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In recent years, research into the mining of user check-in behavior for point-of-interest (POI) 
recommendations has attracted a lot of attention. Existing studies on this topic mainly treat such 
recommendations in a traditional manner, i.e., they treat POIs as items and check-ins as ratings. However, 
users usually visit a place for reasons other than to simply say that they have visited. In this paper, we 
propose an approach called Urban POI-Walk (UPOI-Walk), which takes into account a user’s Social-
triggered Intentions, Preference-triggered Intentions, and Popularity-triggered Intentions, to estimate the 
probability of a user checking-in to a POI. The core idea of UPOI-Walk involves building a HITS-based 
random walk on the normalized check-in network, thus supporting the prediction of POI properties related 
to each user’s preferences. To achieve this goal, we define several user-POI graphs to capture the key 
properties of the check-in behavior motivated by user-intentions. In our UPOI-Walk approach, we propose 
a new kind of random walk model named Dynamic HITS-based Random Walk, which comprehensively 
considers the relevance between POIs and users from different aspects. On the basis of similitude, we 
make an online recommendation as to the POI the user intends to visit. To the best of our knowledge, this 
is the first work on urban POI recommendations that considers user check-in behavior motivated by 
Social-triggered Intentions, Preference-triggered Intentions, and Popularity-triggered Intentions in 
location-based social network data. Through comprehensive experimental evaluations on two real datasets, 
the proposed UPOI-Walk is shown to deliver excellent performance.  
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 INTRODUCTION 1.

Many urban applications, such as navigational planning services [Yuan et al., 2011], 
urban planning [Yuan et al., 2012], and location-based advertisement [Lu et al., 2012], 
have been developed for the rapidly growing location-based services (LBSs) market. 
To improve the quality of smart urban living, it is beneficial that these LBSs can 
recommend to their users ‘Points-Of-Interest’ (POIs) in which they may be interested. 
Thus, effective and efficient urban POI recommendation techniques are desirable. 
Given a set of POIs, which is pre-determined via a location-based social network 
(LBSN) [Zheng et al., 2012] [Zheng and Zhou, 2011], the recommendation technique 
identifies the list of POIs a user is most likely to visit. Intuitively, to model the 
relevance between the users and the POIs, we can construct a user-POI matrix in 
which rows denote the users and columns denote the POIs. Each entry in this user-
POI matrix denotes a relevance score, showing the probability that the user will visit 
the POI. Therefore, as shown in Fig. 1, we can see POI recommendations given some 
user query as a ranking over the rows of the matrix. Intuitively, each entry in the 
user-POI matrix could be estimated by users’ check-ins. However, users typically 
only check-in to a small portion of all POIs. Consequently, we need to calculate a 
predicted score for the POIs that a user has not visited.  
 

 
Fig. 1. An example of POI recommendation. 

 
To address the calculation of these predicted scores for the user-POI pairs, 

Random Walk approaches have shown an excellent performance [Jamali and Ester, 
2009; Cao et al., 2010]. Using the Random Walk approach to predict scores for the 
user-POI pairs, a weighted graph is required. Generally, the weights associated with 
each edge of the graph should reflect the intention of the user to visit the POI [Zheng, 
2012]. On the basis of our observations, we categorize users’ intentions into three 
classes: 
 Social-triggered Intentions (SI), which refer to the relationship between POIs 

and a user’s social circle. These intentions reflect the frequency with which the 
user’s social circle visits the POI. For example, as shown in Fig. 2, we could 
recommend a Chinese restaurant to user A, because his/her friends often check-
in to such restaurants.  
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 Preference-triggered Intentions (PreI), which refer to the relationship between 
the semantic labels of the POI and a user’s preferences. These intentions reflect 
how often the user visits POIs with a specific semantic label. As shown in Fig. 2, 
user B tends to check-in to POIs in the “coffee” category. Therefore, we may 
recommend other POIs in this category. 

 Popularity-triggered Intentions (PopI), which refer to the relationship between 
POIs and their number of check-ins. These intentions reflect the general 
phenomenon whereby people like to visit popular places. For example, as shown 
in Fig. 2, most users go to Chinese restaurants for a meal. We thus recommend 
Chinese restaurants to other users. 

Corresponding to these three types of intention, users’ check-ins can be viewed as 
the context of the behavior that is motivated by the aforementioned intentions. In 
other words, check-ins may be triggered by multiple intentions, inclusive of SI, PreI, 
and PopI. However, most existing techniques [Ye et al., 2010; Ye et al., 2011b] for 
recommending POIs are primarily focused on analyzing SI for enhancing 
collaborative filtering (CF)-based models. To extract the check-in behavior motivated 
by SI, existing methods usually extract social-based features from LBSN data. Due to 
the social binding of a user’s social circle, these recommendations tend to recommend 
the POIs that usually have been visited by the user’s friends. For example, as shown 
in Fig. 2, users A and B have both visited coffee shops, implying that their 
preferences in restaurants are very similar. Suppose that user B likes to eat pizza. 
Thus, it is more reasonable to recommend a pizza parlor than a Chinese restaurant 
to user A. But the social inference recommendation models would recommend 
Chinese restaurant to user A. The reason is that these existing models do not address 
users’ preferences from semantic tags of visited POIs. Hence, we exploit users’ 
preferences from semantic tags of visited POIs to recommend the POIs of LBSNs in 
an urban area. 

 

 
Fig. 2. Location-based social network. 

 
Several works have addressed the check-in behavior motivated by PreI [Bao et al., 

2012; Cao et al., 2010]. As mentioned earlier, semantic label plays a crucial role for 
representing users’ preference intention in urban POI recommendation. 
Unfortunately, these works only consider the pre-defined category of the POI as a 
rough semantic label while disregarding the user-generated annotation of the POI. 
Although we can also map users’ current positions to some POI database or road 
network in order to understand the POI tags given by users, this process does not 
work well in an urban area. This is because POIs in an urban area are very crowded, 
which means we cannot accurately tag a location just by determining users’ positions. 
Fig. 3 shows that there are two totally different types of restaurant in the same 
building. Fortunately, we can view the LBSN of each user as a sensor for detecting 
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semantic POI tags, thus improving POI recommendation in an urban area. Moreover, 
the check-in behavior motivated by PopI has still not been taken into consideration in 
the representation of user behavior. As mentioned earlier, users generally visit only a 
small portion of all POIs. This leads to the features extracted from the SI and PreI 
behavior being ineffective for recommending POIs that the user and his/her social 
circle never visit. 

 

 
Fig. 3. A POI scenario in an urban area. 

 
On the basis of the observations prompted by the above examples, we propose 

Urban POI-Walk (UPOI-Walk). This is a new approach to urban POI 
recommendation that mines urban users’ check-in behavior based on three kinds of 
intentions. As shown in Equation (1), given a set of users U and a set of POIs P, the 
problem of POI recommendation can be formulated as the prediction of relevance 
scores, i.e., the degree of interest, for a given user-POI pair. 

]1 [0,  and , , where,),(  vPrUuvpuf  (1) 

Hence, POI recommendation in LBSNs can be addressed as the problem of numerical 
value prediction. Although numerical value prediction techniques have been 
developed for many applications, such as demographic prediction [Hu et al., 2007], 
bio life-cycle analysis [Menzies et al., 2003], and the prediction of natural phenomena 
[Etemad-Shahidi and Mahjoobi, 2009], they have not yet been explored in the context 
of urban computing. In addition, the question of extracting significant features to 
support POI recommendations based on heterogeneous check-in intentions is also a 
critical and challenging issue. In building a numerical value prediction model, the 
fundamental issue is handling the heterogeneous features extracted from the 
heterogeneous data. As mentioned earlier, Random Walk approaches display an 
excellent performance in calculating predicted scores for the user-POI pairs. However, 
existing works [Jamali and Ester, 2009; Cao et al., 2010] do not address such 
heterogeneous features, preferring instead a straightforward aggregation of the 
extracted features, such as by linear combination. This leads to some features 
dominating over others.  

To address the above-mentioned problem, we explore the movements of users 
triggered by SI, PreI, and PopI, and seek several descriptive features to explain the 
relevance of user-POI pairs. In contrast to conventional POI recommendation 
techniques, which are based solely on the check-in behavior motivated by SI, we also 
utilize the check-in behavior motivated by PreI and PopI to recommend POIs for 
LBSN users. Our Urban POI-Walk method follows the HITS-based Random Walk 
approach [Cao et al., 2010]. This comprises: 1) an offline relevance learning module, 
and 2) an online top-k relevant POIs search. To learn the relevance of each user-POI 
pair, the relevance learning module explores all social, personal preference, and 
popularity aspects of the POI check-ins being captured in the LBSN dataset. The 
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relevance learning module includes three main steps: (i) feature extraction—the 
extraction of significant features of user-POI pairs in the forms of SI, PreI, and PopI; 
(ii) user-POI graph construction—the construction of weighted bi-partite graphs 
based on the extracted features. As the main idea underlying the HITS-based 
Random Walk approach is to predict the relevance of a user-POI pair in terms of the 
user’s ability to reach the POI, the user-POI graph plays a crucial role in the random 
walk model. Finally, (iii) Dynamic HITS-based Random Walk—calculation of the 
relevance of each user-POI pair by performing a HITS-based Random Walk with 
dynamic selection of the constructed user-POI graph. In the online recommendation 
module, the relevance between the properties of the POI and the user’s preference 
can be used to rank the recommendation list of POIs. After checking their 
coordinates, we obtain all qualified POIs for a particular user. 
This research makes a number of significant contributions, which are summarized as 
follows: 
 We formulate the problem of POI recommendation in an urban area as the 

problem of relevance score prediction. This problem has not previously been 
explored in the research community. 

 We propose Urban POI-Walk (UPOI-Walk), a new approach for urban POI 
recommendation, by mining urban users’ check-in behavior. The proposed 
UPOI-Walk learns a random walk to estimate the relevance score of each user-
POI pair. UPOI-Walk simultaneously explores three intentions of user check-in 
behavior, namely i) Social-triggered Intentions, ii) Preference-triggered 
Intentions, and iii) Popularity-triggered Intentions, by exploiting LBSN data to 
extract descriptive features. 

 We propose an extension to the HITS-based Random Walk model, called 
Dynamic HITS-based Random Walk, for estimating the relevance between POIs 
and users. The proposed Dynamic HITS-based Random Walk model can deal 
with the heterogeneous feature problem well by building several weighted 
complete bi-partite graphs.  

 We use two real datasets to evaluate the performance of UPOI-Walk in a series 
of experiments. One is obtained from Gowalla (http://www.Gowalla.com/), and 
the other is from EveryTrail (http://www.EveryTrail.com/). The results show 
that UPOI-Walk delivers superior performance over other recommendation 
techniques in terms of the popular normalized discounted cumulative gain and 
mean absolute error measures. 

The rest of this paper is organized as follows. We briefly review the related work 
in Section 2 and provide overview our urban POI recommendation approach UPOI-
Walk in Section 3. In section 4, the details of our proposed features are described. 
The proposed Dynamic HITS-Based Random Walk model is detailed in section 5. 
Finally, we present the evaluation result of our empirical performance study in 
Section 6 and discuss our conclusions and future work in Section 7. 

 RELETED WORK 2.

In this chapter, we review relevant previous studies and classify them into four 
categories: i) General Item Recommendation Systems, ii) Location or POI 
Recommendation, iii) Spatial-Temporal-based Data Mining, and iv) Numerical Value 
Prediction. 
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 General Item Recommendation Systems 2.1

2.1.1 Collaborative Filtering (CF)-based models. To recommend general items to 
users, Collaborative Filtering (CF)-based methods are highly effective. Generally, 
CF-based recommendations recommend items for users by using the records of 
similar users or similar items. Horozov et al. [Horozov et al. 2006] proposed an 
enhanced CF solution for personalized POI recommendations. Some approaches 
[Massa and Avesani, 2007] have proposed a trust-aware recommendation system, 
which builds a trust metric and makes use of trust information to recommend items. 
Debnath et al. [Debnath et al., 2008] proposed a combined CF and content-based 
recommendation system. Their approach can determine the weight values of 
attributes, which are obtained from a social network, using linear regression. To 
solve the problem of sparse data, many studies use CF- and item-based approaches to 
estimate missing values. The fundamental problem of the CF-based approach is the 
evaluation of user similarity and location similarity. Spertus et al. [Spertus et al., 
2005] proposed six different measures for recommending online social networks. The 
six measures applied the cosine distance, mutual information measure, TF-IDF, and 
log-odds functions to measure the similarity of communities. In [Ye et al., 2012b], Ye 
et al. proposed probabilistic generative model which naturally unifies the ideas of 
social influence, collaborative filtering and content-based methods for item 
recommendation. 

2.1.2 Social-based models. General Speaking, social-based recommendations 
consider that a user’s interests would be influenced by his/her friends. Accordingly, 
social-based recommendations recommend items for a user by using the records of 
the user’s social circle. Jamali and Ester [Jamali and Ester, 2009] proposed a new 
kind of random walk-based model, called TrustWalker. The TrustWalker model 
performs the random walk on the social network to predict item ratings for users. 
Trust-based random walk uses trust values and user-to-item ratings to predict the 
item ratings. A trust value is the user-to-user rating. If two people’s interests are 
similar, they will have a high mutual trust value. TrustWalker can solve the “cold 
start problem” with the same precision.  

2.1.3 Content- or Geo-aware Recommender. Levandoski et al. [Levandoski et al., 
2012] considered the user location and item location to be a constraint. They believed 
that users’ preferences were related to their location, and that users usually move 
short distances. Therefore, considering user and item locations should improve the 
performance of item recommendation. Scellato et al. [Scellato et al., 2011] proposed a 
social link prediction model, which involves several geo-based features intended to 
improve the accuracy of prediction. Content-based recommendation systems [Ono et 
al., 2007] use Bayesian network modeling of user preferences to recommend, e.g., 
movies. Bayesian networks are highly flexible, making them appropriate for 
representing the complex relations between users’ preferences and contexts. 

 Location or POI Recommendation 2.2

2.2.1 Location Recommendation. Similar to POI recommendation, a location 
recommendation system recommends a specific geographical place to users. The 
major difference between POI recommendation and location recommendation is that 
the notion of a location usually refers to a region that is detected by some heuristic, 
such as a holiday destination [Zheng et al., 2009]. In recent years, many studies have 
addressed the issue of location recommendation. Zheng et al. [Zheng et al., 2010] 
employed an activity term, such as hiking, as a query term to request the location 
recommendation service. A mobile application framework was presented by Simon 
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and Fröhlich [Fröhlich, 2007] to enable a mobile phone user to query geo-coded 
Wikipedia articles for landmarks in the vicinity, and a Cyberguide system [Abowd et 
al., 1997] was developed to provide information describing nearby buildings and 
related people’s identities. Takeuchi and Sugimoto [Takeuchi and Sugimoto, 2006] 
developed CityVoyager to recommend shops. This system collected users’ shop 
visiting histories based on GPS logs, and applied an item-based collaborative filtering 
method to recommend other shops similar to those previously visited. In order to 
recommending restaurants, a system combining both users’ preferences and location 
contexts has also been studied in [Park et al., 2007]. This used Bayesian learning to 
calculate recommendation values and provide a ranking list for restaurants. Zheng et 
al. [Zheng et al., 2009] selected tourist hotspots as the recommended locations. A 
HITS-based model was proposed to account for users’ travel experiences and 
locations of interest in forming the recommendations, so that only especially popular 
places that were also recommended by experienced users were ranked. Cao et al. 
[Cao et al., 2010] utilized a HITS-based Random Walk to learn the significance of 
certain locations. They also used the Yellow Pages directories to understand the 
semantic labels of a location. Although such semantic labels are not annotated by 
users, they may at least partially represent the relationship between location and 
user preference. Leung et al. [Leung et al., 2011] proposed a Collaborative Location 
Recommendation (CLR) framework based on co-clustering. This approach considers 
location, user, and activity to build a Community Location Model (CLM) graph. The 
CLR approach then uses Community-based Agglomerative-Divisive Clustering 
(CADC) algorithms to iteratively merge and divide nodes in the CLM graph. After 
clustering users, locations, and activities by CADC, refined clusters of similar 
locations that are visited by similar users doing similar activities are obtained. 

2.2.2 POI Recommendation. Unlike location recommendation, POI recommendation 
is based on a pre-determined location. Ye et al. [Ye et al., 2010] developed a friend-
based CF approach for location recommendation based on collaborative POI ratings 
made by social friends. They also found that users’ common check-ins were 
proportional to their geo-distance. Accordingly, Ye et al. proposed a geo-measured 
approach to approximate friend-based CF, thus reducing computation time. Later, Ye 
et al. [Ye et al., 2011b] proposed a CF-based POI recommendation framework. This 
framework fused user preference influence, social influence, and geographic influence 
to infer the check-in probability for a given user at a POI. This approach also 
exploited a power-law distribution to build the geographical influence among POIs, 
and used the CF method to depict user preference influence and social influence. Bao 
et al. [Bao et al., 2012] elicited social opinions from the location histories of local 
experts and learnt user personal preferences from users’ location histories. Based on 
the social opinions and user personal preferences discovered, Bao et al. designed a 
location-based and preference-aware recommendation system that offers a particular 
user a set of venues within a geospatial range. Berjani and Strufe [Berjani and Strufe, 
2011] proposed a Regularized Matrix Factorization (RMF) system to recommend 
appropriate spots, which could be viewed as POIs, for users. This research used data 
crawled from an LBSN website, Gowalla. The RMF recommender is a personalized 
application for recommending places. It first maps users and spots to a joint latent 
factor space, then exploits a regularized Singular Value Decomposition model to 
predict the ratings of users to spots. 
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 Spatial-temporal-based Data Mining 2.3

To understand a user’s preference, some research has been conducted that is 
devoted to mining location semantics or analyzing temporal information. For 
example, Ye et al. [Ye et al., 2011a] proposed a semantic annotation approach in 
which user check-in behaviors and temporal information are utilized to form several 
useful features for improving the accuracy of semantic annotation. Ye et al. [Ye et al., 
2012a] conducted a series analysis of Temporal-Semantic-Interaction. Based on this 
analysis, several LBSN applications could be improved, such as Tag 
Recommendation, Place Selection, and Data Cleaning. Cho et al. [Cho et al., 2011] 
analyzed LBSN and cellphone data to generate user mobility patterns. According to 
their analysis, humans experience a combination of strong, short-range spatially and 
temporally periodic movement that is not impacted by the social network structure, 
whereas long-distance travel is influenced more by social network ties. Such findings 
could be utilized to improve the accuracy of location prediction.  

 Numerical Value Prediction 2.4

Relevance estimation can be formulated as a numerical value prediction problem 
[Hu et al., 2007; Menzies et al., 2003; Etemad-Shahidi and Mahjoobi, 2009]. The 
typical steps in training a numerical value prediction model are: 1) feature extraction, 
2) feature selection, and 3) model building. After selection, features are used as 
inputs for training a numerical value prediction model. Regression-tree models have 
shown an excellent performance in similar tasks [Etemad-Shahidi and Mahjoobi, 
2009]. Once the model is trained, the training data is divided according to the 
decreasing variance of the target attribute. Each piece of training data is then used 
to build an individual regression model. Meanwhile, the procedure of dividing the 
training data is recorded to build a decision tree. 

 OVERVIEW OF URBAN POI-WALK 3.

 

 
Fig. 4. UPOI-Walk approach. 

 
To overcome the heterogeneous features and data sparsity problems, we design a 
two-stage approach, named Urban POI-Walk (UPOI-Walk), consisting of a relevance 
learning module and a POI recommendation module, as shown in Fig. 4. The system 
recommends urban POIs by mining user check-in behavior. In UPOI-Walk, the 

LBSN Dataset

Feature Extraction

Social Intentions 

Preference 
Intentions

Popularity 
Intentions

User-POI Graph 
Construction

User-POI Graphs

Dynamic Hits-based 
Random Walk

User-POI 
Relevance 

Matrix

User Request Top k Nearest POI 
selection

Top k Nearest POI POI Ranking

POI 
Recommendation 

List

Relevance Learning 

POI Recommendation



Mining User Check-in Behavior with a Random Walk for Urban Point-of-interest Recommendations            xx:9  
                                                                                                                                         

 
ACM Transactions on Intelligent Systems and Technology, Vol. xx, No. x, Article xx, Publication date: Month YYYY 

relevance learning module deals with the relevance estimation of user-POI pairs, 
while the POI recommendation module handles the POI recommendations based on 
the estimated relevance of each user-POI pair. In the learning module, there are two 
main phases, i.e., feature extraction and relevance estimation.  

For a specific user-POI pair, we explore the check-in behavior motivated by SI as 
population features that abstract the aggregated check-ins of the user’s friends. We 
also explore the check-in behavior motivated by PreI between users and POIs to 
formulate the descriptive features of a given user–POI pair. Moreover, the check-in 
behavior motivated by PopI is considered for feature extraction in our 
recommendation model. The features derived from SI, PreI, and PopI are used to 
construct several complete bi-partite graphs. In the relevance estimation phase, we 
apply a Dynamic HITS-based Random Walk approach to these graphs to calculate 
the relevance score of each user-POI pair. We thus obtain a user-POI matrix that 
records the relevance between users and POIs. In the recommendation module, the 
relevance between users and POIs can be used to rank the POI recommendation list. 
After examining the coordinates of all POIs and user positions, we present all 
qualified POIs to the user. 

 RELEVANCE LEARNING  4.

In the proposed UPOI-Walk approach, the relevance learning module is designed as a 
three-phase framework, as shown in Fig. 4. The first phase deals with feature 
extraction. This task explores the three types of intention discussed in the 
Introduction. The second phase handles the relevance estimation. We build two 
complete bi-partite graphs. Based on the extracted features, we can obtain two 
weighting functions to assign weights to the edges of the two graphs. Finally, in the 
third phase, we apply the Dynamic HITS-based Random Walk model to estimate the 
relevance between the user preferences and properties of the POI. 

 Feature Extraction 4.1

For a specific user–POI pair, we explore the check-in behavior motivated by SI, PreI, 
and PopI in order to explain the relevance between users and POIs. 

 
4.1.1. Features from Social-triggered Intentions. Our goal is to extract discriminative 

social-triggered features from check-ins among the user’s social circle at a POI. 
Intuitively, the user is likely to share some interests with his/her friends. Thus, if a 
POI is visited many times by the user’s social circle, it may satisfy some of the user’s 
interests. Accordingly, aggregating friends’ relative check-ins at a POI can be used to 
infer the probability that a user likes that POI. Formally, given a friend f and a set of 
POIs P, f’s relative check-ins at POI p is formulated as 
 






Pp

f, pcheckins

f, pcheckins
, p)heck-ins(frelative c

'
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)(  
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However, it is possible there are users whose interests are totally different to those of 
his/her friends. Thus, the similarity between the user and his/her friends must be 
involved. Accordingly, given a user-POI pair (u, p), the features extracted from SI can 
be generally formulated as 
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where F(u) is the set of user u’s friends. 

As mentioned above, measuring the similarity of two users is the key feature 
obtained from SI. Intuitively, the spheres of users and their friends can be utilized to 
measure their similarity based on the nature of their lifestyles and activities offered 
by their living areas. As a result, different similarities, naturally formed by the 
aggregated behavior of friends with respect to various kinds of POI, are embedded in 
the friends’ check-in activities. In LBSN data, the most important information 
concerns a user’s common check-ins and the distance between users in terms of 
similarity. In the following, we extract two population features to depict POIs. 
 Similarity by Common Check-ins (CheckSim): We employ the χ2 test to ascertain the 

relation between the check-in behaviors of LBSN users and their friends. If the test shows 
that a relationship is significant, it means that the user typically visits a POI that her friends 
have also visited. The Gowalla dataset, shown in Fig. 5, exhibits this significant trait. Hence, 
common check-ins are good for measuring users’ similarity. Hence, we formulate the 
similarity of two users as 
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where cos() indicates cosine similarity and vi indicates the check-in vector of user i. Taking 
Table I as an example, the check-in vector of user i is <1, 0, 2, 5, 0>, and the check-in vector 
of user j is <0, 10, 0, 1, 0>. Thus, the CheckSimi,j is 
 09.0
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Table I. Example check-in log. 

POI ID r1 r2 r3 r4 r5 
User i 1 0 2 5 0 
User j 0 10 0 1 0 
User k 1 1 0 0 0 
User l 1 1 1 1 5 
Total 3 12 3 7 5 

 

 
Fig. 5. Result of χ2 test for common check-ins of users and their friends from the Gowalla dataset. 

 
 Similarity by Relative Distance (DisSim): As discussed in [Ye et al., 2010], most people 

will check-in to a POI following friends who live nearby. Based on this idea, the design of 
DisSim focuses on the distance between users and their friends. To this end, we must first 
identify users’ living areas. We argue that most check-in activities will happen in a user’s 
living area. Thus, we find each user’s top-k frequently visited POIs, and treat the center of 
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these POIs as the base-point, as shown in Fig. 6. Accordingly, we formulate the DisSim of 
two users as 
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(5) 

 
where Distance(*) indicates the Euclidean distance between two base-points and F(u) 
indicates the set of user u’s friends. 

 

 
Fig. 6. An example base-point. 

 

4.1.2. Features from Preference-triggered Intentions. As discussed in the Introduction, 
we can view each user in the LBSN as a sensor for detecting the semantic tags of a 
POI in order to improve recommendations in an urban area. In many LBSN websites, 
there are two kinds of semantic tags, i.e., pre-defined categories and user-annotated 
highlights, as in Gowalla, shown in Fig. 7. The category tag is applied when the POI 
is created. Each place can have only one category tag, e.g., coffee, pizza. On the other 
hand, any user (even one who never visits the place) can arbitrarily annotate the 
highlight tag of a POI at any time. Indeed, the same tag can be applied to the same 
POI many times. Accordingly, the tag counts can be viewed to determine what type of 
activity occurs at a POI. Thus, the possibility that a tag t is annotated on a POI p can 
be formulated as 
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where count(t, p) indicates the number of times t is annotated on p, and T(p) 
indicates the set of tags of p. Taking Fig. 7 as an example, the possibility that the tag 
‘coffee’ is annotated on a POI is 

02.0
88102

2



. 

 
Intuitively, PreI features capture how the semantic labels of the POI match the 

user’s personal preference. The personal preference reflects the degree to which the 
user likes particular semantic labels. Accordingly, given a user-POI pair (u, p), the 
features extracted from PreI can be generally formulated as 
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where T(p) indicates the set of tags of POI p. 

 
Significantly, we can observe that measuring a user’s individual preference for a 

semantic tag is the key feature extracted from PreI. Intuitively, users’ check-in 
histories can reflect their preference for types of POI. As a result, for each user, we 
aggregate the number of check-ins at POIs with the same tag to represent each user’s 
personal preference. In the following, we extract two features to depict users’ 
preferences. 
 Preference in Category (CPref): Based on our observations from the LBSN dataset, users’ 

check-in activity fluctuates. Some users frequently visit many places, whereas some users 
rarely check-in at all. Hence, to measure an individual user’s personal preference for POIs, 
we need to normalize the aggregated number of check-ins based on the total number of user 
check-ins. Hence, we formulate user u’s personal preference for category tag t as 
 

uofinschecktotal

rucheckins
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  - #

),(
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where C(t) indicates the set of POIs with category tag t. Using Tables I and II as an example, 
the check-in vector of user i is <1, 0, 2, 5, 0>. Thus, user i’s personal preference for category 
tag A is 

125.0
05201

001



 . 

 

 
Fig. 7. An example of a POI’s semantic tag. 

 
Table II. Example category tags. 

POI ID p1 p2 p3 p4 p5 
Category A A B C A 

 
Table III. Example of highlight tags. 

POI ID p1 p2 p3 p4 p5 
Highlight a, b b, c, d a, d a, c g 

 
Note that, as mentioned above, people may annotate highlight tags on a POI and repeat the 

annotation many times. Based on this observation, to measure an individual user’s personal 
preference of POIs, we cannot directly normalize the aggregated number of check-ins based on the 
total number of user check-ins. From Tables I and III, we can employ a user’s total check-ins to 
normalize the aggregated number of check-ins, giving user i’s personal preference for highlight 
tag a as 
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Using the total check-ins to normalize the aggregated number of check-ins, it is clear that the 

total personal preference of a user will be greater than 1.0 and the scale of the total personal 
preference of a user will fluctuate considerably. 
 Preference in Highlight (HPref): Based on the above observation and the availability of 

highlight tags, we use the summation of a user’s total check-ins with each highlight tag to 
normalize their personal preference for POIs. To do so, given a set of highlight tags H, we 
formulate user u’s personal preference for highlight tag t as 
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where hl(t) indicates the set of POIs with highlight tag t. From Tables I and III, the check-in 
vector of user i is <1, 0, 2, 5, 0>. Thus, user i’s personal preference for highlight tag a is 

5.0
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 . 

 

4.1.3. Features from Popularity-triggered Intentions. As discussed in the Introduction, 
check-in data is very sparse. This means that features extracted from the behavior 
motivated by both SI and PreI are not effective at recommending users’ POIs, and 
his/her social circle never checks-in. We employ the total number of check-ins of a 
POI to make a maximum likelihood estimation of the popularity of POI. Thus, we can 
calculate the absolute proportion (AP) of check-ins to a POI to the total number of 
check-ins to all POIs. Formally, given a set of POIs P, the absolute proportion of 
check-ins for POI p is formulated as 
 






Pp

pofinscheck

pofinscheck
(p)

'

)'  - (#

  - #
AP  

(10) 

 
For example, if a POI has been visited 1,000 times and the total number of check-

ins at all POIs is 30,000, the absolute proportion of check-ins is 1/30. However, the 
type of POI affects users’ willingness to check-in. For example, people may buy a cup 
of coffee in a coffee shop every day, but rarely go to a French restaurant. Accordingly, 
we estimate the likelihood using conditional probability to find the Relative 
Popularity (RP) of a POI. RP indicates the probability that users visit the POIs that 
belong to category t. The formula for RP is as follows:  
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where T(p) indicates the set of tags of POI p and C(t) indicates the set of POIs with category tag t. 
Take Table I and Table II as an example. The POIs with category tag A are p1, p2, and p5. The 
total check-ins for POIs p1, p2, and p5 are 3, 12, and 5, respectively. Thus, the popularity of POI 
p1 is 
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4.1.4. Summary of Features. We have proposed several features from SI, PreI, and 

PopI. An abstract description of these features is given in Table IV. Each intention 
contains two kinds of features. We can see that all the features from SI and PreI are 
associated with the user-POI pair, but those from PopI are only associated with the 
POIs. Therefore, the features from PopI are usually ineffective for POI 
recommendations, but they can deal with the problem of data sparsity (or the 
problem of cold starts). Besides, the features from PreI are generated from individual 
user check-ins. This always leads to the problem of data sparsity, because the 
number of POIs that a user visits is always much less than the total number of POIs. 
Therefore, we argue that the features extracted from SI can make up for this 
shortage.  
 

Table IV. Summary of Features 

Intention Feature Notion Description 
Social-
triggered 
Intentions 

Friends’ check-ins for the 
POI weighted by common 
check-ins 

CheckSim The user’s friends’ check-ins to the POI in 
proportion to his friends’ total check-ins, 
weighted by the user's and his friends’ common 
check-ins. 

Friends’ check-ins for the 
POI weighted by 
geographic distance 

DisSim User’s friends’ check-ins to the POI in 
proportion to his friends’ total check-ins, 
weighted by the user’s and his friends’ 
geographic distance. 

Preference-
triggered 
Intentions 

User’s check-ins for the 
category term of the POI 

CPref User’s check-ins for the category term of the 
POI in proportion to his total check-ins. 
 

User’s check-ins for the 
highlight term of the POI 

HPref User’s check-ins for the highlight terms of the 
POI in proportion to his total check-ins. 

Popularity-
triggered 
Intentions 

Absolute proportion of 
check-ins  

AP Check-ins to the POI in proportion to total 
check-ins across the whole data set. 
 

Relative popularity RP Check-ins to the POI in proportion to total 
check-ins at POIs in the same category as that 
of the POI. 

 User-POI Graph Construction 4.2

After the feature extraction phase, the features derived from SI, PreI, and PopI are 
used as weights for building a User-POI Graph (UPG). The UPG is a weighted 
complete bi-partite graph containing two partite sets, i.e., a user set and a POI set, as 
shown in Fig. 8. Because there are several features, there are various weighting 
functions for building the UPG. As the features derived from SI and PreI could not be 
associated with every user-POI pair, we use the features derived from PopI to replace 
them. This heuristic is based on the assumption that users would visit a popular POI, 
whereas they would not go to an area in which no POIs have been visited by his/her 
friends or satisfy his/her individual preferences. Accordingly we formally define 
several UPGs as follows: 
 
Definition 4.1. User-POI Graph Weighted by Preference-triggered Intentions (UPGPreI). 
Given a user set U and a POI set P, the UPG weighted by PreI is a weighted complete bi-partite 
graph with the edge set U × P. The weighting function is formulated as 
 






otherwise ,)(

, POIin check  has user  if ,),(
),(

pPopI

pupuPreI
puwPreI

 
(12) 



Mining User Check-in Behavior with a Random Walk for Urban Point-of-interest Recommendations            xx:15  
                                                                                                                                         

 
ACM Transactions on Intelligent Systems and Technology, Vol. xx, No. x, Article xx, Publication date: Month YYYY 

 
where uU and pP. 
 

 
Fig. 8. Example of a user-POI graph. 

 
There are four UPGs weighted by PreI, because there are two features extracted 

from PreI and two extracted from PopI. Intuitively, we have four combinations for 
the weighting function. These are denoted by UPGPreI<CPref, AP>, UPGPreI<CPref, 
RP>, UPGPreI<HPref, AP>, and UPGPreI<HPref, RP>.  
 
Definition 4.2. User-POI Graph Weighted by Social-triggered Intentions (UPGSI). Given a 
user set U and a POI set P, the UPG weighted by SI is a weighted complete bi-partite graph with 
the edge set U × P. The weighting function is formulated as 
 






otherwise ,)(
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 (13) 

 
where uU and pP. 

 
Similarly, because there are two features extracted from SI and two from PopI, 

there are four kinds of UPG weighted by SI. Accordingly, we have four combinations 
for the weighting function. We denote these as UPGSI<CheckSim, AP>, 
UPGSI<CheckSim, RP>, UPGSI<DisSim, AP>, and UPGSI<DisSim, RP>.  

 Dynamic HITS-based Random Walk 4.3

Existing random walk approaches do not address the heterogeneous features discussed in the 
previous sections, instead using a straightforward aggregation of the extracted features, such as a 
linear combination. This leads to certain features dominating others. Given m users and n POIs, 
we build an m × n adjacency matrix M for the UPG. Formally, M = [wij ], 0 ≦ i < m; 0 ≦ j < n, 
where wij represents the weight of the edge linking the ith user and the jth POI. Formally, the 
random walk model applied to the UPG can be described as follows: 
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  (14) 

 
where k indicates the number of iterations, Mcol indicates the column stochastic matrix of M 
(computed by normalizing each column in M), Mrow indicates the row stochastic matrix of M 
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(computed by normalizing each row in M), δ1 indicates a matrix with all elements equal to 1/m, δ2 
indicates a matrix with all elements equal to 1/n, and ε indicates the “teleport probability,” which 
represents the probability of a random surfer teleporting from a POI node to a user node 
(respectively from a user node to a POI node) instead of following the links in the UPG. 

 
Input: a set of the UPG 
Output: relevance score of each user-POI pair  

1 R ←zero m × n matrix // m users and n POIs  
2 for each user i 
3 u ← initial vector(i) // the ith value of vector is 1, others are 0.  
4 for iteration < τ 
5 M ← random select(UPG) 
6 v ← (εMcol

T+(1-ε) δ1)u 
7 u ← (εMrow+(1-ε) δ2)v 
8 end 
9 R[i] ← vT // R[i] is the ith row of R 

10 end 
11 Return R

Fig. 9. Dynamic HITS-based Random Walk algorithm. 
 

As we described earlier, there are a total of eight types of UPG. Therefore, we can 
randomly select one of these as the matrix M in each iteration. Based on this idea, we 
propose a novel Dynamic HITS-based Random Walk model, as shown in Fig. 9. First, 
the initial state of each user is obtained (see Lines 1 to 3 of Fig. 9). For each iteration, 
we randomly select one of the UPGs as the surfer teleporting between POI nodes and 
user nodes (see Lines 4 to 8 of Fig. 9). Finally, we can obtain the probability that each 
user achieves each POI v by the Dynamic HITS-based Random Walk (see Lines 9 to 
11 of Fig. 9). 

 
Example 1. Dynamic HITS-based Random Walk. Suppose that the adjacency matrix M, Mcol, 
and Mrow for a UPG are as follows:  
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If we want to calculate the relevance of the first user to other users, we initialize xuser 
as (1, 0, 0, 0)T, and then use the power iteration shown in Equation (14) to calculate 
the vectors xkuser. If we set the number of iterations k to 2 and the teleport probability 
ε to 1, the relevance of the first user to other users can be calculated as follows: 
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Accordingly, we find the relevance probabilities for the first user to the second, third, 
and fourth users to be 5/77, 1/6, and 4/21, respectively. 
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 POI RECOMMENDATION 5.

After the relevance learning step, we must estimate the relevance between users and 
POIs. As the POIs in urban areas are very crowded, there will be too many POIs in 
the recommendation list. Although we can use some conditions from the users’ 
environment, such as geographic distance, to filter the possible POIs, there may still 
be too many for users to handle. We thus use the relevance results to rank the POIs 
in the recommendation list. As demonstrated in Fig. 1, the POI recommendation 
phase is similar to the process of information retrieval. All users are considered as 
queries to search for their top-k nearest POIs. After finding the top-k nearest POIs, 
the matrix recording the relevance between users and POIs is used to rank the list of 
POIs. For instance, using uk as a query, we retrieve the ten nearest POIs based on 
the geographical distance between uk’s current position and the positions of the POIs. 
The estimated relevance vector of the search results is then formulated according to 
the user-POI relevance matrix. Based on the estimated relevance vector, we can rank 
the POIs from high to low relevance. 

 EXPERIMENTAL EVALUATIONS 6.

In this section, we present the results from a series of experiments to evaluate the 
performance of UPOI-Walk using Gowalla and EveryTrail datasets. All the 
experiments are implemented in Java JDK 1.6 on an Intel Xeon CPU W3520 2.67 
GHz machine with 24 GB of memory running Microsoft Windows 7. We first describe 
the preparation of the datasets, and then introduce the evaluation methodology. 
Finally, we present and discuss our experimental results. 

 Datasets 6.1

6.1.1 Gowalla Dataset. The Gowalla dataset is a check-in dataset collected from the 
Gowalla website. The dataset contains 1,964,919 POIs, 18,159 users, 5,341,191 
check-ins, and 392,246 friend links. We normalize the check-ins for each user, and 
use the normalized check-ins as the ground truth, which we refer to as the “relevance 
ground-truth.” We normalize the check-in values in the range [0, 5]. The process of 
normalization is described by Equation (15). 
 
























avg xif   ,2
avg-min

avg-x
-3

 avg xif                          ,3

avg xif  ,2
avg-max

3

Score Relevance

avgx

 
(15) 

 
where x indicates the real check-in number of a user. “min,” “max,” and “avg” 
indicate the smallest, largest, and average check-in number of a user, respectively.  
 

6.1.2 EveryTrail Dataset. EveryTrail is a trip-sharing and social networking website 
on which users can upload, share, and find trips. The data includes GPS logs and 
photos within a trip. Users can also label an activity in a trip. The EveryTrail website 
provides a public API to allow other applications to integrate with their service, 
although some functionality in the API is broken. For this reason, we crawl web 
pages in support of the API in order to obtain all necessary data. However, the 
trajectory data is very different from check-in data. We must preprocess the 
trajectory data to transform it into suitable check-in behavior. Accordingly, we 
generate locations from the trajectory dataset. Although there are many techniques 
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to discover POIs from GPS data, such as grid-based approaches [Giannotti et al., 
2006; Monreale et al., 2009] and density-based approaches [Jeung et al., 2008; 
Mamoulis et al., 2004], we want to know where users are checking in. To this end, the 
“stay” parameter is important for detecting POIs. Obviously, these works do not 
address the “stay” aspect. As a result, for each user, we adopt the notion of stay 
locations [Zheng et al., 2009] to represent users’ check-in behavior, as shown in Fig. 
10. To discover stay locations, we first detect the regions, called stay points, in which 
a user stayed, i.e., s1 and s2 in Fig. 10. We then cluster all detected stay points to 
form stay locations, i.e., location2 and location5 in Fig. 10. As shown in Fig. 10, the 
user moving along the trajectory could be viewed as checking in to location2 and 
location5. We directly use the activity tags of the trajectory to annotate the locations 
that it passes. As the tags are provided by the user, and a location may be annotated 
with the same tag several times, we can treat this as a “highlight tag.” In other words, 
the PreI features can also be extracted from the EveryTrail dataset. After completing 
this process, we have 24,889 locations, 1,133 users, 843,009 check-ins, and 102,861 
friend links. 
 

 
Fig. 10. Example of a stay location. 

 Evaluation Methodology 6.2

UPOI-Walk is based on the ranking of POI scores, and can thus be viewed as an 
information retrieval system with users as the query terms. Therefore, we employ 
the popular measurement of Normalized Discounted Cumulative Gain (NDCG) 
[Manning et al., 2008] to evaluate the list of recommended POIs. NDCG is commonly 
used in information retrieval to measure the performance of search engines. A higher 
NDCG value for a list of search results indicates that highly relevant items have 
appeared earlier (with higher ranks) in the result list. For each list of recommended 
POIs, we can obtain a score list, where the scores are provided by the ground truth. 
Such a list is called the relevance vector. For example, suppose that the prediction 
model estimates the relevance scores of POIs F1, F2, F3, and F4 to be 4, 3, 2, and 1, 
respectively. Hence, the POIs will be ordered as <F1, F2, F3, F4> by the 
recommender. Suppose that the relevance score of the ground truth for POI list <F1, 
F2, F3, F4> is G = <2, 3, 0, 1>. That is, the relevance scores of F1 and F2 are 2 and 3, 
respectively. The DCG of relevance vector G is computed by Equation (16). The 
premise of DCG is that highly relevant documents appearing lower in a search result 
list should be penalized, as the graded relevance value is reduced logarithmically in 
proportion to the position of the result. Here, the parameter b controls where we 
start to reduce the relevance value. For example, if the relevance vector is <2, 3, 0, 1> 
and b is set as 3, the DCG [Hu et al., 2007] is 2+3+(0/log33)+(1/log34). (In our 
experiments, b = 2.) 
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In particular, NDCG@p, measures the relevance of the top p, as shown in 

Equation (17). 
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where IDCG[p] indicates the DCG[p] value of the ideal ranking list. For example, 
given a ranking list of five items with relevances <4, 1, 3, 1, 1>, the ideal ranking list 
is <4, 3, 1, 1, 1>. NDCG scores range from 0 to 1. The higher the NDCG score, the 
better the ranking result list. In the above example, the NDCG@5 is 
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However, NDCG is not comprehensive, because it only focuses on ranking 

performance, avoiding the absolute difference between estimated relevance and the 
ground truth. For example, given a ranking list of five items with estimated 
relevances <5, 4, 3, 1, 1>, the ground truth for the relevance of these five items is <4, 
3, 2, 2, 2>. We can see that the NDCG will be 1.0, implying that the effectiveness of 
the recommender is good. Besides the ranking performance, we also want to examine 
how close our predictions are to the eventual outcomes. Therefore, we employ the 
Mean Absolute Error (MAE) to evaluate the list of recommended POIs. 
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where fi indicates the estimated relevance scores of POI i and yi indicates the ground 
truth of relevance scores. The lower the MAE score, the fewer the number of errors. 
In the above example, the MAE is 

0.1|)21||21||23||34||45(|
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 . 

 Experimental Results and Discussion 6.3

The experiments can be divided into internal and external experiments. For the 
internal experiments, we first examine the optimal setting for the teleport 
probability () in terms of NDCG and MAE. We then compare the effectiveness of 
every feature extracted from all three types of intention according to these measures. 
For the external experiments, we compare our method with the following five state-
of-the-art approaches in terms of NDCG and MAE. 
 CF-based models [Ye et al., 2011b]. Ye et al. proposed a CF-based POI 

recommendation framework that fuses user preference influence, social 
influence, and geographic influence to infer the check-in probability of a given 
user at a POI. Therefore, this approach contains three sub-routines, which we 
call CF-based (user preference influence), CF-based (social influence), and CF-
based (geographic influence). 
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 CF-based models [Zheng et al., 2010]. Zheng et al. proposed a CF-based 
approach in which users can employ an activity term (semantic tag), such as 
hiking, as a query term to request the location recommendation service. 

 TrustWalker [Jamali and Ester, 2009]. The TrustWalker model combines a 
random walk model with a trust-based CF approach to predict the ratings of 
items. The trust-based CF approach uses trust values and user-to-item ratings 
to predict the item ratings. The trust value is the user-to-user rating. 

 HITS-based Random Walk (denoted as linear combination). We use the equal 
weight linear combination of all features we mentioned in Section 4.1. to build a 
user-POI graph and performs HITS-based Random Walk on it. 

 HITS-based Random Walk [Cao et al., 2010]. Cao et al. performs a HITS-based 
Random Walk on the user-POI graph and POI-POI graph. They utilized the 
number of check-ins as the weight of edge of user-POI graph and the number of 
consequent check-ins as the weight of edge of POI-POI graph.  

 UPOI-Mine [Ying et al., 2012] (denoted as M5Prime). This approach is our 
previous work, which uses the features stated in Section 4.1 to learn a 
regression-tree model, M5Prime, for relevance estimation. 

 

6.3.1. Tuning Parameters. Because the teleport probability () plays a crucial role in 
the performance of the HITS-based Random Walk, we vary it in our Dynamic HITS-
based Random Walk. This allows us to understand the weighting required to achieve 
the optimal Dynamic HITS-based Random Walk performance. As shown in Fig. 11, 
the optimal performance occurs for a teleport probability  = 0.4, except for NDCG@5 
in the EveryTrail dataset. In other words, a lot of behavior is similar to “randomly” 
moving. This is because the check-in data is very sparse, as mentioned earlier, and 
thus a lot of behavior recorded in the data could be viewed as “random” movement. If 
we forced some heuristic to represent users’ behavior, the performance of the model 
would suffer. Accordingly, we set the teleport probability  = 0.4 in the following 
experiments. 
 

 
Fig. 11. Comparison of various teleport probabilities. 

 

 
Fig. 12. Comparison of different intentions in terms of NDCG. 
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6.3.2. Comparison of Various Features in terms of NDCG. This experiment evaluates the 
performance of each feature in the proposed UPOI-Walk in terms of NDCG@5, 
NDCG@10, and NDCG@20. Fig. 12 shows the results. We observe that the 
effectiveness of features from PreI is better than that of features from SI. This result 
shows that users’ self-preference motivates their check-in behavior more strongly 
than the preferences of their friends. However, we should still use features from PopI 
and SI to improve recommendations, because the effectiveness of using features from 
all intentions outscores the other combinations.  
 

 
Fig. 13. Comparison of different features in terms of NDCG for the Gowalla dataset. 

 

 
Fig. 14. Comparison of different features in terms of NDCG for the EveryTrail dataset. 
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In Figs. 13 and 14, we compare all features in terms of NDCG@5, NDCG@10, and 
NDCG@20 for the Gowalla and EveryTrail datasets, respectively. We observe that 
the CPref feature outperforms all others, because the POI category is able to 
represent the users’ preferences. In the EveryTrail dataset, because the trajectory 
tags are provided by users, the PreI features reflect the users’ preferences completely. 
As a result, CPref and HPref outperform the other features. 

 

 
Fig. 15. Comparison of different features in terms of MAE. 

 

 
Fig. 16. Comparison of different features in terms of MAE. 

 
6.3.3. Comparison of Various Features in terms of MAE. This experiment evaluates the 

performance of each feature in the proposed UPOI-Walk in terms of MAE. Figs. 15 
and 16 both show that the MAE is smallest when combining all features, but the 
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features from PreI are not significantly effective. This is because the three intentions 
are complementary when using a random walk model. If we try to utilize only one 
feature to perform the random walk, the model will over-fit that aspect. This means 
that the model can only reflect partial properties of the dataset, damaging the 
accuracy of the model in some cases. 

  

 
Fig. 17. Comparison of various models in terms of NDCG with the Gowalla dataset. 

 

 
Fig. 18. Comparison of various models in terms of NDCG with the EveryTrail dataset. 

 
6.3.4. Comparison of existing recommendation models. This experiment compares the 

performance of our proposed UPOI-Walk with that of HITS-based Random Walk[Cao 
et al., 2010], TrustWalker [Jamali and Ester, 2009], UPOI-Mine [Ying et al., 2012], 
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and two CF-based models [Zheng et al., 2010; Ye et al., 2011b] in terms of NDCG@5, 
NDCG@10, NDCG@20, and MAE. Figs. 17 and 18 show that UPOI-Walk outperforms 
other existing works in terms of NDCG. This is because we consider check-ins 
motivated by PreI, whereas other methods do not. Although one of the CF-based 
models is described as being influenced by “preference,” it directly utilizes users’ 
common check-ins to estimate their POI preferences, instead of the preference for a 
semantic tag. 

 

 
Fig. 19. Comparison of various models in terms of MAE. 

 
Besides, we also can observe that the linear combination does NOT outperform 

our UPOI-Walk. Although the linear combination and our UPOI-Walk use the same 
features, features extracted from PopI might derive more influence for 
recommendation. Therefore, the influence of other features is diluted by the influence 
of features extracted from PopI. We also found that the MAE of CF-based POI is 
large, as shown in Fig. 19. Because of the sparsity of LBSN data, considering 
common check-ins for estimating users’ similarity will lead to many zero scores in the 
user-POI matrix. The reason for these large MAE values is that the zero scores are 
far from users’ actual relevance scores. On the contrary, UPOI-Walk, HITS-based 
Random Walk and TrustWalker evaluate the relevance between a user and a POI by 
using  the check-ins of other users who have no common check-in with the user. 

 
6.3.5. Scalability in Dynamic HITS-based Random Walk. Generally, Random walk 

algorithms require many matrix multiplications in the iterative process. This makes 
them very time-consuming. To examine the scalability of our method, we measured 
the learning time using the dataset crawled from Gowalla website under different 
number of POIs and number of users. The results are shown in Fig. 20. We can 
observe that the learning time increased exponentially as the size of the dataset 
increased. . Fortunately, the relevance learning can be processed offline. Besides, 
according to the observation of [Cho et al., 2011], people rarely make long-distance 
travel. Thus, the data could be divided by city, and we could parallelize our Dynamic 
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HITS-based Random Walk by performing relevance learning on each piece of data. 
The Gowalla dataset consists of POIs for the whole of New York City, so it is 
reasonable that the learning step takes about 4 hours. 

 

 
Fig. 20. Scalability in Dynamic HITS-based Random Walk 

 Discussion of Experimental Results 6.4

Through the above series of experiments, we have shown that the PreI features are 
significantly more effective than those of SI. This is because many activities are 
actually motivated by the users themselves, although most check-in behavior is 
affected by their friends. For example, people usually change their eating habits, 
although they seldom side with their friends. Accordingly, UPOI-Walk and UPOI-
Mine outperform other existing recommenders, which focus only on the check-in 
behavior motivated by SI. Furthermore, we can also observe that UPOI-Walk 
outperforms UPOI-Mine, especially in terms of MAE. The reason for this is that our 
proposed Dynamic HITS-based Random Walk randomly selects different types of 
UPG for the random walk process. Hence, our model comprehensively considers all 
intentions used for feature extraction. Therefore, the Dynamic HITS-Based Random 
Walk model is very effective for dealing with heterogeneous data problems.  

 CONCLUSIONS 7.

In this paper, we have proposed a novel approach named Urban POI-Walk (UPOI-
Walk) for recommending interesting urban POIs by mining users’ preferences. We 
also tackled the problem of mining user check-in behavior in an urban computing 
environment, which is a crucial prerequisite for effective POI recommendations in 
urban areas. The core task of POI recommendation in urban areas is conveniently 
transformed to the problem of relevance score prediction. We evaluated the relevance 
score of each user-POI pair by training a random walk model. In the proposed UPOI-
Walk, we have explored i) Social-triggered Intentions, ii) Preference-triggered 
Intentions, and iii) Popularity-triggered Intentions by exploiting LBSN data to extract 
descriptive features. To the best of our knowledge, this is the first work on urban POI 
recommendation that considers user check-in behaviors motivated by Social-, 
Preference-, and Popularity-triggered Intentions in LBSN data. Furthermore, to deal 
with the heterogeneous feature problem, we proposed a novel random walk model, 
called Dynamic HITS-Based Random Walk, to learn the user-POI relevance. 
Through a series of experiments using two real datasets, Gowalla and EveryTrail, we 
have validated the proposed UPOI-Walk and shown that it has excellent performance 
under various conditions. In future work, we plan to design more sophisticated 
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methods to enhance the quality of our proposed Dynamic HITS-Based Random Walk 
for various urban computing service applications. 
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