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Abstract: This paper proposes the concept of big model as a novel research paradigm for regional 

and urban studies. Big models are fine-scale regional/urban simulation models for a large 

geographical area. With the widespread use of big/open data, the increased computation 

capacity, as well as the advanced regional and urban modeling methodologies, big models make 

it possible to overcome the trade-off between simulated scale and spatial unit. In this paper the 

concept, characteristics, and potential applications of big models have been elaborated. We 

presented several case studies to illustrate the progress of our research and the application of big 

models. They include mapping urban areas for all Chinese cities, performing parcel-level urban 

simulation, and several ongoing research projects. Most of these applications can be adopted 

across the country, and all of them are focusing on a fine-scale level, such as a parcel, a block, or 

a township (sub-district), which is not the same with the existing studies using conventional 

models that are only suitable for a certain single or two cities or regions, or for a larger area but 

have to significantly sacrifice the data resolution. It is expected that big models will mark a 

promising new era for the urban and regional study in the age of big data.  
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1 A golden era of Big Models 

Applied regional/urban models have attracted extensive attention from researchers in recent 

decades. Regional models are used for regional analysis at a macro-geographic level, such as for a 

collection of cities or an entire country. They generally involve a variety of spatial analysis 

approaches and statistical methods. Broadly speaking, regional models are data processing and 

analysis-oriented rather modeling per se. On the contrary, urban models rely more on modeling 

and simulation approaches (Batty, 2009). They are commonly used for understanding and 

predicting urban systems through abstracting and generalizing different components of a city. 

Urban models were first developed in the early 1950s and moved through several phases as they 

developed and evolved. Figure 1 presents the development line of urban models from static to 

dynamic models. The dynamic models further include top-down differential equation-based 

models using system dynamics and currently prevailing bottom-up models using cellular 

automata or agent-based approaches. The spatial unit of urban models is also in a transition from 

a larger territorial unit such as a large grid or a zone to a smaller unit such as a block, a parcel, or 

a building (Hunt et al, 2005; Wegener, 2004). Generally, these two types of models are utilized 

separately. According to existing research on applied regional/urban models, they are rarely used 

simultaneously or synthetically. 
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Figure 1 The development line of Applied Urban Models 

(Adapted from Paul Waddell, Dynamic Microsimulation: UrbanSim, Webinar 5 of 8-part TMIP, 

Webinar series on land use forecasting methods) 

 

In practice, the existing applied regional/urban models can fall into two clusters based on their 

geographical scale and spatial unit. One is a fine-scaled model for a small area, e.g. part of a city 

or an entire city. The modeling spatial unit can be a parcel, a block, or a small cell. The other is a 

model for a large area, such as a region or an entire country. The modeling unit can be a county 

or a super cell. Because there is a general tradeoff between the spatial extent and the resolution 

of baseline data for modeling due to the data paucity, it is hard to develop a model that can be 

applied to a large geographic area but with a small spatial unit (see Figure 2).  
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Figure 2 Conventional models vs. “Big Models” (MVP-CA is our first big model for simulating 

urban expansion at the parcel level for all Chinese cities) 

 

To the best of our knowledge, fine-scale applied urban models for a large area have been rare in 

academic research. As explained earlier, this stems largely from the lack of data and computation 

capacity limitation, which are particularly true in the case of China. More often than not the 

actual datasets required to conduct such analyses did not exist or were hard to collect or obtain. 

In addition, collecting fine-scale data for feeding models in medium- and small-sized cities is 

often constrained by poorly developed digital infrastructures. This condition, to some degree, has 

obstructed the progress of fine-scale urban simulation for a large area in developing countries in 

general and in China in particular. Overcoming data shortfalls has become the top priority for 

fine-scale urban simulation in developing countries, even in some developed countries.  

 

In this article, the fine-scale urban simulation model for a large geographical area is termed a “big 

model”. Big models are data-driven urban simulation tools involving a variety of modeling 

approaches. As a new type of research paradigm for urban and regional studies, it overcomes the 

trade-off between simulated scale and spatial unit by tackling both of them at the same time. 

More importantly, as our ability to collect, store, and process data has increased remarkably in 

recent years since the digital revolution, big models would provide us with new opportunities for 

better understanding how cities work. There are four major reasons making the widespread use 

of big models happen. (1) Today, big data, such as mobile traces, public transport smartcard 

records, online check-ins/points-of-interest, and floating car trajectories, are becoming 

pervasively available. The spread of mobile technologies and personal computing has made 

generating, tracking, and recording individual data part of daily life, greatly supporting the 

analysis and modeling with rich datasets. Some scholars even advocate that data are models 

themselves (Batty, 2012). (2) Open access to data has been improved significantly as there have 

been calls for governmental transparency and accountability. For instance, people can access the 

dataset inventory of planning permits from the official website of Beijing Planning Commission, 

land transaction records from Beijing Land Bureau, and housing projects from Beijing Housing 
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and Construction Commission. Generally, these records are associated with detailed project-level 

information, including fine-scale physical characteristics and urban development status. 

Supported by online geocoding services, these records can be utilized in big models in the form 

of point datasets. Without painstaking efforts towards an “open government”, no such things 

would have been possible in China. (3) Computational capacity has been largely improved for 

running big models by means of techniques like parallel computation and Hadoop. (4) For those 

bottom-up simulation methods adopted by big models, such as cellular automata, agent-based 

modeling, and network analysis, they have evolved and matured, allowing more sophisticate and 

powerful application of big models. Therefore, we argue that big models will mark a promising 

new era for the urban and regional study field.  

 

The purpose of this chapter is to summarize the progress our existing research makes on the 

application of big models in China. The next section elaborates the basic ideas and characteristics 

of big models. Section 3 reviews the methodology development and several case studies in 

utilizing big models on various urban and regional researches. In the end, we conclude with a 

summary of our findings and suggest directions for further research.  

2 Big Models: A novel research diagram for urban and regional studies 

Big models have the following characteristics. First, they need large-scale geographic data but are 

not limited to the so called “big data” for initialization. The data may be collected at the 

individual observation level or based on small geographical units. Second, both the existing inter-

urban and intra-city analysis methods can be integrated in big models (see Figure 3 for an 

illustration of a big model combining inter-city and intra-urban approaches). Third, the 

geographic extent of big models is generally larger than that of conve ntional models but with 

similar spatial scale of simulation units. For instance, quality-of-life (QOL) studies can draw 

conclusions on a city using data at the block/parcel level. But with big models, the analysis of 

QOL can be conducted to a larger geographic area, such as for a region or an entire country, and 

still maintain the same spatial resolution. Fourth, for a same geographical area, a big model can 

achieve a higher spatial resolution when compared to a conventional model. A good example is 

that, in a national-scale population density research, the conventional models may only be 

applicable at the county or city level, whereas big models driven by fine-scale datasets make it 

possible to address the issue at the sub-district or block level, thus helping bring out more 

meaningful implication for urban spatial planning and policies. 
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Figure 3 An illustration of a big model integrating intra-and inter-urban methodologies 

 

Big models can be applied in the following avenues. First, urban dynamics from cities of all sizes 

can be investigated and examined using big models. Currently, most of applied urban models 

(AUMs) can only be adopted in large cities where data infrastructure and technical capacity are 

much better than those in middle- and small-sized cities. The introduction of big models could 

bridge the digital divide caused by data infrastructure and AUMs application nationwide. Second, 

focusing on individual data and fine-scale analyses and modeling, big models provide insightful 

solutions to various planning issues and contribute to a transition from a physical-concentration 

to a more collaborative and human-oriented planning process. Third, big models enable a variety 

of urban form and network indicators to be available and meaningful. These factors, combined 

with commonly adopted socio-economic aggregated indicators, can be adopted for inter-urban 

regional analyses, which were particularly difficult previously due to lack of necessary road 

network and parcel geometries across many cities.  

 

Simulating regional and urban dynamics using fine-scale and large-area big models is 

advantageous as follows. (1) The adoption of parcel-level data would be more appealing to local 

decision makers and citizens as parcel is the most basic unit of human activities carried out in the 

space and it has explicit boundaries defined by local images and information; (2) Land use 

regulations could be targeted directly at the parcel level, and every city would have access to the 

simulation results. This would benefit those cities with limited capacity to analyze and forecast 

future development; (3) the simulation results could be compared at the city level in the fine 

scale so that some inter-city urban dynamics can be observed. (4) Such model can further be 

integrated with spatial interaction analysis (i.e. flows and networks).  
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3 Case studies 

Our efforts on the development and application of big models represent a first step towards a 

better understanding of how cities operate and develop using the emerging big data processing 

and analysis techniques in China. We outline our methodology development and research 

process of big models with several completed and ongoing research projects. As most of our case 

studies draw upon online data sources, the methodologies proposed in this chapter can be easily 

extended and applied to other cases.  

 

3.1 Mapping urban area for all Chinese cities at the parcel/block level 

 

Urban built-up areas play a strong role in representing urban spatial development for planning 

decisions, management, and urban studies. They not only illustrate spatial patterns, such as the 

development levels and scales of the built environment, but also reveal socio-economic 

characteristics within the built-up areas, e.g., population aggregation, social interaction energy 

consumption, and land use efficiency, thereby reflecting how a city evolves in a complex manner 

(Batty, 2011). Conventional methods of capturing the borders of a built-up area from the top 

down have been applied in major cities around the world on a large scale. However, such 

methods cannot be applied to most of cities in developing countries due to lack of high-

resolution data (Long, 2013). Moreover, the research approach of the existing methods for fine-

scale studies is conditioned by the presence of data and study context and hence varies from 

case to case. Against this backdrop, an automatic bottom-up approach was developed in this 

chapter. Built upon morphological and functional characteristics determined by street network as 

well as point of interests (POIs), the proposed approach creates a unified way to define fine-scale 

cities of all sizes.  

 

Though the definitions and measurements of urban built-up areas have been varied, they 

generally can be classified into three conceptual types: administrative regions, entities-built 

areas, and functional districts. Urban built-up areas in the United States are defined as Urbanized 

Areas (UA) in a typical administrative model for spatial statistics. A UA comprises one or more 

“central places” areas and the adjacent densely settled surrounding “urban fringe” areas, with a 

total population of 50,000 or more (Morrill et al., 1999). A counterpart in Japan is called “Densely 

Inhabited District” (DID). DID is a district which has a population density of more than 4000 

people per km2. Urban Areas (UA) in UK are derived from entities-built areas, where certain real-

estate densities are detected through satellite images (Hu et al., 2008). On the other hand, socio-

economic factors are also adopted to describe the actual urban areas, e.g. labor force markets 

and commuter sheds are utilized to represent Metropolitan Area (MA) (Berry, et, at., 1969). 

Urban built-up areas are defined for different purposes with respect to population 

characteristics, economic status, and built environments attributes. In order to define the urban 

extent more explicitly, the examination and integration of morphological and functional 

characteristics (i.e. demographics and socio-economics) become essential and should be fully 

taken into account.  
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There are many ways of recording and mapping urban built-up areas. From the perspective of 

capturing morphological characteristics, an increasing attention has been focused on remote 

sensing images and street network. Remote sensing and night-time satellite imaging help us 

gauge urban activity and measure the extent and shape of built-up areas through capturing land 

cover information and interpreting light data (He et al., 2006). Apart from that, a number of 

indicators of street network have been introduced to describe the spatial layout of the built 

environment and predict their correlation with social effects. Examples are street intersection 

density (Masucci et al., 2012; Batty et al., 2012), fractal indices (Jiang and Yin, 2013), integration, 

and accessibility. In terms of the functional characteristics, socio-economic statistics such as 

demographic densities (Rozenfeld et al., 2008), effective employment density (SGS Economics & 

Planning, 2011, 2012), and infrastructures accessibilities (Hu et al., 2008) have emerged as a 

standard method of defining urban statistical areas (US Census Bureau, 2014).  

 

Nevertheless, these approaches have some drawbacks. 1) The processing and interpretation of 

remote sensing data could be time consuming and costly. The contexts of study areas are varied 

and thus it is difficult to set proper selection criteria. Also, resolution of satellite imagery is too 

coarse for detailed mapping and for distinguishing small areas. 2) Geometrical approach could be 

powerful for the description and analysis of spatial configurations given places, but would be 

weak for defining or establishing a spatial unit as parameters are various and less explicit. 3) Fine-

scale statistics are time-sensitive. But it takes time and money to collect and process data, thus 

becoming less reliable in response to subtle population and economy-related altering. 

 

In light of this situation, this chapter employs an automated framework – “automatic 

identification and characterization of parcels (AICP)” – that was proposed by Long and Liu (2014) 

to delineate urban built-up areas at the parcel level, based on increasingly standardized roadway 

asset data from ordnance surveys and crowd-sourced point-of-interests (POIs) data. Roadway 

data are used to identify and describe parcel configuration, and POIs are processed to infer the 

intensity, function, and mixing of land use and human activities.  

 

The working definition of a parcel is a continuously built-up area bounded by roads. Identifying 

land parcels and delineating road space are therefore dual problems. In other words, our 

approach begins with the delineation of road space, and individual parcels are formed as 

polygons bounded by roads. The delineation of road space and parcels is performed as follows: 

(1) All roadway data are merged as line features in a single data layer; (2) individual road 

segments are trimmed with a threshold of 200m to remove hanging segments; (3) individual road 

segments are then extended on both ends for 20m to connect adjacent but non-connected lines; 

(4) road space is generated as buffer zones around road networks. A varying threshold ranging 

between 2-30 m is adopted for different road types (e.g., surface condition, as well as different 

levels of roads); (5) parcels are delineated as the space left when road space is removed; and (6) 

a final step involves overlaying parcel polygons with administrative boundaries to determine 

whether individual parcels belong to a certain administrative unit. Parameters used in these steps 

are determined pragmatically with topological errors of roadway data in mind.  

 

We define land use density as the ratio between the counts of POIs in/close to a parcel to the 
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parcel area. We further standardized the density to range from 0 to 1 for better inter-city and 

intra-city density comparison using the following equation: standardized density = 

log(raw)/log(max), where raw and max correspond to density of individual parcels and the 

nation-wide maximum density value1. We also note that other measures (e.g., online check-ins 

and floor area ratio) can substitute POIs and approximate the intensity of human activities. 

 

A vector cellular automata (VCA) model is adopted to identify urban parcels from all generated 

parcels. In this model, each parcel is assigned a value of 0 (urban) or 1 (non-urban). Initially, all 

parcels are assumed to be rural. To determine the actual status of each parcel, we should take 

into account not only the individual parcel’s intrinsic attributes, such as population density, 

neighborhood attributes, and some other spatial variables, but also the status of neighboring 

parcels. The model stops at the iteration when the total area of urban parcels reaches total urban 

land. 

 

We applied this approach to map city boundaries for all Chinese cities and compared them with 

urban areas identified by GLOBCOVER, DMSP/OLS and population density. The simulation process 

and results highlight our proposed framework is more straightforward, time-saving and precise 

than conventional methods (see Figure 4 for the results in typical cities). 

 

Figure 4 Mapped urban areas in five typical Chinese cities by various methods 

 

The contribution of this project lies in three major aspects: data, methodology, and innovation. 

                                                             
1 The unit is the POI count per km2. For parcels with no POIs, we assume a minimum density of  1 POI per km2. 
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Firstly, the final product of this project is a database containing urban built-up area maps with 

detailed parcel features for 654 Chinese cities. Featured by fine-scale parcel information, the 

detailed road network and POIs datasets consolidated in this research can be applied to support 

a variety of planning and urban studies projects covering a wide range of geographic extent. 

Secondly, our research proposed a powerful and consistent approach to identifying urban built-

up areas across the country. Unlike previous methods that are somewhat laborious and 

subjective, our proposed methodology driven by VCA modeling is automatic, straightforward, 

and objective. The generated parcels can serve as basic spatial units for incorporating other high-

resolution ubiquitous and spatially referenced data.  In addition to the contribution of delineating 

urban built-up areas, this research also provides a robust framework for understanding complex 

urban system across cities from a bottom-up perspective.  

 

3.2 Simulating parcel level urban expansion for all Chinese cities 

 

China, as the largest developing country in the world, has experience rapid levels of urbanization 

in recent year since the introduction of Chinese Reform and Opening-up policies (Montgomery et 

al, 2008; Liu et al, 2012). Featured by the history’s largest flow of rural-to-urban migration and 

unprecedented economic growth, the urbanization process has shaped and transformed China 

from a rural to a more urban society. In light of this situation, increasing efforts on urban 

development assessment and management tools have been made in an attempt to promote a 

more sustainable development in China; among them are scenario-based urban simulation 

models (Zhang and Long, 2013).  

 

Large-scale simulation models are generally associated with large modeling units in space, like 

counties or super grids, sometimes reaching tens of square kilometers. Few applied urban 

models have the ability to pursue a large-scale extent with fine-level units simultaneously due to 

data paucity and computation capacity limitation as discussed previously. Despite the existing 

difficulty and infeasibility, urban expansion simulation at a large geographic extent with a fine-

scale (i.e. parcel scale) modeling unit could be promising for several reasons. Firstly, simulation 

and analysis at the parcel level would be more meaningful for local planners, decision makers, 

and residents to understand, administer, and monitor urban developments. Secondly, simulation 

modeling at the large geographic extent enables those administrative entities who have limited 

capacity to analyze and forecast the urban growth taking place within their boundaries by their 

own to have an insight on overall urban development scenario within the region and to gauge 

their growth and take action properly.  Also, such simulation models make inter-city comparison 

possible and their results consistent.  

 

In this section, we developed a mega-vector-parcels cellular automata model (MVP-CA) for 

simulating urban expansion in the parcel level for all 654 Chinese cities. Three modules, the 

macro module, the parcel generation module, and the vector CA module, were included in the 

MVP-CA, as shown in Figure 5. The macro module was responsible for setting urban expansion 

rate in the next five years for each city, taking into account historical urban expansion rate and 

national spatial development strategies. The parcel generation module was used for identifying 

existing urban parcels in 2012 using the framework of AICP (automatic identification and 



10 
 

characterization of parcels) proposed by Long and Liu (2014). The vector CA module was applied 

for simulating urban expansion during 2012-2017. This module was examined using calibrated 

parameters abstracted from Beijing data. Three urban expansion scenarios - baseline, urban 

agglomeration, and new urban development- have been simulated during 2012-2017 by MVP-CA, 

respectively. The simulation results are shown in Figure 5. We validated the simulation results 

using two approaches, the first was to compare the baseline scenario of Beijing with the results 

using a raster CA model BUDEM we developed previously, and the second was performed by 

crowding validation.  
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Urban area in 

2012 for each city
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during 2007-2012

National spatial 
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Figure 5 The structure and flow diagram of MVP-CA 
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(a) 

 

(b)                                (c) 

Figure 6 Urban area of all Chinese cities (a), and urban expansion patterns of the entire China for 

three scenarios (a: BAU, b: UAO, c: NTU) 

As the first large-scale urban expansion model in the fine-scale for the whole China, our 

contributions of this chapter mainly lie in the following aspects. First, a vector-based cellular 

automata model was introduced for simulating urban expansion in a super large geographical 

scale at the parcel level, which is rare in existing literature in the domain urban expansion 

modelling. Second, we proposed a solution for linking spatial development strategies with urban 

expansion via reflecting as the urban expansion speed of each city. This enables simulating macro 

policies in a very fine-scale through the channel of the MVP-CA model. Last, we simulated the 

near-future urban area for all Chinese cities in China, which, together with existing urban area, 

has already been shared online as an important data infrastructure for both practitioners and 

researchers.  
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3.3 Other ongoing projects by BCL 

3.3.1 Estimating population exposure to PM2.5 

 

Chinese cities have for many years suffered from air pollution, which has been a major downside 

to rapid economic growth and increased urbanization. Currently, few studies of air pollution have 

been conducted to assess population exposure to PM2.5 over large geographical areas and time 

periods in China. The existing studies mainly focus on air pollution’s effects on health and 

ecosystems or relevant monitoring methods and measurement, but less has been done on the 

link between urban spatial structure and air pollution exposure, not to mention their 

spatiotemporal pattern.  

 

In this study, we collected daily PM 2.5 concentrations during April 08, 2013 and April 07, 2014 

from 945 monitoring stations in 190 cities across China2. The air quality data were acquired from 

China National Environmental Monitoring Center (http://www.cnemc.cn). These datasets enable 

us to understand the PM 2.5 concentration of each station all year round, and can be used as a 

key input for our estimation. Considering the sparse distribution of monitoring stations across 

China, we further used MODIS AOD product to supplement the PM 2.5 estimates on a daily basis. 

Demographic statistics were drawn from China’s 2010 census data. The spatial distribution of 

population density across China was determined by geocoding population density of each sub-

district based on Google Map API. In total, there are 39,007 sub-districts3 in China, and the 

average population density for all sub-districts is 977 persons per km2. Population have been 

divided into three age groups (age 0-14, age 15-64, and 65 years and older), with an aim to 

differentiate the exposure estimates for different sensitive groups such as children and seniors. It 

is worth mentioning that this is the first time to use sub-district population density for estimating 

human exposure to air pollution in China, whereas former studies were conducted at the county 

level at best.  

 

The population exposure estimation involves three major steps. (1) Interpolate the PM2.5 

concentration site data into surface data using both ground station-level data and MODIS ADO: 

PM2.5 concentration data were obtained from all air quality monitoring stations across the 

country and supplemented with MODIS ADO data. Using numerous spatial interpolation 

methods, the station-level data can be interpolated into surface data. The outcome of this step is 

the average daily PM2.5 concentration over the entire area and over time. (2) Estimating 

population exposure to PM2.5 for each sub-district. Based on interpolated PM2.5 data, a daily 

PM2.5 concentration above the national standard of 75mg/m3 is considered to be unhealthy and 

thus defined as “exposed”. In this way, the total exposed days all year round of each sub-district 

can be estimated. Further, the exposure intensity for each sub-district can be calculated using the 

Equation: Exposure intensity = Population density * Exposed days. The greater exposed days or 

population density for a sub-district, the higher exposure intensity. This indicator reflects the 

                                                             
2 There are 657 cities in mainland China as of the end of 2012.  
3 There are three forms of township-level administrative units in China, sub-districts (jiedao), towns (zhen), and 
township (xiang). Jiedaos are mainly in city area. Jiedao’s counterparts in the rural area are towns and townships. 
Hereafter in this chapter, we use the term sub-district for representing all types of township-level administrative 
units in China.  
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strength of population exposure to PM2.5. The population density can be subject to specific sub-

population groups for estimating the effects on members of sensitive groups. (3) Aggregating the 

estimated results spatiotemporally. To gain ideas on spatiotemporal pattern of population 

exposure to PM2.5, we can further aggregate the estimated results in both temporal and spatial 

dimensions. For the temporal dimension, the total number of exposed month can be calculated 

for each sub-district, thus presenting a big picture of population exposure to air quality over time. 

For the spatial dimension, the exposure of each city can be inferred by averaging the estimation 

results of all sub-districts in each city’s administrative boundary.  

 

The number of months subject to exposed condition across the entire country is presented in 

Figure 7. 

 
Figure 7 The number of total exposed months for each sub-district in China 

 

The daily exposure for each sub-district was further aggregated by each month. Table 1 displays 

the percentage of exposure days per month from April 2013 to March 2014.  
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Table 1 Exposed days in each month for each sub-district in China 

Apr 2013 May 2013 Jun 2013 Jul 2013 Exposed 
percentage 
in  
each 
month 

 

    
Aug 2013 Sep 2013 Oct 2013 Nov 2013 

    
Dec 2013 Jan 2014  Feb 2014  Mar 2014  

    
 

The exposure intensities were obtained by multiplying population density for each sub-district 

with the estimated exposure days during the period. The final result is presented in Figure 8. It is 

worth pointing out that the overall exposure intensity pattern generally coincides with the 

distribution of population density across the country.  
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Figure 8 Exposure intensity in the town level of China (# days pop per km2) 

 

3.3.2 Evaluating urban growth boundaries for 300 Chinese cities 

 

Among the various urban growth management policies, urban containment policies have been 

widely adopted in an attempt to control the spread of urban areas, increase urban land use 

density, and protect open space (Nelson and Duncan, 1995, Long et al, 2011). In general, urban 

containment policies seek to manage urban growth through at least three different types of tools 

– greenbelts, urban growth boundaries (UGBs), and urban service boundaries (USBs) (Pendall et 

al., 2002). UGB is one of the most widely discussed tools in the planning field. Through zoning, 

land development permits, and other land-use regulation tools, UGBs demarcate urban and rural 

uses and aim to contain urban development within the predefined boundaries (Pendall et al., 

2002). In China, urban construction boundaries determined in master or detailed plans have 

been commonly recognized as Chinese/planned UGBs (Long et al 2013), since they have a similar 

mechanism to UGBs in the U.S. as well as some other Western countries.  

 

In China, conventional methods of delineating UGBs are based on planners’ expertise and 

experiences; thus, they lack an adequate scientific basis and quantitative support. Consequently, 

the UGBs often fail to manage urban growth. According to Han et al. (2009)’s study on the 

examination of the implementation of planned UGBs within the sixth ring road of Beijing using 

multi-temporal remote sensing images, more urban land developments were found outside than 

inside the UGBs during the previous two planning periods (1983 to 1993 and 1993 to 2005). Tian 

and Shen (2011) and Xu et al. (2009) also suggested that substantial urban development occurred 

outside of UCBs in Guangzhou and Shanghai in recent years. These findings were also supported 
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by Long et al (2012)’s research, which evaluated five master plans compiled and implemented in 

Beijing during 1958-2004. Though considerable progress has been made in revealing and 

quantifying the extent of urbanization and/or evaluating the urban policies’ effectiveness on 

managing urban growth, we have found that most of them have been focused on a single city or 

region, and little work on the city-level comparison of the performance of UGB’s implementation 

has been done.  

 

Driven by our proposed urban growth simulation model and other relevant big models studies, 

we launched effort to create a systematic approach to horizontally examine and evaluate the 

effectiveness of UGBs across cities and regions. We collected raw planning drawing maps on 

planned UGBs in over 300 Chinese cities (see Figure 9 for a partial sample of cities) and digitalized 

the boundaries in GIS to facilitate spatial analysis and statistics on these planned UGBs. After 

that, the planned UGBs of a city were overlaid and compared with the actual extent of urban 

expansion in the past years since the plan was first implemented, and the ratio of legal 

development to all urban development can be directly calculated to facilitate city-level 

comparison. Furthermore, the ambitious degree of each city can be inferred by dividing the 

actual extent of urban expansion by the planned-to-be-development land area.  

 

Compared with previous studies on big models to date, this research generalizes the planned 

UGBs across cities and regions and helps make sense of differing results of urban development. In 

addition, it can provide an insight of the overall trend of urban development in China and thus 

would be useful for planners to evaluate, monitor, and manage urban planning efforts.  

 

 

Figure 9 The profile of raw figures for planned UGBs (partially shown) 

 

Meanwhile, the digitalized UGBs can also be used to supplement the MVP-CA urban expansion 

model for all Chinese cities (see our first case study in this chapter) as an institutional constraint, 

thus accounting for the simulation results. In addition, the project may help identify some 

universal law of governing the pattern of planned UGBs among all Chinese cities.  
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3.3.3 Population spatialization and synthesis for all Chinese cities 

 

Demographic and socio-economic information are important factors to incorporate in applied 

urban models. A number of studies have been conducted to generate synthetic individual data 

based on reweighting large-scale survey samples (Wu et al, 2008). In developing countries like 

China, demographic data at a fine-scale level is not universally available, nor are large-scale 

surveys for population synthesis. China is also facing an institution-induced digital divide –that is,  

a gap between data available to research and data gathered through official channels - as the 

government exercises tight control over the official data. This situation is common among 

developing countries (Tatem and Linard, 2011). We hereby aim to mitigate this gap by illustrating 

how the collection, analysis, and visualization of big (open) data can contribute to the progress of 

synthesizing micro data in developing countries. 

 

In this study, we proposed an automatic process using open data for population spatialization 

and synthesis. Specifically, road network in OpenStreetMap was used to identify and delineate 

parcel geometries, while crowd-sourced POIs were gathered to infer urban parcels with a vector 

cellular automata model. Housing-related online check-in records were then applied for selecting 

residential parcels from all identified urban parcels. Finally, the released sub-district level 

population census, from which the distribution of and relationship among attributes are 

provided, was processed for synthesizing population attributes using a previous developed tool 

named “Agenter” (Long and Shen, 2013). Figure 10 presents the results of Beijing, which have 

been validated with ground truth manually-prepared dataset by planners in Beijing Institute of 

City Planning. 

 

 

Figure 10 The spatial distributions of disaggregated agents in the Beijing Metropolitan Area 

(BMA) (partially shown) 

 

The final product of our project is a dataset containing fine-scale resident distribution in space 
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and their associated attributes throughout the country. This dataset can contribute to, but not 

limited to, the following areas. Firstly, the parcel-level population density dataset can serve as a 

powerful base for urban planners and researchers to analyse and solve a wide range of social and 

development related issues, such as quality-of-life, air pollution exposure, and population-based 

urban agglomeration. Secondly, the dataset we generated can act as a direct input in a form of 

spatial agents for the ever emerging agent-based models that previously had to utilize somewhat 

coarse dataset as inputs under the data-sparse conditions in China. Lastly, the generated results 

display its potential applications in market analysis, e.g. evaluating potential market for retails 

within the catchment area.  

 

3.3.4 Identifying functional urban area for Chinese cities 

 

Since the introduction of the concept of metropolitan area (or functional urban area, FUA), the 

statistics agents and scholars from different countries have come up with different kinds of 

methods to delineate the boundary of metropolitan areas. One basic reason for identifying 

metropolitan areas is that, in reality, the administrative boundary of a city cannot well represent 

the actual size and impact of labor force and economic activity happening there. For instance, 

there are a large number of residents who are living in Yanjiao and Sanhe in Hebei Province but 

commuting to central Beijing for their job, and such commuting pattern would inevitably 

generate substantial influences on economy, housing, and environment that frequently take 

place beyond the traditional administrative boundary of Beijing. As a result, it becomes necessary 

to delineate boundaries of these geographic areas –that is, to define a metropolitan area – to 

capture its real population or economic functions. In general, a metropolitan area comprises a 

densely populated urban core and its less-populated neighboring territories that are socio-

economically tied to the urban core. Though there has been no significant change in terms of the 

basic concept of metropolitan areas, their definition, criteria, and measurements are not 

consistent across countries and over time.  

 

The National Bureau of Statistics of China has not published a standard for the delineation of 

metropolitan areas nationwide. However, some Chinese scholars have started to develop 

mathematical or econometric methods to define the metropolitan areas since the 1980s (Yu and 

Ning, 1983, Zhou, 1987) and there have been several studies and efforts that have been put into 

practice. Their methods generally followed a similar core-hinterland scheme as describe above. 

Among the definitions of the core area, there have been disputes but almost all of them were 

intended to use the statutory urban districts as the urban core. To determine the interacted 

exurban areas, due to lack of commuting data nationwide, researchers had to employ alternative 

measures for identifying linkages between core and outlying zones. These alternatives range from 

bus ridership, industrial economic indicators, to road network. To date, most of these studies 

were applied to a limited number of regions. There has not been any form of unified delineation 

methodology that can be applied to the entire county. 

 

In our research, we incorporated various large-scale and high-resolution data, such as check-in 

records from commercial social networking websites and bus routes and stops from public 

transportation query services, for a purpose of identifying FUAs for over 300 large-sized cities in 
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China. Our hypothesis is that, if an adjacent county has high interaction with the central county, 

there should be a considerable large percentage of residents commuting to the city for jobs. We 

first used the check-in record datasets to test our hypothesis. We assumed that a location where 

a targeted user has kept at least five check-in records within one year is to be this individual’s 

residential place, and a location where he or she has ever posted job-related check-in records to 

be a working place. To this end, a potential commute trip can be established by linking those 

identified residential and working places. We found that most of commute trips take place 

between two distant cities – a pattern that is not quite reasonable in the real world. A possible 

explanation is that social network users are more likely to post a check-in record when they are 

visiting someplace new rather than a place they are familiar with. As a result, this proposed 

method became invalid.  

 

We are now shifting our focus to bus routes and stops datasets. We have collected 622,375 bus 

stops in 203 mid- to large- sized Chinese cities. Since the routes and schedules of local bus 

services are commonly well-established and can reflect a real commuting pattern within the area, 

we started testing the viability of using these bus service datasets for delineating the FUAs.  This 

is the first time that an attempt to map FUAs for a large number of cities in China has been made, 

and we hope the process of this research and final products can help make benchmark for 

delineating metropolitan areas nationwide. 

 

3.3.5 Evaluating the quality of urban agglomerations in China at three levels 

 

Urban agglomerations (also referred to as city regions) have been emphasized in China’s 11th 

Five-Year Plan and 12th Five-Year Plan for National Economic and Social Development. According 

to the plans, urban agglomerations will be developed as the main body of urbanization as well as 

the basic terrain unit in participating international competition and international division of labor 

(Wu et al, 2013). The central government of China has ratified and agreed to support more than 

30 regional plans and development policies regarding urban agglomerations that involve 23 

provinces, autonomous regions and municipalities. The objectives of these plans and policies are 

to guide the development of these urban agglomerations towards a healthier and more 

sustainable future.  

 

The most accepted deliberation of urban agglomerations, which were proposed by Fang et al 

(2013), is presented in Figure 11. In total, there are 23 urban agglomerations, covering 355 cities. 

Of these identified urban agglomerations, none have been officially approved except Yangtze 

River Delta, Pearl River Delta, and Beijing-Tianjin-Hebei.  

 

There is a lack of institutional knowledge and evidences to justify how these urban 

agglomerations have been developed and what are their rankings with respect to population, 

urban development, economic output, etc. In this study, we employed Big Models for evaluating 

these urban agglomerations (UAs) at three levels. First, we evaluated UAs morphologically using 

population density from the 2010 population census of China at the township level. Second, we 

evaluated UAs using district/county level urbanization ratio morphologically. Last, we evaluated 

UAs functionally using city-level transport flows extracted from inter-city trains, coaches, and 
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flights. In addition to the examination of the degree of existing development within these UAs, 

the MVP-CA model developed in Section 3.2 have been applied for estimating the development 

potential for each UA in the next five years.  

 

 
Figure 11 Urban agglomerations and cities in China 

 

4 Conclusions and future directions 

This chapter has proposed the concept of big model as a novel research paradigm for regional 

and urban studies. The concept, characteristics, and potential applications of big models have 

been elaborated. Meanwhile, we addressed several case studies to illustrate the progress of 

research and utilization on big models, including mapping urban areas for all Chinese cities, 

performing parcel-level urban simulation, and several ongoing research projects. Most of these 

applications can be adopted across the country, and all of them are focusing on a fine-scale level, 

such as a parcel, a block, or a township (sub-district), which is quite different from the existing 

studies using conventional models that are only suitable for a certain single or two cities or 

regions, or for a larger area but have to significantly sacrifice the data resolution. Believing that 

big models will mark a promising new era for the urban and regional study in the age of big data, 

we hope our efforts on urban analytics and modeling in Beijing City will set new research agenda 

and inspire innovative ideas all over the country.  

 

There are several avenues on big models that deserve further studies. First, it is necessary to 

combine both intra-urban and inter-cities methods in big models. Existing case studies in this 
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chapter mainly rely on bottom-up intra-urban approaches. City level linkages are essential to be 

included in big models in the next step. For instance, a spatial equilibrium module considering 

the provincial level input-output would replace the current “the macro module” in the near 

future. The integration of equilibrium mechanism with the dynamic CA model can link an inter-

provincial - or even inter-city - simulation at the macro level with an urban expansion simulation 

at the local level. Second, more general theory on big models can be conceptualized through 

more in-depth case studies analysis.  

 

Acknowledgement: We thank Miss Yichun Tu for her editing the language of this chapter.  
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