering adjustment phasewhich
deals with clusters containing less thank trajectories. In particular, if a cluster contains less than ρa
(ρa < k) trajectories, we directly remove it. Otherwise, we add dummy trajectories to the cluster
by increasing the support of the representative trajectoryto k. The selection of a properρa will be
discussed in Section 4.5.

Finally, we translate representative trajectories together with their supports into output format,
which contains object anonymous IDs, road names, and objects’ moving directions. For example,
we obtain the following intermediate result after anonymizing the trajectories shown in Figure 1:
u′

1(ABC), u′

2(ABC), u′

3(ABC) andu′

4(ABC), wherek = 3. The published dataset will look like
this: (u′

1, R1, AB), (u′

1, R2, BC), (u′

2, R1, AB), (u′

2, R2, BC), ..., (u′

4, R2, BC), whereRi is the
name of a road.

The algorithms for finding candidate clusters and selectingrepresentative trajectories along with
definitions of local error rates and threshold will be elaborated in the following subsections.

4.2. Finding Candidate Clusters

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: January YYYY.



A:8 S. Gurung et al.

9r5r3

r8r9r5r3r1

r

r13r11r10r62

8r

7

r1 r5r2 rrr6 7 10 r11r13r6{             }

N1

N2 N3

r

C3

{                   }

C2 C4 C1

{         } {           } 

{                  }r

{            } 

Fig. 4. An Example C-tree

Figure 5 outlines the procedure to find a candi-
date cluster for a new trajectory. The first step
is to check whether a new trajectory can be
absorbed by an existing cluster. As the num-
ber of clusters increases, comparingTrj with
all clusters becomes very costly. Therefore, we
employ an in-memory index structure, the C-
tree (Cluster-tree), to prune unnecessary com-
parisons. In particular, each node in the C-tree
contains multiple entries and each entry in a
node has two fields: a pointerptr and a set of
road IDs (denoted asRID). In leaf nodes, each entry has a pointer to a cluster and the IDs of roads
occurring in that cluster. In internal nodes, each entry hasa pointer to a child node and the union of
roads IDs in its child node. It is worth noting that since we model roads as directed edges, a trajec-
tory can be represented as a set of road IDs without confusion. For example, the trajectoryr4r2 in
Figure 2 can be represented as{r2, r4} since there does not exist a trajectoryr2r4 that is against the
moving direction. The use of road IDs for representing trajectories here facilitates easy comparison
of supports on each road as presented below. Such representation is only used for locating candidate
clusters, thus it does not affect the final selection of the most similar trajectory.

Figure 4 illustrates an example C-tree. Given a new trajectory Trj, starting from the root of the
C-tree, we calculate the similarity betweenTrj andRID in every entry of the node by using the
following similarity function.

Simc(Trj,RID) =
|S(Trj) ∩RID|

|S(Trj)|
(3)

Simc computes the percentage of common roads included inTrj andRID, whereS(Trj) denotes
the set of road IDs in trajectoryTrj. If Simc is above a thresholdρt, we continue to visit the child
node of this entry. This process is repeated until we find all entries in the leaf nodes withSimc above
the threshold. All the clusters belonging to these entries will be considered as candidate clusters. For
example, suppose that a new trajectory contains roadsr2, r8 andr9, and the thresholdρt is 60%.
The similaritySimc between the new trajectory and the first and second entries inthe root node
N1 are 100% and 0% respectively. The tree below the second entryis pruned and thus we do not
need to visit nodeN3. We continue to visit the child nodeN2 pointed by the first entry. TheSimc

between the trajectory and the first and second entries inN2 are 33% and 67% respectively. Since
the second entry has the similarity score above the threshold, its corresponding clusterC3 becomes
the candidate cluster for further consideration.

Among candidate clusters, we calculate the edit distance between their representative trajectories
and the new trajectoryTrj. Based on the edit distance, we then compute a local errorEc (defined
in Section 4.4) and select the candidate cluster with the smallestEc. Only whenEc is lower than a
thresholdρc (defined in Section 4.5),Trj will be inserted into the corresponding candidate cluster.
Otherwise, a new cluster will be created forTrj.

When actually addingTrj to a cluster, we need to update both the representative trajectory and
the corresponding entries in the C-tree. The algorithm for computing the representative trajectory
is presented in Section 4.3. After the representative trajectory is determined, we check whether the
node in the C-tree with respect to current cluster needs to beupdated. If current cluster contains road
IDs which are not included in the road ID list of the corresponding C-tree entry, we will append the
new road IDs to the road ID list. This change will be propagated to higher levels of the C-tree until
an entry containing all road IDs in current cluster is reached. Consider the C-tree in Figure 4 and
suppose that a new trajectory that consists of roadsr2, r8 andr9 will be inserted into clusterC3.
We check the road list ofC3’s entry in the C-tree, which is{r3r5r8r9} and does not containr2. We
then addr2 to the road list. Now the second entry inN2 becomes{r2r3r5r8r9}. Next, we check
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Find Cluster (Trj,C)
Input:Trj is a trajectory
Output:C is a cluster

1. NODE ← {C-tree.root}
2. while (NODE is not empty)do
3. for each nodeN in NODE do
4. for each entryen in N do
5. if Simc(Trj, en.RID) > ρt then
6. if N is not a leaf nodethen
7. adden’s child node toNODE
8. else adden’s cluster to candidate listLc

9. for all clusters inLc do
10. find clusters with smallestEc regardingTrj
11. if Ec < ρc then
12. return the cluster found

Fig. 5. Algorithm of Finding Clusters

its parent entry, the first entry inN1. Sincer2 is included in the first entry inN1, the tree update
operation completes.

In the other case when a new cluster is created forTrj, we need to insert a new entry for this new
cluster to the C-tree. Recall that each entry in the node of the C-tree has two fields: (i) a set of road
IDs and (ii) a pointer. The maximum number of entries in each node is the same. All insertions start
at a leaf node which is identified during the process of findingcandidate clusters. We insert the new
entry into that node (denoted asN ) with the following steps:

(1) If the nodeN contains fewer than the maximum legal number of entries, then there is room for
the new entry. Insert the new entry in the node.

(2) OtherwiseN is full, and we evenly split it into two nodes. In particular,we randomly select
an entry as seed. Then we computeSimc (Equation3) between other entries and the seed. The
average of allSimc serves as a separation value. Entries withSimc above the average are put
in the nodeN , and the remaining entries are put in the new right nodeN ′.

(3) Next, we update the entry pointing toN . The road ID set in the parent is updated to include all
roads occur inN . The update may be propagated to the upper levels of the tree.Moreover, if
there is a split in the previous step, we need to insert a new entry which includes road IDs in the
new nodeN ′ to the parent level. This may cause the tree to be split, and soon. If current node
has no parent (i.e., the node is the root), a new root will be created above this one.

4.3. Selecting Representative Trajectory

There are two key requirements when selecting a representative trajectory. First, the global error
rateE should be minimized. Second, the representative trajectory must satisfy the road-network
constraint. By keeping these in mind, we design the following algorithm.

In a cluster, we find the trajectory with the highest support and then trim the trajectory from both
ends to obtain the final representative trajectory. To illustrate it, we use the example in Figure 6.
The cluster contains three types of trajectories:Trj1, Trj2 andTrj3. Each trajectory is associated
with a number of support, e.g.,support(Trj1) = 10. Numbers on the last line indicates the original
numbers of users on each road, e.g.,original(n1n2)=15. SinceTrj1 has the highest support, let
us have a further look at it. We compute the error rateE by treatingTrj1 as the representative
trajectory. The support of the representative trajectory is the sum of the supports of all the trajectories
in the cluster. The reason behind is to maintain the same amount of trajectories after anonymization.
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Trj1 (10):n1—– n2—– n4—– n7—– n8—– n9

Trj2 (5): n1—– n2—– n4—– n7

Trj3 (6): n2—– n4—– n7—– n8

original: 15 21 21 16 10

Fig. 6. An Example of Selecting Representative Trajectory

In this example, if we useTrj1 as the representative trajectory, we will haveE = 58%.

E = (En1n2
+ En2n4

+ En4n7
+ En7n8

+ En8n9
)/5

=
(21−15

15 + 21−21
21 + 21−21

21 + 21−16
16 + 21−10

10 )

5
= 58%

Observe thatEn8n9
is higher than 100%. If the roadn8n9 is excluded from the representative

trajectoryTrj1, the overall error can be reduced to 34%. Based on this observation, the second
step is to trim the roads in the trajectory that can help reduce the overall error rate. Due to the
road-network constraint, we cannot arbitrarily remove nodes from a trajectory. Our strategy is to
remove nodes starting from both ends of the selected trajectory. Also, we should not remove too
many nodes, which otherwise leads to poor pattern preservation. To reach the balance, we only con-
sider removing the nodes with error rate above certain threshold. In our case, we set the threshold
to be 100% in order to ensure that the overall error rate does not exceed 100%. Specifically, if a
roadr which is located at the end of the trajectory and has an error rate larger than 100% (i.e.,
originalr < support(Trj1) − originalr), this road will be removed from the representative tra-
jectory. The process continues until we cannot find such a road at either end of the trajectory. The
final representative trajectory for the example case isn1n2n4n7n8. The algorithm is summarized in
Figure 7.

Select Representative Trajectory (C,Trjr)
Input:C is a cluster
Output:Trjr is the representative trajectory

1. support(Trjr)← 0
2. for eachTrj in C do
3. if support(Trj) >support(Trjr) then
4. Trjr ← Trj
5. support(Trjr)← support(Trj)
6. i← 1; j ← length(Trjr)-1
7. continue← 1
8. while (i < j andcontinue) do
9. continue← 0
10. if original(ri) <support(Trjr)-original(ri) then
11. i← i+ 1; continue← 1
12. if original(rj) <support(Trjr)-original(rj) then
13. j ← j − 1; continue← 1
14. Trjr ←(ri...rj)
15. returnTrjr

Fig. 7. Algorithm of Selecting Representative Trajectory
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4.4. Definitions of Local Error Ec

In the following discussion, we useC to denote a cluster andTrjr to denote its representative
trajectory. Letri andanonymizecri denote the roadri andri’s frequency after anonymization within
clusterC, respectively. Note that hereanonymizedcri is specific to a cluster and it is different from
(just a portion of) globalanonymizedri. Formally, the relationship betweenanonymizedcri and
anonymizedri is given in Equation 4, where clustersC1, ...,Cm are clusters containing roadri.

anonymizedri =
m
∑

j=1

(anonymizedcjri ) (4)

Given a new trajectoryTrjnew , Ec is computed by assuming thatTrjnew has been inserted into
clusterC. Let us denote the new cluster withTrjnew asC′ and assume that the representative
trajectory ofC′ is still the same asC but with an increased support bysupport(Trjnew ). The
definition ofEc is shown in Equation 5, whereR is the set of roads appearing in the new cluster
C′, and|R| denotes the total number of roads inR. For each roadri in R, we calculate two values,
transri andchangeri. The valuetransri is the difference of frequency ofri in C andC′. The value
changeri is the change of frequency ofri in the anonymized results of clusterC′, i.e.,changeri=
(|anonymizedc

′

ri
− anonymizedcri|).

Ec =
1

|R|

∑

ri∈R

Ec
ri

=
1

|R|

∑

ri∈R

(changeri − transri)
2 (5)

For better understanding of Equation 5, we illustrate the calculation through the following ex-
ample. Consider the clusterC containing two types of trajectories:Trj1(n1n2n4n7n8n9) and
Trj2(n1n2n4n7), wheresupport(Trj1)=10, support(Trj2)=5. Suppose that the representative
trajectory isTrjr(n1n2n4n7n8) andsupport(Trjr)= 15. We now computeEc upon the inser-
tion of a new trajectoryTrj3(n2n4n7n8) with support(Trj3) = 6 into the clusterC. Table I
summarizes the changes for each road after the insertion of the new trajectory, where roads are
listed in the first column of the table, followed by its original anonymization value (anonymizedc),
the anonymized value in the new cluster (anonymizedc

′

), and corresponding values oftransand
change. Specifically, after the insertion, the anonymized values of the roads inTrjr will be in-
creased bysupport(Trj3) = 6 as shown in the second column in Table I and the last column
change denote the value of this change. The difference between roadfrequency in clusterC and
C′ is shown in the third column of the table, from which we can seethat the insertion of the new
trajectory does not change the overall frequency of roadsn1n2 andn8n9 since the new trajectory
does not contain the two roads.

Table I. An Example of Ec Calculation

Road anonymizedc anonymizedc
′

trans change

n1n2 15 15+6=21 0 6
n2n4 15 15+6=21 6 6
n4n7 15 15+6=21 6 6
n7n8 15 15+6=21 6 6
n8n9 0 0 0 0

Accordingly,Ec can be computed as follows.

Ec = (Ec
n1n2

+ Ec
n2n4

+ Ec
n4n7

+ Ec
n7n8

+ Ec
n8n9

)

=
(6− 0)2 + (6− 6)2 + (6− 6)2 + (6 − 6)2 + (6− 6)2

5
= 7.2

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: January YYYY.



A:12 S. Gurung et al.

Compared to the approach using merelyE during clustering,Ec is more effective since it cap-
tures the effect of error change after inserting a new trajectory. More specifically, the value ofE is
dominated byoriginalri. If a cluster contains many roads which have a large value oforiginalri,
the insertion of even a dissimilar trajectory into the cluster will result in a lowE. In other words,
globaloriginalri does not truly reflect the situation in a cluster. As more dissimilar trajectories are
accumulated in the same cluster, the global errorE also increases. UnlikeE, Ec is defined with
respect to each individual cluster, and hence conquers the aforementioned problem.
Ec has another advantage in that it can be quickly computed based on edit distance. In this way,

we avoid a great number of comparison between original number of objects and anonymized number
of objects during error calculation. Specifically,Ec can be expressed in terms of the edit distance
between the representative trajectoryTrjr and the new trajectoryTrj3 as shown in Equation 6,
whereED denote the edit distance.

Ec =
1

|R|
ED(Trjr, T rjnew) · support(Trj)

2 (6)

Considering the same example discussed in this subsection,R contains five roads and the edit
distance betweenTrjr andTrj3 is 1. Therefore, we can computeEc as follows, which yields the
same result as using Equation 5:Ec = 1

5 (6
2) = 7.2

4.5. Selection of Threshold

The threshold selection is a critical task which affects clustering speed and anonymization accuracy.
In this subsection, we discuss how to determine the thresholdρa for the clustering adjustment phase
and the thresholdρc for the clustering process.

After clustering all the trajectories, some clusters may contain less thank trajectories. For these
clusters, the thresholdρa is used to determine whether to remove the clusters or add dummy trajec-
tories to them. To minimize error after the adjustment, we set the thresholdρa as follows.

ρa =
k

2
(7)

The basic idea of Equation 7 is that insertion or deletion of fewer trajectories induces less error.
Specifically, if the total number of trajectories in a cluster is less than or equal tok/2, removing the
cluster will introduce less error by adding more thank/2 dummy trajectories. In the other case, if
a cluster has more thank/2 trajectories, adding less thank/2 trajectories will introduce less error
than removing the entire cluster.

The thresholdρc determines whether a new trajectory can be inserted into an existing cluster or
not. If a low threshold is used, fewer trajectories will be inserted into a cluster as only highly similar
trajectories will be selected. This may result in having more clusters with less thank trajectories at
the end of the clustering. Such clusters will either be removed or include dummy trajectories, which
in turn can increase the error rate. If a high error thresholdis chosen, even the trajectories which
are less similar may be inserted into the same cluster which also introduces more errors. To reach a
balance, we define the thresholdρc as shown in Equation 8.

ρc =

(

k

2

)2

(8)

This threshold is derived according to the clustering adjustment algorithm. As aforementioned, if a
cluster needs to be adjusted, the maximum number of trajectories inserted into or deleted from the
cluster is equal tok/2. The value ofρc is equivalent to the errorEc induced whenk/2 trajectories
are inserted into or deleted from the cluster computed usingEquation 5. Given a new trajectory, if the
correspondingEc exceedsρc, this trajectory will not be inserted into the cluster beingconsidered.
Therefore, even if the cluster needs to be removed during theadjustment phase, it will not introduce
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an error more thanρc. Moreover, we can observe that the value ofρc depends on the value ofk. That
is, a largerk yields a higher thresholdρc. This is beneficial for the clustering due to the following
reason. A largerk may increases the risk of letting more clusters go to the adjustment phase and
hence may increase the global error. A higher threshold willcounteract this effect as it will group
more trajectories into a cluster and reduce the number of clusters with trajectories less thank.

4.6. Strict k-anonymity

In this section, we define the notion ofstrict k-anonymity. It is called “strict” because the calculation
of trajectory supports is based on an exact match of entire trajectories.

DEFINITION 4. (Strict k-anonymity over trajectories): LetTrj be a trajectory. We sayTrj
satisfies strictk-anonymity if Support(Trj) is no less thank.

Our anonymization results guarantees strictk-anonymity over all trajectories in datasetD′. In this
way, we ensure that the anonymization result will not contain any inference-route which is given in
the following theorem.

THEOREM 4.1. Trajectories that satisfy strictk-anonymity do not contain any inference-route.

PROOF. We prove it by contradiction. Let us assume that our anonymization result contains at
least one intersection (denoted asΥ) of roadsr1, ..., rm, which has the inference-route problem.
Then by definition 2, among roadsr1, ..., rm, there exist at least two roadsri and rj such that
|U+

i | ≥ k, |U−

j | ≥ k, but (0< |U+
i −U−

j | < k or 0< |U−

j −U+
i | < k) (whereU+

i andU−

i denote
the sets of objects moving towards and outwardsΥ, respectively).

If 0< |U+
i − U−

j | < k, that means less thank objects enterΥ from roads other thanri. It
implies that the trajectories of objects in(U+

i − U−

j ) have support less thank. Similarly, if 0<
|U−

j − U+
i | < k, that means less thank objects leaveΥ and enter roads other thanrj . It implies

that the trajectories of objects in(U−

j − U+
i ) have support less thank. Both cases contradict with

the property of our anonymization result which only containtrajectories with support no less than
k. Therefore, we conclude that our approach does not have any inference-route problem.

4.7. Complexity Analysis

In this section, we analyze the time and space complexity of our approach. In what follows, we use
n to denote the total number of original trajectories, and usel to denote the maximum number of
roads in a trajectory in the raw datasetD.

First, we analyze the time complexity. Our approach consists of two main phases: (1) removal of
infrequent roads; and (2) the clustering-based anonymization. To remove infrequent roads from the
raw dataset, we need to scan the road segments contained in all the trajectories just once. The total
number of such road segments isn× l. Givenl being a small and constant number, the complexity
of the first step isO(n).

For the clustering-based anonymization, the major cost is the search of the C-tree. Letf denote
the average number of entries in a node of the C-tree, and letkc denote the average number of
trajectories per cluster. The height of the C-tree can be estimated aslogf(n/kc). For each identified
candidate cluster, we search from the root down the leaf nodes in the C-tree. The total number of
entries to be checked can be estimated by the height of the tree multiplied by the number of entries
per node, i.e.,logf(n/kc)×f . If multiple candidate clusters are identified, the cost is only increased
by a small constant number of additional entries being checked. Therefore, the time complexity of
finding candidate clusters is stillO(log(n)). The remaining step is to check each trajectory in the
candidate clusters to select a representative trajectory,the cost of which is aboutkc × l. Sincekc is
proportional ton andl is a small constant number, the time complexity of selectingrepresentative
trajectory isO(n). Summing up the time complexity of the two steps, we obtain the total time
complexity of the clustering-based anonymization, which isO(log(n)) +O(n).
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Finally, the total time complexity of our approach is the sumof the two phases:O(n)+
(O(log(n)) + O(n)), which isO(n). This indicates that the time complexity of our approach is
linear to the total number of trajectories, which is also confirmed by the following experimental
results.

As for the space complexity, our approach stores all the trajectories and the C-tree. The total
number of road segments in the trajectories aren × l. The total number of nodes in the C-tree is
∑h−1

i=0 f i, whereh is the height of the tree and equals tologf(n/kc) as previously discussed. Recall
thatf is the average entries per node and is a constant number. The total space complexity isn× l

+
∑h−1

i=0 f i, which isO(n) +O(f log(n)).

5. EXPERIMENTAL STUDY

In this experimental study, we first compare our two approaches: Clustering-Based Anonymization
(CBA) [Lin et al. 2010] and Improved Clustering-Based Anonymization (ICBA). CBA usedE
(Equation 1) during the clustering while ICBA used the new metric Ec (Equation 5). Then, we
study the effect of the C-tree adopted by ICBA. After that, wecompare ICBA with the latest related
work (denoted as Prefix [Pensa et al. 2008]) by testing the original source code provided by the
authors of [Pensa et al. 2008]. We use both synthetic and map-based datasets and varying a variety
of parameters including the data size, data distribution, average trajectory length and value ofk.

In the synthetic datasets, objects are moving on a randomly generated road map which has about
700 roads. The roads are generated by randomly selecting points (which serve as intersections) in the
space and then connecting nearby points to create the roads.The average degree of an intersection
is 4. Objects can have different speeds which are controlledby the parameter “average trajectory
length”. As for the map-based datasets, we use the generatorby Brinkhoff [Brinkhoff 2004]. Objects
are moving on real road networks. A road consists of multiplesegments and each segment is a
straight line. An object is initially placed on a randomly selected road segment and then moves along
this segment in a randomly selected direction. When the object reaches the end of the segment, an
update is issued and a connected segment is selected. Objectspeeds are varied within a given speed
range which controls the “average trajectory length”. Unless noted otherwise we use the data set
containing 50,000 moving objects as the default setting. The parameters used in the experiments are
summarized in Table II, where values in bold denote the default values.

The performance is evaluated based on five criteria: (i) anonymization time; (ii) average error rate
as given by Equation 1; (iii) standard deviation as given by Equation 2; (iv) number of inference-
routes in the anonymization result; (v) number of frequent patterns after anonymization. All the
experiments were run on a PC with 2.6G Pentium IV CPU and 3GB RAM.

Table II. Parameters and Their Settings

Synthetic Dataset
Parameter Setting
k 10,20,30,40,50
Number of moving objects 5K, 25K, 50K, 75K, 100K
Average trajectory length (km) 20, 30, 40, 50, 60

Map-based Dataset
Parameter Setting
k 10,20,30,40,50
Number of moving objects 5K, 25K, 50K, 75K, 100K
Average trajectory length (km) 3.8, 5.0, 5.8, 6.4, 9.2

Number of roads (Map) 209(St Charles), 434(St Clair),
550(Phelps), 874(Jefferson),
1689(St Louis)

5.1. Anatomy of Our Approaches

5.1.1. CBA vs. ICBA. The first round of experiments compares the performance of our two ap-
proaches: CBA and ICBA, by using synthetic datasets. Figure8(a) shows the average error rate of
the anonymization results obtained from CBA and ICBA when varying the number of moving ob-
jects from 5K to 100K. Observe that the error rate of ICBA is lower than that of CBA for all cases.
This is because CBA adopts a fixed threshold which is set to an experienced value (60%) for all

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: January YYYY.



Traffic Information Publication with Privacy Preservation A:15

(a) Error rate (b) Standard deviation (c) Processing time

Fig. 8. CBA vs. ICBA

(a) Error rate (b) Standard deviation (c) Processing time

Fig. 9. Effect of the C-tree

cases, while ICBA benefits from the optimal threshold selection (Equation 8) as well as the newly
defined metricEc (Equation 5). Figure 8(b) reports the standard deviation where we can see that
ICBA performs similarly to CBA. Figure 8(c) compares the processing time. As shown, ICBA is
much faster than CBA. This is because that ICBA usesEc to measure the intermediate error and
Ec can also be expressed in terms of the edit distance which has already been calculated in other
steps during the anonymization. In other words, ICBA requires less computation than CBA and
hence ICBA is more efficient. In summary, the above observations prove that ICBA improves CBA.
Therefore, in the remaining experiments, we will only consider ICBA.

5.1.2. Effect of the C-tree. In this set of experiments, we study the effect of the C-tree by compar-
ing two versions of the ICBA approach: one with the C-tree andone without using the C-tree (de-
noted as “ICBAno C-tree”). Figure 9(a) and (b) report the average error rate and standard deviation
with respect to the two versions, and Figure 9(c) compares their processing time. We can observe
that the use of C-tree does not affect the accuracy of the anonymization result, but significantly
reduces processing time (more than an order of magnitude for100K datasets), which demonstrates
the effectiveness of the C-tree. More specifically, when theC-tree is not used, a new trajectory needs
to be compared against all existing clusters, which is time consuming. When the C-tree is used, the
new trajectory just needs to be compared with a fewer number of candidate clusters.

5.1.3. Measuring the Probability of Re-identification. We also analyze the probability of re-
identification of a user in our anonymized dataset. Note that, all the users in the same anonymization
cluster will be represented by the same representative trajectory, and hence they are indistinguish-
able from one another regardless the amount of prior knowledge that an attacker may have. Thus,
the re-identification rate of each user in the same cluster isthe same and computed as1

kc
, where

kc is the number of trajectories in the cluster. As discussed inSection 4.6, our approach guarantees
k-anonymity which means the re-identification probability will not be higher than1

k
. In the actual

experiments, we observe a much lower re-identification rateas reported in Figure 10. In particular,
we record the maximum, the average and minimum probability of re-identification rate of all the

clusters. The minimum re-identification rate can be as good as 1
10

th
of the theoretical bound when

the dataset is 100K. This is because the number of trajectories in each anonymization cluster is
usually more thank, and hence it provides better privacy protection than the theoretical guarantee.
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(a) Varying Dataset Size (b) Varying Parameterk

Fig. 10. Probability of Re-identification

5.2. Experimental Results in Synthetic Datasets

5.2.1. Effect of Data Sizes. We now compare the performance of our ICBA with Prefix approach
by varying the number of moving objects (i.e. number of trajectories) from 5K to 100K. Figure 11(a)
shows the average error rate of the anonymization results obtained from ICBA and Prefix. We can
observe that ICBA yields much less error than Prefix in all cases. When the dataset is small (e.g.,
5K), the anonymization results obtained from both algorithms have relatively high error rates. This
is because the number of objects on each road is few and even a small change of an object trajectory
by the anonymization process will have a big impact on the error rate. With the increase of the data
sizes, the error rate caused by ICBA keeps decreasing and it is more than 5 times less compared
to that of Prefix for 100K dataset. The reason of such behavioris that ICBA effectively groups
similar trajectories and carefully selects representative trajectories, which minimizes the overall
error rate. We also measure the standard deviation of the anonymization results obtained from two
approaches. As shown in Figure 11(b), the anonymization result generated by ICBA has much lower

(a) Error rate (b) Standard deviation

(c) inference-route problem (d) Processing time

Fig. 11. Effect of Data Size
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(a) Exact Match (b) Partial Match

Fig. 12. F-measure

standard deviation than that by Prefix, which indicates thatour anonymization result on each road
has similarly good quality.

Figure 11(c) shows the number of nodes (i.e., road intersection) having the inference-route prob-
lem. It is not surprising to see that the anonymization result produced by our ICBA algorithm con-
tains 0 inference-route. However, the anonymization result obtained from Prefix contains a large
number of nodes with the inference problems and the problem becomes more and more severe with
the increase of the data sizes, which is caused by their definition of trajectory support.

We also compare the processing time of both approaches. As shown in Figure 11(d), ICBA is
up to 5 times faster than Prefix. This can be attributed to the C-tree that helps prune the clusters to
be compared with each new trajectory and hence avoids unnecessary calculation. The total time is
inclusive of the construction and update cost of the C-tree which is almost negligible compared to
the benefits brought by the C-tree.

5.2.2. Preservation of Frequent Patterns. We also evaluate the quality of anonymization results
by comparing the anonymized trajectories obtained from ICBA and Prefix with the frequent patterns
discovered from original datasets using the traditional data mining tool (i.e., PADS software [Zeng
et al. 2009]). When using PADS, each transaction is corresponding to an original trajectory. Each
item is corresponding to a road ID in the trajectory. We use the anonymization parameterk as the
minimum support threshold in PADS. The mining results contain sets of sub-trajectories, each of
which is represented as sets of road IDs.

In general, the more frequent patterns are preserved, the better anonymization result is. To mea-
sure this, we use the widely adopted F-measure as defined below, wherePr andPa denote the sets
of trajectories in the data mining results and anonymization results respectively,Nm denotes the
number of trajectories in the anonymization results that match those in the data mining results, and
Nr andNa denote the total number of trajectories in the data mining results and anonymization
results respectively.

F (Pr , Pa) = 2 ·
Precision · Recall

Precision+Recall
(9)

Precision =
Nm

Nr

, Recall =
Nm

Na

Figure 12(a) reports the F-measure values of the Prefix approach and our ICBA approach. Ob-
serve that the ICBA approach yields much higher F-measure values than the Prefix approach in all
cases, which indicates that ICBA preserves more frequent patterns. This is because the Prefix algo-
rithm directly removes infrequent trajectories which do not share the prefix of a frequent trajectory,
while ICBA attempts to preserve the best possible patterns of the infrequent trajectories within the
error threshold.
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(a) Error rate (b) Standard deviation

(c) inference-route problem (d) Processing time

Fig. 13. Varying Parameterk

Since trajectory anonymization always needs to distort trajectories in the output, it is unrealistic
to expect to receive a perfect F-measure value which means all anonymized trajectories fully match
the original frequent trajectories. Therefore, we also evaluate how many trajectories that partially
match the data mining results. For this, we record the anonymized trajectories that have at least 50%
road segments matching a frequent pattern in the original data mining results, and add them toNm

for computing the F-measure. Figure 12(b) shows the results. From this figure, we can see that the
F-measure values have been almost doubled compared to that in Figure 12(a). This indicates that
the anonymization results preserve partial frequent pattern information very well.

5.2.3. Effect of Parameter k. This set of experiments aims to evaluate the performance of both
algorithms regarding different values ofk. As shown in Figure 13(a), the error rate increases dras-
tically with k by using the Prefix algorithm, whilek has only minor effect on our ICBA approach.
Such behavior can be explained as follows. Prefix removes allinfrequent trajectories and adds their
supports to most similar frequent trajectories. Whenk is large, there are more infrequent trajec-
tories, which thus causes more errors. The standard deviation (Figure 13(b)) also demonstrats the
similar pattern as the error rate. Moreover, Prefix again suffers from the inference-route problem
as can be observed from Figure 13(c). Regarding processing time (in Figure 13(d)), ICBA has a
consistent performance and is much faster than Prefix whenk is small. Whenk grows bigger, the
processing time of Prefix decreases. This is because Prefix needs to handle less number of frequent
trajectories for a largerk, which in turn results in higher error rates.

5.2.4. Effect of the Average Trajectory Length. We now evaluate the effect of the average length
of the trajectory in terms of number of roads. The length is determined by two factors: the length
of time interval being considered and object moving speed. As shown in Figure 14(a) and (b),
Prefix incurs much higher error rate and standard deviation than ICBA does for various lengths of
trajectories. This behavior can be attributed to the fact that longer trajectories increase the possibility
of getting more trajectory pattern with support less thank. Using the Prefix algorithm, the support
of a trajectory pattern will be added only to the common prefixbetween the trajectories. Therefore,
if the starting node of trajectories differ, the support will not be added even though these trajectories

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: January YYYY.



Traffic Information Publication with Privacy Preservation A:19

15

30

45

60

E
rr

or
 r

at
e 

(%
)

ICBA

Prefix

0

15

30

45

60

20 30 40 50 60

E
rr

or
 r

at
e 

(%
)

Average length

ICBA

Prefix

(a) Error rate

15

30

45

60

75

S
ta

nd
ar

d 
de

vi
at

io
n

ICBA

Prefix

0

15

30

45

60

75

20 30 40 50 60

S
ta

nd
ar

d 
de

vi
at

io
n

Average length

ICBA

Prefix

(b) Standard deviation

200
400
600
800

1000
1200
1400
1600

In
fe

re
nc

e 
ch

an
ne

l

ICBA

Prefix

0
200
400
600
800

1000
1200
1400
1600

20 30 40 50 60

In
fe

re
nc

e 
ch

an
ne

l

Average length

ICBA

Prefix

(c) inference-route problem

15
30
45
60
75
90

105
120

P
ro

ce
ss

in
g 

tim
e 

(s
)

ICBA

Prefix

0
15
30
45
60
75
90

105
120

20 30 40 50 60

P
ro

ce
ss

in
g 

tim
e 

(s
)

Average length

ICBA

Prefix

(d) Processing time

Fig. 14. Varying Average Length of the Trajectory

may share the suffix or an infix. On the other hand, ICBA attempts to capture similarity between
trajectories either as prefix or suffix or an infix. This leads to less error in ICBA than the Prefix
algorithm.

As for the inference-route problem (Figure 14(c)), the total number problematic nodes gener-
ated by Prefix decreases as the trajectory length becomes longer. This is possibly because that the
increase of trajectory length results in less frequent trajectories and reduces the chance of having
inference-route problems.

As shown in Figure 14(d), there is a drastic increase in anonymization time with the increase of
average length of the trajectory when using the Prefix algorithm. The reason is that longer trajectory
increases the depth of the prefix tree, and hence more time is needed for the anonymization process.

5.3. Experimental Results in Map-based Datasets

We proceed to evaluate the performance of ICBA and Prefix by using datasets generated based on
real road maps using the generator in [Brinkhoff 2004]. We examine the same four aspects: variation
of data sizes, frequent patterns, value ofk and average trajectory length, as that in synthetic datasets.
In addition, we also study the effect data distribution by using different road maps.

5.3.1. Effect of Data Sizes. In this set of experiments, the datasets are generated basedon the road
map of Phelps County (Missouri, USA) which contains about 550 roads. As shown in Figure 15 and
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Fig. 15. Effect of Data Sizes (Real Road-network)
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(a) inference-route problem (b) Processing time

Fig. 16. Effect of Data Sizes (Real Road-network)

Figure 16, ICBA consistently outperforms Prefix in terms of both effectiveness and efficiency. The
reason is similar to that explained when evaluating synthetic datasets. In addition, both approaches
have high error rates when the number of objects (i.e., trajectories) is small and the error rates go
down with the increase of objects. This is because in the sameroad map, fewer objects result in
fewer frequent trajectories, and hence the impact of trajectory modification during anonymization
is more severe.

5.3.2. Effect of Parameter k. Figure 17 shows the performance of ICBA and Prefix when varying
k from 10 to 50. From the figure, we have the following observations. First, both approaches yield
more errors whenk increases. The possible reason is that largerk results in less frequent trajectories,
and hence any change to trajectories for the anonymization purpose has bigger impact on the final
result. Second, it is also interesting to see that Prefix has lower standard deviation, less inference
channels and even faster processing speed with a largerk. This is because that Prefix removes more
infrequent trajectories for largerk, which means Prefix needs to handle much fewer number of
frequent trajectories. Consequently, the standard deviation regarding each frequent trajectory pattern

(a) Error rate (b) Standard deviation

(c) inference-route problem (d) Processing time
Fig. 17. Effect of Parameterk (Real Road-network)
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Fig. 18. Effect of Average Length of Trajectory (Real Road-network)

is lowered, the total number of nodes with inference-route problems is reduced and processing time
is shorten.

5.3.3. Effect of Average Trajectory Length. This set of experiments evaluates the effect of average
trajectory length. As shown in Figure 18, ICBA again outperforms Prefix in general. We also observe
that the error rate increases for both approaches when the length of trajectory becomes longer. The
reason is similar to that for the case with a largerk in the previous experiments. That is that the
reduced number of frequent trajectory patterns with the growth of trajectory length, in turn increases
the impact of trajectory modification during the anonymization process. Moreover, with the increase
of trajectory length, Prefix suffers more from the inference-route problem. The possible reason is
that in the real road-network, the number of roads connectedby an intersection is usually small (e.g.,
two to four). This increases the chance of having nodes with inference-route problems especially in
long trajectories. In addition, the trend of the processingtime of two approaches resembles the case
in synthetic datasets and the reason is also similar.

5.3.4. Effect of Data Distribution. At the end, we study the effect of the data distribution by using
various road maps. The total number of objects (or trajectories) is the same, 50K, in all cases. The
result is shown in Figure 19. Given different maps, the ratioof frequent to infrequent trajectories
is different. This explains the different behavior of errorrates for each map. In general, when there
are more roads, the number of frequent trajectories becomesless, which may increase the error rate
in the anonymized datasets obtained from both approaches. As for the inference-route problem, the
more complex the map is (e.g., St. Louis), the higher chance that Prefix generates more inference-
route problems in its anonymization result. Moreover, it also takes more time for Prefix to handle
larger and complex maps, while our ICBA has relatively stable and much faster processing speed.
In a summary, the result demonstrates that ICBA has better topography independency compared to
Prefix.

6. CONCLUSION

Privacy preserving location data publishing has received increasing interest nowadays. In this pa-
per, we address this newly emerging problem by taking into account an important factor, the road
network constraint, which has been overlooked by many existing works. We identified and de-
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Fig. 19. Effect of Data Distribution

fined a new privacy problem (i.e. the inference-route problem), and proposed an efficient and effec-
tive clustering-based anonymization algorithm. We have proved that our clustering-based algorithm
guarantees strictk-anonymity of the published dataset and avoids the inference-route problem. To
minimize the global error rate after anonymization, we havetaken into account the following major
aspects: calculation of representative trajectories, definition and employment of local error rates, and
selection of threshold used at different stages of anonymization. We conducted an extensive exper-
imental study on both synthetic datasets and real datasets.The results demonstrated the superiority
of our approach compared to the latest related work and an earlier version of our work.
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